首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To compare the image quality of coronary CT angiography (CTA) studies between standard filtered back projection (FBP) and adaptive iterative dose reduction in three-dimensions (AIDR3D) reconstruction using CT noise additional software to simulate reduced radiation exposure. Images from 93 consecutive clinical coronary CTA studies were processed utilizing standard FBP, FBP with 50 % simulated dose reduction (FBP50 %), and AIDR3D with simulated 50 % dose reduction (AIDR50 %). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured within 5 regions-of-interest, and image quality for each reconstruction strategy was assessed by two independent readers using a 4-point scale. Compared to FBP, the SNR measured from the AIDR50 % images was similar or higher (airway: 38.3 ± 12.7 vs. 38.5 ± 14.5, p = 0.81, fat: 5.5 ± 1.9 vs. 5.4 ± 2.0, p = 0.20, muscle: 3.2 ± 1.2 vs. 3.1 ± 1.3, p = 0.38, aorta: 22.6 ± 9.4 vs. 20.2 ± 9.7, p < 0.0001, liver: 2.7 ± 1.0 vs. 2.3 ± 1.1, p < 0.0001), while the SNR of the FBP50 % images were all lower (p values < 0.0001). The CNR measured from AIDR50 % images was also higher than that from the FBP images for the aorta relative to muscle (20.5 ± 9.0 vs. 18.3 ± 9.2, p < 0.0001). The interobserver agreement in the image quality score was excellent (κ = 0.82). The quality score was significantly higher for the AIDR50 % images compared to the FBP images (3.6 ± 0.6 vs. 3.3 ± 0.7, p = 0.004). Simulated radiation dose reduction applied to clinical coronary CTA images suggests that a 50 % reduction in radiation dose can be achieved with adaptive iterative dose reduction software with image quality that is at least comparable to images acquired at standard radiation exposure and reconstructed with filtered back projection.  相似文献   

2.
To compare coronary plaque size and composition as well as degree of coronary artery stenosis on coronary Computed Tomography angiography (CCTA) using three levels of iterative reconstruction (IR) with standard filtered back projection (FBP). In 63 consecutive patients with a clinical indication for CCTA 55 coronary plaques were analysed. Raw data were reconstructed using standard FBP and levels 2, 4 and 6 of a commercially available IR algorithm (iDose4). CT attenuation and noise were measured in the aorta and two coronary arteries. Both signal-to-noise-ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The amount of lipid, fibrous and calcified plaque components and mean cross-sectional luminal area were analysed using dedicated software. Image noise was reduced by 41.6 % (p < 0.0001) and SNR and CNR in the aorta were improved by 73.4 % (p < 0.0001) and 72.9 % (p < 0.0001) at IR level 6, respectively. IR improved objective image quality measures more in the aorta than in the coronary arteries. Furthermore, IR had no significant effect on measurements of plaque volume and cross-sectional luminal area. The application of IR significantly improves objective image quality, and does not alter quantitative analysis of coronary plaque volume, composition and luminal area.  相似文献   

3.
目的 探讨超低管电流三维自适应迭代剂量降低(AIDR3D)重建CT猪结肠成像的图像质量与辐射剂量。方法 制作10段猪结肠息肉模型,每段猪结肠黏膜设有30枚直径1~15 mm的结节样模拟息肉。对所有模型均采用640层CT机进行扫描,管电压120 kVp,电流剂量分别为10、20、30、40、50 mAs。并获得滤波反投影(FBP)和AIDR3D重建图像,不同管电流及重建方法组合10组数据:A组(10 mA,FBP)、B组(10 mAs,AIDR3D)、C组(20 mAs,FBP)、D组(20 mAs,AIDR3D)、E组(30 mAs,FBP)、F组(30 mAs,AIDR3D)、G组(40 mAs,FBP)、H组(40 mAs,AIDR3D)、I组(50 mAs,FBP)、J组(50 mAs,AIDR3D)。测算图像的噪声、SNR及CNR作为定量指标,并对图像质量进行主观定性评分。以有效辐射剂量为指标比较各组图像的辐射剂量。结果 相同管电流条件下,AIDR3D图像的噪声低于FBP图像,SNC及CNR均高于FBP图像(P均<0.05)。D组与I组图像的噪声(P=0.052)、SNR(P=0.129)及CNR(P=0.053)差异均无统计学意义。B组图像的噪声(P=0.002)高于I组,SNR及CNR均低于I组(P均<0.001)。相同管电流条件下,AIDR3D图像的质量评分高于FBP图像(P均<0.05)。D组与I组的图像质量评分差异无统计学意义(P=0.121)。B组的图像质量评分低于I组(P<0.001)。 与I组(50 mAs,FBP)比较,D组(20 mAs,AIDR3D)的有效辐射剂量降低了59.90%,差异有统计学意义(P<0.05)。结论 超低管电流(20 mAs)扫描结合AIDR3D重建的猪结肠CT图像质量可媲美常规低管电流(50 mAs)扫描结合FBP重建的图像质量,并有效减低辐射剂量。  相似文献   

4.
We evaluated the feasibility of sub-millisievert (mSv) coronary CT angiography (CCTA) using low tube voltage, prospective ECG gating, and a knowledge-based iterative model reconstruction algorithm. Twenty-four non-obese healthy subjects (M:F 13:11; mean age 50.2 ± 7.8 years) were enrolled. Three sets of CT images were reconstructed using three different reconstruction methods: filtered back projection (FBP), iterative reconstruction (IR), and knowledge-based iterative model reconstruction (IMR). The scanning parameters were as follows: step-and-shoot axial scanning, 80 kVp, and 200 mAs. On the three sets of CT images, the attenuation and image noise values were measured at the aortic root. The signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) were calculated at the proximal right coronary artery and the left main coronary artery. The qualitative image quality of the CCTA with IMR was assessed using a 4-point grading scale (grade 1, poor; grade 4, excellent). The mean radiation dose of the CCTA was 0.89 ± 0.09 mSv. The attenuation values with IMR were not different from those of other reconstruction methods. The image noise with IMR was significantly lower than with IR and FBP. Compared to FBP, the noise reduction rate of IMR was 69 %. The SNR and CNR of CCTA with IMR were significantly higher than with FBP or IR. On the qualitative analysis with IMR, all included segments were diagnostic (grades 2, 3, and 4), and the mean image quality score was 3.6 ± 0.6. In conclusion, CCTA with low tube voltage, prospective ECG gating, and an IMR algorithm might be a feasible method that allows for sub-millisievert radiation doses and good image quality when used with non-obese subjects.  相似文献   

5.
迭代重建在双源CT冠状动脉成像中的应用   总被引:1,自引:4,他引:1  
目的与滤过反投影法(FBP)对比,评价迭代重建(IR)在双源CT(DSCT)冠状动脉成像中对图像质量的影响。方法对57例患者进行DSCT冠状动脉成像检查,分别采用常规FBP法和IR法对最佳期相图像进行重建。对图像质量进行主观评价,测量两种重建方法所得冠状动脉图像的CT值、噪声、SNR及CNR。结果 57例患者冠状动脉图像质量评分中,IR图像质量为优的血管段比例为83.18%(628/755),高于FBP重建图像(595/755,78.81%,P=0.030)。FBP重建与IR图像强化水平(CT值)分别为(311.49±63.76)HU、(310.57±64.45)HU(P=0.280),图像噪声分别为(19.58±3.47)HU、(13.11±3.06)HU(P<0.001),SNR分别为16.27±3.89、24.48±5.73(P<0.001),CNR分别为20.63±4.24、30.84±7.24(P<0.001)。结论 DSCT冠状动脉成像中应用IR法可在保证冠状动脉腔内强化程度不变的同时明显降低图像噪声,改善图像质量。  相似文献   

6.
To investigate the image quality and the minimum required radiation dose for automatic tube potential selection (ATPS) in dual-source computed tomography (DSCT) coronary computed tomography angiography (CCTA). Three hundred twenty-five consecutive patients (153 men and 172 women) undergoing CCTA were assigned to either the ATPS group (n = 172) or the control group (n = 153); the control group underwent imaging at a constant current of 120 kV. All patients were scanned in either prospectively ECG-triggered high-pitch helical mode or sequential mode. The subjective image quality score, attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), volume CT dose index (CTDIvol), and effective dose (ED) were compared between the two groups with the Student t test or Mann–Whitney U test. The subjective image quality score was not significantly different between the two groups. Imaging noise and attenuation were both significantly higher in the ATPS group than in the control group (imaging noise: 25.6 ± 7.6 versus 15.8 ± 4.0 HU, P < 0.001; attenuation: 559.6 ± 142.0 versus 412.5 ± 64.3 HU, P < 0.001). SNR and CNR were significantly lower in the ATPS group than in the control group (SNR: 23.21 ± 7.40 versus 27.71 ± 8.25, P < 0.001; CNR: 27.81 ± 8.44 versus 33.94 ± 9.69, P < 0.001). ED was significantly lower in the ATPS group than in the control group (ED: 1.25 ± 1.24 versus 2.19 ± 1.77 mSv, P < 0.001). For both groups, ED was significantly lower in the high-pitch mode than in the sequential mode. The use of ATPS for CCTA significantly reduced the radiation dose while maintaining image quality.  相似文献   

7.
Resting regional wall motion abnormality (RWMA) has significant prognostic value beyond the findings of computed tomography (CT) coronary angiography. Stretch quantification of endocardial engraved zones (SQUEEZ) has been proposed as a measure of regional cardiac function. The purpose of the work reported here was to determine the effect of lowering the radiation dose on the precision of automatic SQUEEZ assessments of RWMA. Chronic myocardial infarction was created by a 2-h occlusion of the left anterior descending coronary artery in 10 swine (heart rates 80–100, ejection fraction 25–57%). CT was performed 5–11 months post infarct using first-pass contrast enhanced segmented cardiac function scans on a 320-detector row scanner at 80 kVp/500 mA. Images were reconstructed at end diastole and end systole with both filtered back projection and using the “standard” adaptive iterative dose reduction (AIDR) algorithm. For each acquisition, 9 lower dose acquisitions were created. End systolic myocardial function maps were calculated using SQUEEZ for all noise levels and contrast-to-noise ratio (CNR) between the left ventricle blood and myocardium was calculated as a measure of image quality. For acquisitions with CNR?>?4, SQUEEZ could be estimated with a precision of ±?0.04 (p?<?0.001) or 5.7% of its dynamic range. The difference between SQUEEZ values calculated from AIDR and FBP images was not statistically significant. Regional wall motion abnormality can be quantified with good precision from low dose acquisitions, using SQUEEZ, as long as the blood-myocardium CNR stays above 4.  相似文献   

8.
The purpose of this study is to compare CT images of the pancreas reconstructed with model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASiR), and filtered back projection (FBP) techniques for image quality and pancreatic duct (PD) depiction. Data from 40 patients with contrast-enhanced abdominal CT [CTDIvol: 10.3 ± 3.0 (mGy)] during the late arterial phase were reconstructed with FBP, 40% ASiR–FBP blending, and MBIR. Two radiologists assessed the depiction of the main PD, image noise, and overall image quality using 5-point scale independently. Objective CT value and noise were measured in the pancreatic parenchyma, and the contrast-to-noise ratio (CNR) of the PD was calculated. The Friedman test and post-hoc multiple comparisons with Bonferroni test following one-way ANOVA were used for qualitative and quantitative assessment, respectively. For the subjective assessment, scores for MBIR were significantly higher than those for FBP and 40% ASiR (all P < 0.001). No significant differences in CT values of the pancreatic parenchyma were noted among FBP, 40% ASiR, and MBIR images (P > 0.05). Objective image noise was significantly lower and CNR of the PD was higher with MBIR than with FBP and 40% ASiR (all P < 0.05). Our results suggest that pancreatic CT images reconstructed with MBIR have lower image noise, better image quality, and higher conspicuity and CNR of the PD compared with FBP and ASiR.  相似文献   

9.
Repeatability of quantitative assessment of atherosclerotic plaques is important for the accurate detection of high-risk plaques in coronary CT angiography (CTA). We assessed the effect of heart rate (HR) on plaque CT number using a coronary artery model and a cardiac phantom capable of simulating cardiac motion. The coronary artery model with luminal stenosis on a cardiac phantom was imaged with a simulated HR of 0, 50, 60, and 70 beats per minute using a 320-row CT scanner. We reconstructed CT images for cardiac diastolic phases (for 75% R–R interval) using filtered back projection (FBP), hybrid iterative reconstruction (AIDR3D), and model-based iterative reconstruction (FIRST). Two observers measured plaque attenuation in the lesion with 75% stenosis. The coefficient of determination (R2) was obtained to evaluate interobserver agreement. At HR 70, FIRST improved the correlation between two observers compared with FBP and AIDR3D (FIRST: R2?=?0.68, p?<?0.05; FBP: R2?=?0.29, p?=?0.31; AIDR3D: R2?=?0.22, p?=?0.18). These R2 at HR 70 were lower compared with at HR 50 (FIRST: R2?=?0.92, p?<?0.05; FBP: R2?=?0.83, p?<?0.05; AIDR3D: R2?=?0.87, p?<?0.05) and HR 0 (FIRST: R2?=?0.97, p?<?0.05; FBP: R2?=?0.89, p?<?0.05; AIDR3D: R2?=?0.95, p?<?0.05). Higher HR affected plaque measurement repeatability in coronary CTA. FIRST may improve plaque measurement repeatability at the higher HR compared with FBP and AIDR3D.  相似文献   

10.
(1) To study the prevalence and severity of coronary artery disease (CAD) in diabetic patients. (2) To provide a detailed characterization of the coronary atherosclerotic burden, including the localization, degree of stenosis and plaque composition by coronary computed tomography angiography (CCTA). Single center prospective registry including a total of 581 consecutive stable patients (April 2011–March 2012) undergoing CCTA (Dual-source CT) for the evaluation of suspected CAD without previous myocardial infarction or revascularization procedures. Different coronary plaque burden indexes and plaque type and distribution patterns were compared between patients with (n = 85) and without diabetes (n = 496). The prevalence of CAD (any plaque; 74.1 vs. 56 %; p = 0.002) and obstructive CAD (≥50 % stenosis; 31.8 vs. 10.3 %; p < 0.001) were significantly higher in diabetic patients. The remaining coronary atherosclerotic burden indexes evaluated (plaque in LM-3v-2v with prox. LAD; SIS; SSS; CT-LeSc) were also significantly higher in diabetic patients. In the per segment analysis, diabetics had a higher percentage of segments with plaque in every vessel (2.6/13.1/7.5/10.5 % for diabetics vs. 1.4/7.1/3.3/4.4 % for nondiabetics for LM, LAD, LCx, RCA respectively; p < 0.001 for all) and of both calcified (19.3 vs. 9.2 %, p < 0.001) and noncalcified or mixed types (14.4 vs. 7.0 %; p < 0.001); the ratio of proximal-to-distal relative plaque distribution (calculated as LM/proximal vs. mid/distal/branches) was lower for diabetics (0.75 vs. 1.04; p = 0.009). Diabetes was an independent predictor of CAD and was also associated with more advanced CAD, evaluated by indexes of coronary atherosclerotic burden. Diabetics had a significantly higher prevalence of plaques in every anatomical subset and for the different plaque composition. In this report, the relative geographic distribution of the plaques within each subgroup, favored a more mid-to-distal localization in the diabetic patients.  相似文献   

11.
The accuracy of coronary computed tomography angiography (CCTA) in obese persons is compromised by increased image noise. We investigated CCTA image quality acquired on a high-definition 64-slice CT scanner using modern adaptive statistical iterative reconstruction (ASIR). Seventy overweight and obese patients (24 males; mean age 57 years, mean body mass index 33 kg/m2) were studied with clinically-indicated contrast enhanced CCTA. Thirty-five patients underwent a standard definition protocol with filtered backprojection reconstruction (SD-FBP) while 35 patients matched for gender, age, body mass index and coronary artery calcifications underwent a novel high definition protocol with ASIR (HD-ASIR). Segment by segment image quality was assessed using a four-point scale (1 = excellent, 2 = good, 3 = moderate, 4 = non-diagnostic) and revealed better scores for HD-ASIR compared to SD-FBP (1.5 ± 0.43 vs. 1.8 ± 0.48; p < 0.05). The smallest detectable vessel diameter was also improved, 1.0 ± 0.5 mm for HD-ASIR as compared to 1.4 ± 0.4 mm for SD-FBP (p < 0.001). Average vessel attenuation was higher for HD-ASIR (388.3 ± 109.6 versus 350.6 ± 90.3 Hounsfield Units, HU; p < 0.05), while image noise, signal-to-noise ratio and contrast-to noise ratio did not differ significantly between reconstruction protocols (p = NS). The estimated effective radiation doses were similar, 2.3 ± 0.1 and 2.5 ± 0.1 mSv (HD-ASIR vs. SD-ASIR respectively). Compared to a standard definition backprojection protocol (SD-FBP), a newer high definition scan protocol in combination with ASIR (HD-ASIR) incrementally improved image quality and visualization of distal coronary artery segments in overweight and obese individuals, without increasing image noise and radiation dose.  相似文献   

12.
The aim is to investigate the effect of tube voltage and chest wall thickness on image quality, stenosis measurement, and radiation dose in coronary CT angiography (CCTA) in a phantom study. A phantom with tubes in a box at its center and concentric cylindrical plastic chambers of three layers at its periphery was constructed. The concentric cylinders were filled with oil or left empty to simulate different degrees of obesity. Retrospective CT scanning was performed at different kVps and mAs. Image noise, contrast to noise ratio (CNR), stenosis measurement, and radiation dose were obtained. A CNR higher than 10 was considered to be acceptable for clinical practice. Mean image noise was 51.7 at 80 kVp, 31.6 at 100 kVp, and 24.7 at 120 kVp (P < 0.001). A CNR greater than 10 could be achieved with all the images using 80 kVp as well as using 100 or 120 kVp. However, CNRs at 100 and 120 kVp were significantly higher than the CNR at 80 kVp (P < 0.001). There were no significant differences between 100 and 120 kVp. All stenosis measurements were overestimated. Accuracy of stenosis measurement was significantly correlated with CNR (P < 0.05), but not with kVps. Mean doses were 2.07 mSv at 80 kVp, 3.37 mSv at 100 kVp, and 5.17 mSv at 120 kVp (P < 0.001). CNR per radiation dose was highest at 80 kVp, regardless of chest wall thickness. For CCTA, using 80 kVp with high mAs is the best choice, regardless of chest wall thickness, for minimal radiation dose and sufficient image quality.  相似文献   

13.
The purpose of this study was to explore the feasibility of subtraction coronary computed tomography angiography (CCTA) by second-generation 320-detector row CT in patients with severe coronary artery calcification using invasive coronary angiography (ICA) as the gold standard. This study was approved by the institutional board, and all subjects provided written consent. Twenty patients with calcium scores of >400 underwent conventional CCTA and subtraction CCTA followed by ICA. A total of 82 segments were evaluated for image quality using a 4-point scale and the presence of significant (>50 %) luminal stenosis by two independent readers. The average image quality was 2.3 ± 0.8 with conventional CCTA and 3.2 ± 0.6 with subtraction CCTA (P < 0.001). The percentage of segments with non-diagnostic image quality was 43.9 % on conventional CCTA versus 8.5 % on subtraction CCTA (P = 0.004). The segment-based diagnostic accuracy for detecting significant stenosis according to ICA revealed an area under the receiver operating characteristics curve of 0.824 (95 % confidence interval [CI], 0.750–0.899) for conventional CCTA and 0.936 (95 % CI 0.889–0.936) for subtraction CCTA (P = 0.001). The sensitivity, specificity, positive predictive value, and negative predictive value for conventional CCTA were 88.2, 62.5, 62.5, and 88.2 %, respectively, and for subtraction CCTA they were 94.1, 85.4, 82.1, and 95.3 %, respectively. As compared to conventional, subtraction CCTA using a second-generation 320-detector row CT showed improvement in diagnostic accuracy at segment base analysis in patients with severe calcifications.  相似文献   

14.
We sought to determine the cut-off point of the average heart rate (HR) and HR differences in obtaining diagnostic image quality using prospective electrocardiographically-triggered (PT) coronary computed tomographic angiography (CCTA) and to compare image quality and radiation dose for CCTA obtained with PT CCTA and retrospective electrocardiographically-gated (RG) CCTA. A total of 178 patients who were referred for CCTA were enrolled in the study. Two independent radiologists evaluated subjective image quality. The non-diagnostic coronary segments were 32 of 1,226 segments (2.6%) for PT CCTA and 12 of 1,346 segments (0.9%) for RG CCTA (P < 0.001). The mean image quality scores for PT CCTA and RG CCTA were 3.82 ± 0.29 and 3.93 ± 0.14, respectively. The mean radiation dose of patients that underwent PT CCTA was 3.83 ± 0.84 mSv and RG CCTA 10.7 ± 2.70 mSv. For patients who underwent PT CCTA, image quality was inversely related to HR (56.5 ± 4.3 bpm; r = 0.38; P < 0.001) and HR differences (2.8 ± 2.7 bpm; r = 0.49; P < 0.001). With the use of receiver operator characteristic analysis, a cut-off HR of 57 bpm (58% sensitivity, 67% specificity) and HR difference of 6 bpm (93% sensitivity, 46% specificity) were the best threshold for the prediction of diagnostic image quality. In patients with a regular, low HR, PT CCTA offers diagnostic image quality and substantially reduces effective radiation compared with the use of RG CCTA with dose modulation.  相似文献   

15.
To evaluate the feasibility of low-concentration contrast medium (CM) for vascular enhancement, image quality, and radiation dose on computed tomography aortography (CTA) using a combined low-tube-voltage and iterative reconstruction (IR) technique. Ninety subjects underwent dual-source CT (DSCT) operating in dual-source, high-pitch mode. DSCT scans were performed using both high-concentration CM (Group A, n = 50; Iomeprol 400) and low-concentration CM (Group B, n = 40; Iodixanol 270). Group A was scanned using a reference tube potential of 120 kVp and 120 reference mAs under automatic exposure control with IR. Group B was scanned using low-tube-voltage (80 or 100 kVp if body mass index ≥25 kg/m2) at a fixed current of 150 mAs, along with IR. Images of the two groups were compared regarding attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), iodine load, and radiation dose in various locations of the CTA. In comparison between Group A and Group B, the average mean attenuation (454.73 ± 86.66 vs. 515.96 ± 101.55 HU), SNR (25.28 ± 4.34 vs. 31.29 ± 4.58), and CNR (21.83 ± 4.20 vs. 27.55 ± 4.81) on CTA in Group B showed significantly greater values and significantly lower image noise values (18.76 ± 2.19 vs. 17.48 ± 3.34) than those in Group A (all Ps < 0.05). Homogeneous contrast enhancement from the ascending thoracic aorta to the infrarenal abdominal aorta was significantly superior in Group B (P < 0.05). Low-concentration CM and a low-tube-voltage combination technique using IR is a feasible method, showing sufficient contrast enhancement and image quality.  相似文献   

16.
To evaluated prevalence and clinical implication of stent fracture and longitudinal compression in first- and new-generation drug-eluting stents (DES) using coronary computed tomography angiography (CCTA). The incidence of stent fracture and longitudinal compression were compared between first- and new-generation DES in 374 patients who underwent coronary stenting using DES and follow-up CCTA due to recurrent angina. 235 and 139 patients received 322 first- and 213 new-generation DES, respectively. The crude per-stent incidence of longitudinal compression (6.1 vs. 0.3 %, p < 0.001) was higher after new- than first-generation DES implantation using CCTA and the incidence of stent fracture (11.3 vs. 8.1 %, p = 0.23) was comparable. On follow-up coronary angiography for 347 stents, stent fracture (3.2 %) and longitudinal compression (0.9 %) were less detected than those on CCTA. Ostial stenting was a risk factor of longitudinal compression (p < 0.001). Stent fracture was associated with younger patients (p = 0.03), longer stent (p = 0.010), and excessively tortuous lesions (p = 0.001). The presence of stent fracture or longitudinal compression was not associated with poor clinical outcomes. The longitudinal compression more frequently occurred after new-generation DES implantation. The stent fracture was comparable between two DES. However, the occurrence of such mechanical deformities did not translate into a poor clinical outcome.  相似文献   

17.
To evaluate the radiation dose and image quality of 100 kVp cardiac CT, and the effects of display setting optimization. We randomly assigned 100 patients undergoing cardiac CT to one of following two protocols. Fifty patients underwent our conventional protocol with 120 kVp, and the other 50 patients underwent our low radiation dose protocol with 100 kVp. We compared effective dose (ED); CT number, image noise, and contrast noise ratio (CNR) of ascending aorta at 120 and 100 kVp protocol. We also performed quantitative analysis and qualitative analysis for bitmap image of 120, 100 kVp, and display preset optimization for 100 kVp images. The estimated ED was 48 % lower with the 100 kVp protocol than the 120 kVp protocol (2.8 vs. 5.5 mSv, p < 0.01). There is no significant difference in the CNR between 100 and 120 kVp protocol (18.5 ± 3.6 vs. 18.6 ± 3.8, p = 0.84). Display preset optimization significantly improved image quality of 100 kVp cardiac CT, and there is no significant difference in qualitative analysis and quantitative analysis between 100 kVp scan with optimized display preset and 120 kVp scan (p > 0.05). The 100 kVp scanning with optimized display preset offers almost same image quality at cardiac CT of thin adults under 48 % decreased radiation dose.  相似文献   

18.
The purpose of this study was to investigate the image quality and radiation dose of triple rule-out computed tomography (TROCT) using a 320-row-detector volume CT system to compare the wide-volume and helical modes of this CT system. Sixty-four patients with noncritical chest pain were allocated to one of 2 groups according to the type of CT examination mode used. Group 1 patients were examined using the wide-volume (non-spiral) mode and group 2 patients were examined using the 160-detector row helical mode, with the same contrast injection protocol in both methods [biphasic injection protocol; injection rate of 4 ml/s, median volume, 70 ml (range 65–100 ml)]. Attenuations of the pulmonary trunk, ascending aorta, and coronary arteries were measured in Hounsfield units; a subjective overall patient-based image quality score of 1–3 was awarded to each study. Effective doses, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Average effective dose was significantly lower in group 1 than group 2 (9.7 ± 5.1 vs. 16 ± 5.9 mSv, P < 0.001). The mean attenuation of the main pulmonary trunk was significantly higher in group 1 than group 2 (P = 0.04) and mean attenuations in other vessels were not significant different. SNR and CNR were not significantly different between the groups. The proportion of diagnostic image qualities for chest CT angiography (CTA) was similar between the groups (93.5 vs. 93.9 %). In coronary CTA, group 1 showed a higher proportion of diagnostic image qualities than group 2 (100 vs. 87.9 %). The use of wide-volume mode of 320-detector CT reduces the overall effective radiation dose and results in similar attenuation and image quality for TROCT as compared with the helical mode.  相似文献   

19.
To explore the feasibility of coronary artery calcium (CAC) measurement from low-dose contrast enhanced coronary CT angiography (CCTA) as this may obviate the need for an unenhanced CT scan. 52 patients underwent unenhanced cardiac CT and prospectively ECG triggered contrast enhanced CCTA (Discovery HD 750, GE Healthcare, Milwaukee, WI, USA). The latter was acquired in single-source dual-energy mode [gemstone spectral imaging (GSI)]. Virtual unenhanced images were generated from GSI CCTA by monochromatic image reconstruction of 70 keV allowing selective iodine material suppression. CAC scores from virtual unenhanced CT were compared to standard unenhanced CT including a linear regression model. After iodine subtraction from the contrast enhanced CCTA the attenuation in the ascending aorta decreased significantly from 359 ± 61 to 54 ± 8 HU (P < 0.001), the latter comparing well to the value of 64 ± 55 HU found in the standard unenhanced CT (P = ns) confirming successful iodine subtraction. After introducing linear regression formula the mean values for Agatston, Volume and Mass scores of virtual unenhanced CT were 187 ± 321, 72 ± 114 mm3, and 27 ± 46 mg/cm3, comparing well to the values from standard unenhanced CT (187 ± 309, 72 ± 110 mm3, and 27 ± 45 mg/cm3) yielding an excellent correlation (r = 0.96, r = 0.96, r = 0.92; P < 0.001). Mean estimated radiation dose revealed 0.83 ± 0.02 mSv from the unenhanced CT and 1.70 ± 0.53 mSv from the contrast enhanced CCTA. Single-source dual-energy scanning with GSI allows CAC quantification from low dose contrast enhanced CCTA by virtual iodine contrast subtraction.  相似文献   

20.
The goal of the work described here was to assess the performance of Doppler ultrasound (US) of the superior mesenteric artery (SMA) and celiac trunk (CT) in the evaluation of tumor response in female mice with ovarian peritoneal carcinomatosis treated either with bevacizumab or with carboplatin. Compared with untreated mice, carboplatin-treated mice had a lower weight (23.3 ± 2.0 vs. 27.9 ± 2.9 g, p < 0.001), peritoneal carcinomatosis index (PCI, 11 ± 3 vs. 28 ± 6, p < 0.001), Ki67-positive staining surfaces (p < 0.001), vascular density (p < 0.001), mean blood flow velocity (mBFVel) in the SMA (7.0 ± 1.4 vs. 10.9 ± 1.8 cm/s, p < 0.001) and CT (8.0 ± 1.8 vs. 14.3 ± 4.6 cm/s, p < 0.001) and no ascites. Weight and mBFVel were similar in bevacizumab-treated and untreated mice. The mBFVels in the SMA and CT correlated with the PCI used as an estimation of the tumor burden, R = 0.70 (p < 0.0001) and R = 0.65 (p < 0.0001), respectively. Doppler US allows non-invasive assessment of the effects of anticancer therapy in ovarian peritoneal carcinomatosis-induced mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号