首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early stages of atherosclerosis are characterized by the deposition of cholesteryl esters and triglycerides into the arterial wall. In the excised human atherosclerotic plaque these lipids are in a liquid-like state at body temperature and observable via MRI and NMR spectroscopy. To assess the ability of MRI to quantitatively image the lipids of atherosclerotic plaque in vivo, we have investigated eight New Zealand White rabbits fed atherogenic diets (2 weight (wt)% cholesterol, 1 wt% cholesterol + 6 wt% peanut oil, and 1 wt% cholesterol + 6 wt% corn oil). Postmortem examination indicated that all rabbits developed atherosclerosis in the aorta. Except for one animal, magnetic resonance angiography showed no noticeable obstruction in the aorta. MRI was carried out in an attempt to image atherosclerotic plaque lipids directly, but no signal was detected in vivo. However, a plaque lipid signal was observed from excised tissue using a small diameter RF coil. 1H NMR spectroscopy of the atherosclerotic plaque from excised aortas indicated that the major fraction of plaque lipids in rabbits is not in a liquid state at physiological temperature and are only marginally MRI-visible compared to human plaque lipid. The differences in the MRI characteristics of rabbit and human plaque are due to differences in the fatty acid profile of the cholesteryl esters, chiefly a decrease of linoleic acid in rabbit lesions.  相似文献   

2.
High-resolution MRI provides unique information about morphology of atherosclerotic carotid plaque. In this study, the accuracy and precision of measurements of carotid plaque burden and lumen narrowing were determined for in vivo black blood MRI assessment with respect to ex vivo MRI in a group of 37 atherosclerosis patients who underwent carotid endarterectomy (CEA). Three different plaque measures were compared between paired in vivo and ex vivo MR images: maximum wall area (MWA), minimum lumen area (mLA), and wall volume (WV). MWA and WV are measures of plaque burden, while mLA is a measure of lumen narrowing. The matched in vivo and ex vivo measurements showed good agreement (the correlation coefficients for in/ex vivo WV, MWA, and mLA were 0.92, 0.91, 0.90, respectively) with predictable bias. This study indicates that in vivo black blood MRI can be used to directly estimate the morphology of the plaque. Comparison of the three plaque measures showed that mLA and MWA or WV provide different information regarding the atherosclerotic lesions (the correlation coefficients between mLA and MWA or WV were less than 0.3). Black blood MRI technique is a potentially powerful clinical tool to characterize the severity of atherosclerotic plaque. It can provide accurate measurements on different aspects of the plaque, from plaque burden to lumen narrowing.  相似文献   

3.
RATIONALE AND OBJECTIVES: A clinical case report is presented on a 76-year-old man who volunteered for a 3.0 T magnetic resonance (MR) carotid protocol. The subject was referred for carotid endarterectomy and histology was performed on the ex vivo specimen and compared with the in vivo images. METHODS: The 3.0 and 1.5 T (obtained for comparison) MR protocol consisted of 2-dimensional (2D) and 3-dimensional (3D) multicontrast bright and black blood imaging for detecting the lumen and vessel wall. RESULTS: The combination of multicontrast black blood transverse images and the 3D time of flight transverse images provided visualization of a narrowed internal carotid artery lumen 4 mm above of the bifurcation and the presence of a complex atherosclerotic plaque containing a large lipid pool, calcification, and intact fibrous cap. Quantitative comparisons including vessel lumen and plaque area, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were obtained for 1.5 and 3.0 T image data. Plaque composition was verified with histology. Macrophages were also detected in the shoulders of the plaque as demonstrated by CD68 staining and corresponded with a small hyperintense area in the T2W images at 3.0 T, but not observed in comparable 1.5 T images. CONCLUSIONS: High field 3.0 T multicontrast MRI of atherosclerotic plaque has been validated with histology comparison and provides improved detection of complex atherosclerotic plaque with increased SNR and CNR compared with 1.5 T. Further studies validating contrast mechanisms of plaque at 3.0 T are required, but atherosclerotic plaque imaging has clear benefit from application at the higher magnetic field strength.  相似文献   

4.
PURPOSE: To determine if a gadolinium-based contrast agent provides additional information for characterization of human plaque tissues, particularly neovasculature. Although high-resolution magnetic resonance imaging (MRI) has been used to identify plaque constituents in advanced atherosclerosis, some constituents, such as neovascularized tissue, defy detection. MATERIALS AND METHODS: Non-contrast-enhanced carotid artery images from 18 patients scheduled for carotid endarterectomy and two normal volunteers were used to identify regions of fibrous tissue, necrotic core, or calcification, using established criteria. Then, the percent change in T1-weighted images after contrast enhancement was calculated for each region. RESULTS: There were statistically significant differences in mean intensity change between tissues, with the largest increase for fibrous tissue (79.5%) and the smallest for necrotic core (28.6%). Additionally, histological analysis showed that a subset of fibrous regions rich in plaque neovascularization could be identified using a threshold of 80% enhancement (sensitivity = 76%, specificity = 79%). CONCLUSION: The ability of contrast-enhanced MRI to identify neovascularization and potentially improve differentiation of necrotic core from fibrous tissue further establishes MRI as a viable tool for in vivo study of atherosclerotic plaque.  相似文献   

5.
AIM: To evaluate the potential role of carotid artery atherosclerosis plaque magnetic resonance (MR) microimaging as magnetic resonance imaging (MRI) marker, ex vivo MR images were acquired at optimized parameters on 9.4T Bruker animal imager for occluded tissue resected by carotid endarterectomy (CEA) and corresponding histopathological analysis was made. METHODS AND MATERIALS: For imaging, CEA tissues of size 2-6 cm long and 0.5-1.5 cm wide, were transferred to 15 ml co-polymer laboratory culture tubes containing either 10% formalin in phosphate buffered saline (PBS) or in 50% glycerol in PBS. Imaging protocol was set at TE=30 ms, TR=1.5 s, matrix size=265 x 512, NEX=128, slice thickness=1 mm and in-plane resolution=0.1 mm for total sample size 2.5 cm. Soon after imaging done, carotid artery tissues were cut into 5-mm segments and processed for histological section for successive 5-micrometer slices. To compare morphology of 5 mum thin CEA section with that of 1 mm MR slices, registration was obtained between histologic sections and MR slices. Contrast and magnetic resonance relaxation characteristics were analyzed. RESULTS: Total carotid artery area computed by MR imaging was correlated with areas determined from histologic sections (r(2)=0.989, p=0.0001). For the lumen area, the correlation between MR images and histologic area was (r(2)=0.942, p=0.0001). Relaxation times and T(2) parametric images of different plaque components were determinant for contrast resolution. Scan parameters were optimized for fibrous cap and atheroma. Scan parameters were characteristic for comparison at 1.5T and 9.4T MR imagers. CONCLUSION: The observed correlation validated MR microimaging to assess morphological features of carotid artery plaques and contrast resolution highlighted the potential of in vivo MR imaging as non-invasive MRI marker to monitor carotid artery plaque morphometry and plaque composition.  相似文献   

6.
The American Heart Association modified classification for atherosclerotic plaque lesions has defined vulnerable plaques as those prone to rupture. The aim of our study was to assess the sensitivity and specificity of 1.5-T magnetic resonance imaging (MRI) in the evaluation of the characteristics of plaque components. Twelve carotid endarterectomy specimens were imaged by ex-vivo high-resolution 1.5-T MRI. Thirty-four cross-section axial images were selected for pixel-by-pixel basis analysis to demonstrate the most significant tissue features. Data were then submitted for histopathological examination and each specimen analysed in the light of the histological components (lipid core, fibrous tissue, fibrous/loose connective tissue, calcifications). The overall sensitivity and specificity rates for each tissue type were, respectively, 92% and 74% for the lipid core, 82% and 94% for the fibrous tissue, 72% and 87% for the fibrous/loose connective tissue, and 98% and 99% for calcification. The use of 1.5-T MRI appears to be a reliable tool to characterise plaque components and could help in the screening of patients with high risk of plaque rupture. The possibility of applying MRI in clinical daily practice may change the non-invasive approach to carotid artery diagnostic imaging, thus allowing an early identification of patients with vulnerable plaques.  相似文献   

7.
MR imaging of atherosclerotic plaque   总被引:2,自引:0,他引:2  
MRI is a powerful noninvasive imaging tool with high spatial resolution that continues to prove its value in determining atherosclerotic plaque size, volume, and tissue components. Multispectral MRI sequences have been validated to characterize atherosclerotic plaque components in animals; they have recently been applied to human aorta and carotid artery and are being used to identify the vulnerable plaque. The ability to measure wall thickness in human coronary artery wall has been realized. Future developments may allow plaque characterization in the coronary arteries with surface coil imaging, but intravascular MRI may play an important role in this regard. Novel contrast agents for identifying inflammation and thrombus within atherosclerotic plaque will aid in the identification of higher-risk atherosclerotic disease. Lastly, MRI has progressed to the point where it can be used in serial studies of atherosclerotic plaque progression and regression in the face of therapeutic intervention. MRI will continue to evolve an important role in imaging of atherosclerotic plaque.  相似文献   

8.
Atherosclerotic cardiovascular disease is the most common cause of death in the United States. Investigation of atherosclerotic plaque morphology and composition is important because the findings may be useful in predicting prognosis or response to therapy. This study presents high-resolution magnetic resonance (MR) imaging techniques developed on a 1.5-T whole-body imager with a custom-built surface coil, for characterizing the composition and morphology of plaque removed at carotid endarterectomy. The initial comparison of MR imaging and histologic results showed good correlation. In conjunction with MR angiography, these techniques could be used in in vivo imaging to define the size, location, and contents of atherosclerotic plaque at the carotid bifurcation.  相似文献   

9.
MRI is a promising noninvasive technique for characterizing atherosclerotic plaque composition in vivo, with an end-goal of assessing plaque vulnerability. Because of limitations arising from acquisition time, achievable resolution, contrast-to-noise ratio, patient motion, and the effects of blood flow, automatically identifying plaque composition remains a challenging task in vivo. In this article, a segmentation method using maximum a posteriori probability Bayesian theory is presented that divides axial, multi-contrast-weighted images into regions of necrotic core, calcification, loose matrix, and fibrous tissue. Key advantages of the method are that it utilizes morphologic information, such as local wall thickness, and coupled active contours to limit the impact from noise and artifacts associated with in vivo imaging. In experiments involving 142 sets of multi-contrast images from 26 subjects undergoing carotid endarterectomy, segmented areas of each of these tissues per slice agreed with histologically confirmed areas with correlations (R(2)) of 0.78, 0.83, 0.41, and 0.82, respectively. In comparison, manually identifying areas blinded to histology yielded correlations of 0.71, 0.76, 0.33, and 0.78, respectively. These results show that in vivo automatic segmentation of carotid MRI is feasible and comparable to or possibly more accurate than manual review for quantifying plaque composition.  相似文献   

10.
Ischemic syndromes associated with carotid atherosclerotic disease are often related to plaque rupture. The benefit of endarterectomy for high-grade carotid stenosis in symptomatic patients has been established. However, in asymptomatic patients, the benefit of endarterectomy remains equivocal. Current research seeks to risk stratify asymptomatic patients by characterizing vulnerable, rupture-prone atherosclerotic plaques. Plaque composition, biology, and biomechanics are studied by noninvasive imaging techniques such as magnetic resonance imaging, computed tomography, ultrasound, and ultrasound elastography. These techniques are at a developmental stage and have yet to be used in clinical practice. This review will describe noninvasive techniques in ultrasound, magnetic resonance imaging, and computed tomography imaging modalities used to characterize atherosclerotic plaque, and will discuss their potential clinical applications, benefits, and drawbacks.  相似文献   

11.
It is shown that a conventional 1.5-T magnetic resonance (MR) imaging system can help characterize some of the key components of atherosclerotic plaque ex vivo. Fresh human aorta with atheromata was suspended in solutions of agarose and manganese chloride and heated to body temperature. The specimens were imaged with modified Dixon and projection-reconstruction imaging sequences. The specimens were then examined histologically to obtain direct correlation between images, spectra, and histologic characteristics. The results show that vessel wall and plaque components can be identified by means of their MR characteristics and correlated with their histologic appearance. The authors were able to identify normal vessel wall components, such as adventitial lipids and smooth muscle. They were also able to identify and localize plaque components such as fibrous tissue, calcification, lipids, and possible areas of hemorrhage and hemosiderin deposition.  相似文献   

12.
INTRODUCTION: The aim of the present study was to evaluate the potential of high-resolution MRI at 2 Tesla (T) for direct noninvasive imaging of the aortic wall in a mouse model of atherosclerosis. MATERIAL AND METHODS: A specific mouse antenna was developed and sequence parameters were adjusted. T(1)- and T2-weighted images of abdominal aorta were obtained at 2 T with a spatial resolution of 86 x 86 x 800 microm3 in vivo. With a dedicated small coil, ex vivo MRI of the aorta was performed with a spatial resolution of 54 x 54 x 520 microm3. RESULTS: In vivo, the aortic wall was clearly defined on T(2)-weighted images in 15 of 16 mice: along the aorta the lumen circumference ranged from 1.07 to 3.61 mm and mean wall thickness from 0.11 to 0.67 mm. In vivo measurements of plaque distribution were confirmed by ex vivo MR imaging and by histology, with a good correlation with histology regarding lumen circumference (r = 0.94) and wall thickness (r = 0.97). CONCLUSION: Magnetic resonance imaging at 2 T to analyze in vivo atherosclerotic lesions in mice is possible with a spatial resolution of 86 x 86 x 800 microm3 and thus can be used for noninvasive follow-up in evaluation of new drugs.  相似文献   

13.
Old ApoE-deficient mice were studied in vivo by magnetic resonance imaging (MRI) to prospectively evaluate vascular remodeling associated with atherosclerotic lesions. MATERIAL AND METHODS: Old female ApoE-/- mice on a normal diet were followed by MRI at 2 Tesla for a 3-month period and killed for histopathology. Aortic dimensions were measured and compared. RESULTS: High-quality in vivo MR images were obtained at 2 Tesla with in plane spatial resolution of 86 X 86 microm2. On MRI, aortic lumen enlargement (>1.5-fold dilation) was seen in 10 of 13 mice, located predominantly in the suprarenal portion of the aorta. The mean maximal diameter of the aneurysms and of the aorta above and below the aneurysm were, respectively, 1.12 +/- 0.32 mm and 0.53 +/- 0.08 mm by MRI and 1.3+/- 0.41 mm and 0.55 +/- 0.15 mm by histology. Matched histologic cross-sections of the aortic wall showed medial degradation with rupture of the internal elastic lamina at multiple sites, associated with fibrolipidic plaque containing cholesterol crystals. CONCLUSIONS: Aortic lumen enlargement was diagnosed in old ApoE-/- mice at sites with advanced atherosclerotic plaques. MRI has potential both as an in vivo imaging technique for screening mouse models for vascular wall pathology and to follow arterial remodeling associated with the disease progression.  相似文献   

14.
Ma ZL  Teng GJ  Chen J  Zhang HY  Cao AH  Ni Y 《European radiology》2008,18(10):2174-2181
To induce a rabbit model of atherosclerosis at carotid artery, to visualize the lesion evolution with magnetic resonance imaging (MRI), and to characterize the lesion types by histopathology. Atherosclerosis at the right common carotid artery (RCCA) was induced in 23 rabbits by high-lipid diet following balloon catheter injury to the endothelium. The rabbits were examined in vivo with a 1.5-T MRI and randomly divided into three groups of 6 weeks (n=6), 12 weeks (n=8) and 15 weeks (n=9) for postmortem histopathology. The lesions on both MRI and histology were categorized according to the American Heart Association (AHA) classifications of atherosclerosis. Type I and type II of atherosclerotic changes were detected at week 6, i.e., nearly normal signal intensity (SI) of the injured RCCA wall without stenosis on MRI, but with subendothelial inflammatory infiltration and proliferation of smooth muscle cells on histopathology. At week 12, 75.0% and 62.5% of type III changes were encountered on MRI and histopathology respectively with thicker injured RCCA wall of increased SI on T(1)-weighted and proton density (PD)-weighted MRI and microscopically a higher degree of plaque formation. At week 15, carotid atherosclerosis became more advanced, i.e., type IV and type V in 55.6% and 22.2% of the lesions with MRI and 55.6% and 33.3% of the lesions with histopathology, respectively. Statistical analysis revealed a significant agreement (p<0.05) between the MRI and histological findings for lesion classification (r=0.96). A rabbit model of carotid artery atherosclerosis has been successfully induced and noninvasively visualized. The atherosclerotic plaque formation evolved from type I to type V with time, which could be monitored with 1.5-T MRI and confirmed with histomorphology. This experimental setting can be applied in preclinical research on atherosclerosis.  相似文献   

15.
The long blood circulating time and the progressive macrophage uptake in inflammatory tissues of ultrasmall superparamagnetic iron oxide (USPIO) particles are 2 properties of major importance for magnetic resonance imaging (MRI) pathologic tissue characterization. This article reviews the proof of principle of applications such as imaging of carotid atherosclerotic plaque, stroke, brain tumor characterization, or multiple sclerosis.In the human carotid artery, USPIO accumulation in activated macrophages induced a focal drop in signal intensity compared with preinfusion MRI.The USPIO signal alterations observed in ischemic areas of stroke patients is probably related to the visualization of inflammatory macrophage recruitment into human brain infarction since animal experiments in such models demonstrated the internalization of USPIO into the macrophages localized in these areas. In brain tumors, USPIO particles which do not pass the ruptured blood-brain barrier at early times postinjection can be used to assess tumoral microvascular heterogeneity. Twenty-four hours after injection, when the cellular phase of USPIO takes place, the USPIO tumoral contrast enhancement was higher in high-grade than in low-grade tumors.Several experimental studies and a pilot multiple sclerosis clinical trial in 10 patients have shown that USPIO contrast agents can reveal the presence of inflammatory multiple sclerosis lesions. The enhancement with USPIO does not completely overlap with the gadolinium chelate enhancement.While the proof of concept that USPIO can visualize macrophage infiltrations has been confirmed in animals and patients in several applications (carotid atherosclerotic lesions, stroke, brain tumors and multiple sclerosis), larger prospective clinical studies are needed to demonstrate the clinical benefit of using USPIO as an MRI in vivo surrogate marker for brain inflammatory diseases.  相似文献   

16.
Intra-plaque hemorrhage (IPH) and lipid core, characteristics of rupture prone carotid plaques, are often visualized in vivo with MRI using T1 weighted gradient and spin echo, respectively. Increasing magnetic field strength may help to identify IPH and lipid core better. As a proof of concept, automatic segmentation of plaque components was performed with the Mahalanobis distance (MD) measure derived from image contrast from multicontrast MR images including inversion recovery spin echo and T1 weighted gradient echo with fat suppression. After MRI of nine formaldehyde-fixated autopsy specimens, the MDs and Euclidean Distances between plaque component intensities were calculated for each MR weighting. The distances from the carotid bifurcation and the size and shape of calcification spots were used as landmarks for coregistration of MRI and histology. MD between collagen/cell-rich area and IPH was largest with inversion recovery spin echo (4.2/9.3, respectively), between collagen/cell-rich area/foam cells and lipid core with T1 weighted gradient echo with fat suppression (26.9/38.2/4.6, respectively). The accuracy of detection of IPH, cell-rich area, and collagen increased when the MD classifier was used compared with the Euclidean Distance classifier. The enhanced conspicuity of lipid core and IPH in human carotid artery plaque, using ex vivo T1 weighted gradient echo with fat suppression and inversion recovery spin echo MRI and MD classifiers, demands further in vivo evaluation in patients.  相似文献   

17.
Unstable atherosclerotic plaques exhibit microdeposits of fibrin that may indicate the potential for a future rupture. However, current methods for evaluating the stage of an atherosclerotic lesion only involve characterizing the level of vessel stenosis, without delineating which lesions are beginning to rupture. Previous work has shown that fibrin-targeted, liquid perfluorocarbon nanoparticles, which carry a high payload of gadolinium, have a high sensitivity and specificity for detecting fibrin with clinical (1)H MRI. In this work, the perfluorocarbon content of the targeted nanoparticles is exploited for the purposes of (19)F imaging and spectroscopy to demonstrate a method for quantifiable molecular imaging of fibrin in vitro at 4.7 T. Additionally, the quantity of bound nanoparticles formulated with different perfluorocarbon species was calculated using spectroscopy. Results indicate that the high degree of nanoparticle binding to fibrin clots and the lack of background (19)F signal allow accurate quantification using spectroscopy at 4.7 T, as corroborated with proton relaxation rate measurements at 1.5 T and trace element (gadolinium) analysis. Finally, the extension of these techniques to a clinically relevant application, the evaluation of the fibrin burden within an ex vivo human carotid endarterectomy sample, demonstrates the potential use of these particles for uniquely identifying unstable atherosclerotic lesions in vivo.  相似文献   

18.
Chemical shift imaging (CSI) was performed on cadaveric atherosclerotic fibrous plaques, periaortic adipose tissue, and cholesterol standards using a 7.0 Tesla horizontal bore prototype imaging spectrometer. Proton spectroscopy of intact tissue and deuterated chloroform extracted samples was done at the equivalent field strength of 7.0 Tesla on a vertical bore spectrometer, including studies of temperature dependence and T2 relaxation measurements. Spectra obtained using CSI on the imaging magnet were comparable with those from the conventional vertical spectrometer. Fibrous plaques and adipose tissue had unique spectral features, differing in the ratios of their water and various fat components. Chloroform extractions revealed a typical cholesteric ester spectrum for the fibrous plaque in contrast to the triglyceride spectrum of the adipose tissue. These two tissues also had different T2 relaxation measurements of their major fat resonances, with fibrous plaques having a short T2 compared to adipose tissue (15.9 milliseconds vs. 46.2 milliseconds). Temperature dependence studies showed that spectral signal intensity of the fat resonance of the fibrous plaque increased while linewidth decreased with increasing temperature from 24 degrees C to 37 degrees C. Atherosclerotic lesions may be studied at 7.0 Tesla, and NMR parameters defined in the present study may be used for further studies at other magnetic field strengths.  相似文献   

19.
Vulnerable plaques have thin fibrous caps overlying large necrotic lipid cores. Recent studies have shown that high-resolution MR imaging can identify these components. We set out to determine whether in vivo high-resolution MRI could quantify this aspect of the vulnerable plaque. Forty consecutive patients scheduled for carotid endarterectomy underwent pre-operative in vivo multi-sequence MR imaging of the carotid artery. Individual plaque constituents were characterised on MR images. Fibrous-cap and lipid-core thickness was measured on MRI and histology images. Bland-Altman plots were generated to determine the level of agreement between the two methods. Multi-sequence MRI identified 133 corresponding MR and histology slices. Plaque calcification or haemorrhage was seen in 47 of these slices. MR and histology derived fibrous cap–lipid-core thickness ratios showed strong agreement with a mean difference between MR and histology ratios of 0.02 (±0.04). The intra-class correlation coefficient between two readers for measurements was 0.87 (95% confidence interval, 0.73 and 0.93). Multi-sequence, high-resolution MR imaging accurately quantified the relative thickness of fibrous-cap and lipid-core components of carotid atheromatous plaques. This may prove to be a useful tool to characterise vulnerable plaques in vivo.  相似文献   

20.
MRI of atherosclerosis   总被引:5,自引:0,他引:5  
The emergence of high-resolution, rapid imaging methods has enabled MRI to noninvasively image the fine internal structure of atherosclerotic artery walls. This capability has, in turn, captured the interest of clinicians, who see it as an opportunity to assess disease severity based on the characteristics of atherosclerotic lesions themselves, rather than only their effects on the vessel lumen. MRI of atherosclerosis thus has the potential to be used in medical treatment decisions or to assess the effects of experimental treatment options. Given this potential, a number of research groups have been investigating MRI of atherosclerosis in an effort to establish the ability of MRI to determine atherosclerotic plaque burden, detect plaque composition, and ultimately identify vulnerable plaque before it leads to a clinical event. In this review, the current state of the art is summarized for the three primary vessel targets: the carotid artery, the aorta, and the coronary arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号