首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The outflow of noradrenaline, 3,4-dihydroxyphenylglycol (DOPEG) and 3,4-dihydroxymandelic acid (DOMA) from rabbit perfused hearts was studied by chromatography on alumina followed by high pressure liquid chromatography with electrochemical detection. In the absence of drugs and without nerve stimulation, the outflow of endogenous noradrenaline over a period of 108 min averaged 0.17 pmol×g–1×min–1 and the outflow of DOPEG 2.1 pmol×g–1×min–1. The outflow of DOMA was below the detection limit (<0.13 pmol×g–1×min–1). The effect of perfusion with (–)-noradrenaline 0.1, 1 or 10 mol/l for 18 min was then investigated. As the concentration of noradrenaline increased so did the outflow of DOPEG. Moreover, DOMA was found in the venous effluent during and after perfusion with noradrenaline 1 or 10 mol/l. The increase in the outflow of DOPEG and DOMA was almost abolished when cocaine 10 mol/l was present during the perfusion with noradrenaline 1 mol/l. The release of endogenous noradrenaline by sympathetic nerve stimulation or tyramine 10 mol/l, but not the release evoked by nicotine 30 mol/l, was accompanied by an increase in the outflow of DOPEG; an outflow of DOMA was not observed.It is concluded that, in the rabbit perfused heart, DOPEG is an important metabolite of endogenous noradrenaline. DOMA is at best a minor product, either when the neurones are at rest or when noradrenaline is released by sympathetic nerve stimulation, nicotine or tyramine. DOMA is formed in detectable amounts when the tissue is exposed to a high concentration of exogenous noradrenaline. Like DOPEG, it is formed intraneuronally. The results confirm and extend those obtained previously on guinea-pig incubated atria. They make it unlikely that, in these tissues at least, DOMA formation is one of the physiological pathways of noradrenaline catabolism.  相似文献   

2.
Summary The effects of noradrenaline, its five metabolites and metanephrine, were studied on tyrosine hydroxylase activity in guinea-pig atria. The deaminated metabolite, (±)-3,4-dihydroxyphenylglycol (DOPEG), was equipotent with (±)-noradrenaline in its inhibitory action on tyrosine hydroxylase activity in the homogenates of guinea-pig atria. The inhibition by DOPEG was competitive with the cofactor, reduced pteridine. The deaminated acid, 3,4-dihydroxymandelic acid (DOMA) and the O-methylated deaminated acid, 3-methoxy, 4-hydroxymandelic acid (VMA) had 1/50th and 1/30th, respectively, the potency of noradrenaline in inhibiting tyrosine hydroxylase. The rest of the metabolites did not inhibit tyrosine hydroxylase in homogenates in concentrations up to 1.0 mM. In intact guinea-pig atria noradrenaline was considerably more potent than DOPEG in inhibiting tyrosine hydroxylase. Normetanephrine 1.4×10–4 M inhibited tyrosine hydroxylase in the intact tissue but failed to inhibited the enzyme in the homogenate even in higher concentrations. The effect of normetanephrine in the intact tissue is related to the ability of this compound to release endogenous noradrenaline.A reserpine-like agent, Ro 4-1284, did not inhibit tyrosine hydroxylase activity in the homogenate but in the intact tissue the inhibition was more than 50%. This effect of Ro 4-1284 in the intact tissue appears to be related to the releasing effects of this agent and to an increase in the axoplasmic levels of DOPEG.Since the formation of the deaminated glycol, DOPEG, represents the main metabolic pathway for the neurotransmitter in adrenergic nerve endings, the present results are compatible with the view that, in addition to the pool of extravesicular noradrenaline, the cytoplasmic concentration of DOPEG could also participate in the regulation of the activity of tyrosine hydroxylase.  相似文献   

3.
The direct positive inotropic effect of histamine was studied on paced left atrial preparations from guinea pigs. Histamine (10?8 to 10?4 M) increased the maximum tension developed in left atria incubated at 35°C and driven at 2 Hz. The maximum increase in tension was 60% of that observed with norepinephrine. Metiamide (3 × 10?5 M; a specific H2-receptor antagonist) did not alter the inotropic response of left atria to histamine. However, tripelennamine (a typical H1-receptor antagonist) competitively shifted the histamine inotropic dose—response curve to the right at concentrations from 10?8 to 10?7 M. Higher concentrations (3 × 10?7 and 10?6 M) caused little further additional shift to the right. The positive chronotropic effect of histamine on spontaneously beating atria was competitively antagonized by metiamide (10?6 and 3 × 10?6 M). These results demonstrate that in guinea-pig atria histamine increases myocardial contractility by an interaction with receptors closely related to classical H1-receptors while its chronotropic effects is mediated by interaction with H2-receptors.  相似文献   

4.
Summary The possible role of cyclic AMP (cAMP) on tritium overflow evoked by stimulation of the cardioaccelerant nerves was studied in rat atria preincubated with [3H]-noradrenaline. Addition of the activator of adenylate cyclase forskolin (1 µmol/l), or of the phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine (IBMx, 100 µmol/l), did not affect both basal and evoked overflow. However, in the presence of the 2-adrenoceptor antagonist yohimbine (0.03 µmol/l) both forskolin and IBMx increased the stimulation-induced transmitter overflow by 49% and 141%, respectively (compared to yohimbine 0.03 µmol/l). Thus, in rat atria the cAMP-dependent facilitation of noradrenaline release is only present when the autoinhibition exerted by activation of prejunctional 2-adrenoceptors is blocked. Propranolol (0.1 µmol/l) that did not produce any effect on noradrenaline release markedly reduced the facilitatory response induced by forskolin in the presence of yohimbine. When rats were pretreated with the 2-adrenoceptor agonist clenbuterol (0.3 mg · kg–1, s. c., twice daily, 14 days), a treatment which desensitizes -adrenoceptor-me-diated facilitation of noradrenaline release (Kazanietz and Enero 1989), the facilitatory effect of forskolin and IBMx in the presence of yohimbine was abolished. The results indicate that in rat atria the effect of forskolin and IBMx on noradrenaline release are only to be observed after blockade of presynaptic 2-adrenoceptor autoinhibition. -adrenoceptor blockade or clenbuterol pre-treatment decreases the facilitatory response to forskolin and hence prejunctional -adrenoceptor-mediated enhancement of noradrenaline release is linked to the stimulation of adenylate cyclase. Correspondence to M. A. Enero at the above address  相似文献   

5.
Summary The muscarinic agonists acetylcholine (150 mol/l), carbachol (1–10 mol/l) and McN-A-343 (1–50 mol/l, selective for M1 receptors) increased, in a concentration-dependent manner, the electrically-evoked tritium overflow from guinea-pig carotid arteries preincubated with [3H]-noradrenaline. The increase caused by acetylcholine was not modified by hexamethonium (300 mol/l) but was reduced by the muscarinic receptor antagonists methylatropinium (0.5 and 1 nmol/l, nonselective), pirenzepine (1 and 5 mol/l, M1-selective), methoctramine (1 and 5 mol/l, M2-selective) and pfluoro-hexahydro-sila-difenidol (0.1–1 mol/l, M3-selective). The order of potencies (expressed as negative logarithms of concentrations that reduced by 50% the facilitatory effect of acetylcholine) was: methylatropinium (9.93) > pirenzepine (8.83) > p-fluoro-hexahydro-siladifenidol (6.81) methoctramine (6.20). These results demonstrate the existence of facilitatory M1 receptors modulating noradrenaline release in blood vessels. Correspondence to M. Salaices at the above address  相似文献   

6.
Summary The overflow of neuropeptide Y (NPY; radioimmunoassay), noradrenaline and dihydroxyphenylethylenglycol (DOPEG; high pressure liquid chromatography) from guinea-pig perfused hearts was investigated in relationship to exocytotic and nonexocytotic release mechanisms. Exocytotic release: Electrical stimulation of the left stellate ganglion (12 Hz; 1 min) evoked a calcium-dependent overflow of noradrenaline and NPY, that was accompanied by a minor and prolonged increase in DOPEG overflow. This increase in DOPEG overflow was attenuated by blockade of neuronal amine re-uptake. In the presence of calcium, a closely related co-release of noradrenaline and NPY was also observed during administration of veratridine (10 M); it was completely prevented by tetrodotoxin (1 M). Nonexocytotic release: In the absence of extracellular calcium, veratridine (30 M) induced noradrenaline overflow only when combined with the reserpine-like agent Ro 4-1284 (10 M). This overflow was accompanied by efflux of DOPEG, but not of NPY. Similarily, tyramine (1–100 M) induced a calcium-independent concomitant overflow of both noradrenaline and DOPEG, but not of NPY. During anoxic and glucose-free perfusion a predominantly calcium-independent overflow of noradrenaline was observed; only in the presence of extracellular calcium was this overflow accompanied by a minor overflow of NPY. Noradrenaline overflow, induced by veratridine plus Ro 4-1284 (in the absence of calcium), by tyramine, or by anoxia, was suppressed by blockade of neuronal amine re-uptake, and was, therefore, mediated by reversed transmembrane amine transport by the neuronal uptake1 carrier.The results indicate that NPY is co-released with noradrenaline only during calcium-dependent exocytosis. On the other hand, whenever, noradrenaline is released by non-exocytotic (calcium-independent and carrier-mediated) release mechanisms, no substantial NPY overflow is observed. The simultaneous determination of noradrenaline and NPY overflow, therefore, allows a differentiation between exocytotic and nonexocytotic noradrenaline release, and NPY may be utilized as a marker of exocytotic noradrenaline release.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 320 — Herzfunktion und ihre Regulation)Presented in part at the 62nd Scintific Sessions of the American Heart Association, New Orleans/USA, November 1989  相似文献   

7.
Summary The aziridinium derivative of the compound N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (az-DSP4) depletes endogenous noradrenaline stores and exerts neurotoxic actions on noradrenergic neurons. These effects are persistent in the central nervous system and transient in the periphery. To determine if transmitter release plays a role in the noradrenaline depletion caused by az-DSP4, the action of the compound was studied in isolated and spontaneously beating rat atria. 1. az-DSP4 enhanced atrial beating rate when present in the incubation medium at concentrations ranging from 10–3 M to 10–4 M but at 10–3 s M decreased that rate below basal levels. 2. Preincubation of atria for 30 min with the noradrenaline uptake blocker desimipramine (DMI, 10–6 M) or with the betablocker propranolol (10–7 M), abolished the positive chronotropic action of az-DSP4. 3. The rate-accelerating effect of az-DSP4 could be prevented by pretreating the rats with reserpine (5 mg/kg i. p. 24 h) or enhanced by pargyline pretreatment (100 mg/kg i. p. 18 h). 4. az-DSP4 stimulated the spontaneous efflux of tritium from the isolated atria previously labeled with 3H-noradrenaline (4 × 10–7 M), an increase that was mainly accounted for by DOPEG. 5. COMT and MAO activities in atria homogenates were inhibited by az-DSP4 in a concentration-dependent manner. However, MAO inhibition did not result in a change of the metabolic pattern as could be expected. 6. The results obtained indicate that az-DSP4 enhances the rate of spontaneous beating of isolated rat atria. The positive chronotropic effect of az-DSP4 requires the interaction of the compound with the noradrenaline uptake system. The mechanism of the accelerating effect of az-DSP4 most probably involves the release of noradrenaline from adrenergic nerve terminals in the atria and its subsequent interaction with adrenergic beta-receptors.Abbreviations DSP4 N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride - az-DSP4 aziridinium derivative of DSP4 - NA noradrenaline - DOMA 3,4-dihydroxy mandelic acid - DOPEG 3,4-dihydroxyphenylethyleneglycol - NMN normetanephrine - OMDA O-methyl deaminated metabolite fraction, comprising vanillyl-mandelic acid (VMA) plus the 3-methoxy derivative of DOPEG (MOPEG) - COMT catechol-O-methyltransferase - MAO monoamineoxidase Send offprint requests to M. E. Landa  相似文献   

8.
Summary Guinea-pig vasa deferentia or hypogastric nerve-vas deferens preparations, preincubated with pargyline (to irreversibly inhibit monoamine oxidase), were exposed to 2.3 mol/l of unlabelled adrenaline or of 3H-7-(–)-noradrenaline in the presence of hydrocortisone (to inhibit extraneuronal uptake). The vasa deferentia were then mounted in perifusion chambers and subjected to transmural electrical stimulation, electrical stimulation of the nerve, depolarization by potassium (50 mmol/l), or addition of tyramine (40 mol/l). The evoked overflow of tritium and of unlabelled catecholamines was expressed as a fraction of their tissue content. For all stimuli, the fractional release of the exogenous amines was higher than that of endogenous noradrenaline. Thus, recently incorporated amines are preferentially mobilized irrespective of the particular type of releasing mechanism or the chemical nature of the amine.In vasa deferentia which had been loaded with increasing amounts of adrenaline (by incubating the tissues with adrenaline at concentrations ranging from 0.6 to 160 mol/1), the fractional release of adrenaline decreased and became closer to that of endogenous noradrenaline. Hence, the access of exogenous catecholamines to the deepest storage sites requires higher concentrations of amines than those needed to reach the more easily releasable pools.Light microscope autoradiographs obtained from slices of vasa deferentia previously loaded with 2.3 mol/l 3H-(–)-noradrenaline showed that the outer layers were strongly labelled with silver grains whereas the inner layers were poorly marked. It is concluded that recently incorporated amines are preferentially stored in varicosities close to the surface of the tissue and, in comparison with endogenous noradrenaline, are preferentially released from sympathetically innervated organs.Send offprint requests to D. Moura at the above address  相似文献   

9.
Contractions, release of noradrenaline and r elease of ATP elicited by the indirectly acting sympathomimetic amine tyramine and responses elicited by exogenous noradrenaline were studied in the isolated vas deferens of the guinea pig. Release of noradrenaline was assessed as overflow of tritium after preincubation with [3H]-noradrenaline. ATP was measured by means of the luciferin-luciferase technique.In tissues pretreated with pargyline 1 mM, tyramine 300 M, when added to the superfusion medium for 2 min, elicited contraction and an overflow of tritium (mainly [3H]-noradrenaline) and ATP. Contraction and ATP overflow responses were prevented and tritium overflow was greatly reduced by desipramine 10 M Prazosin 0.3 M abolished contractions and evoked ATP overflow without changing tritium overflow. Blockade of postjunctional P2-purinoceptors by suramin 300 M caused a marked decrease of tyramine-evoked contractions and a slight reduction of tritium overflow whereas evoked ATP overflow was markedly increased. The effect on contraction was not shared by two other P2-purinoceptor antagonists, namely pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS) 32 M and diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) 32 M: PPADS increased contractions about fourfold, whilst DIDS had no effect at all. When the vas deferens was superfused for 24 min with medium containing tyramine 300 M, evoked contractions and tritium overflow continued throughout whereas ATP overflow faded rapidly to basal values. In the presence of prazosin 0.3 M, tyramine 300 M again failed to elicit contractions as well as an overflow of ATP. Application of noradrenaline 10 M instead of tyramine also resulted in prolonged contraction and an overflow of ATP that declined rapidly.It is concluded that all ATP released by tyramine is non-neuronal in origin, secondary to the activation of postjunctional 1-adrenoceptors by released noradrenaline. The non-neural ATP does not seem to play a functional role in smooth muscle contraction and derives from a postjunctional source which is subject to a rapid depletion upon sustained 1-adrenoceptor activation.  相似文献   

10.
Contractions and overflow of tritium and ATP elicited by hypogastric nerve stimulation (HNS) and field stimulation (FS) were studied in the guinea-pig isolated vas deferens preincubated with [3H]-noradrenaline. ATP was measured by means of the luciferin-luciferase technique.HNS and FS elicited contraction, tritium overflow and ATP overflow. HNS at supramaximal current strength produced smaller responses than did FS at supramaximal current strength (210 pulses/7 Hz). Supramaximal HNS and submaximal FS were used in the remainder of the study. Prazosin (0.3 mol/l) reduced contractions and the overflow of ATP elicited by both HNS and FS; the evoked overflow of tritium was not changed (210 pulses/7 Hz). Combined administration of prazosin (0.3 mol/l) and suramin (300 mol/l) abolished contractions and reduced the overflow of ATP elicited by both HNS and FS slightly more than did prazosin alone; tritium overflow again was not changed (210 pulses/7 Hz). Contractions, tritium overflow and ATP overflow increased with the frequency of both HNS and FS (from 7 to 25 Hz; 210 pulses); the increase in ATP overflow with frequency was more marked than the increase in tritium overflow. The preferential increase of ATP overflow with the frequency of HNS and FS persisted in the combined presence of prazosin (0.3 mol/l) and suramin (300 mol/l).The study confirms for HNS, a more physiologic way of sympathetic nerve stimulation, several observations previously obtained with FS. First, HNS-evoked ATP release is detectable as an overflow of ATP into the superfusion fluid. Second, a large part of the HNS-evoked release of ATP is postjunctional in origin, due to activation of post-junctional 1-adrenoceptors and presumably P2-purinoceptors. Third, the average neural release of ATP per pulse facilitates with the frequency of stimulation to a greater extent than the average release of noradrenaline per pulse.  相似文献   

11.
The effect of citalopram (CTP) a selective serotonin reuptake inhibitor agent was studied on ouabain-induced arrhythmia in spontaneously beating isolated guinea-pig atria. CTP (2-32 microg/ml) produced a dose-dependent decrease in the force of contractions (7-62%), and in the rate of contractions (11-72%). Pre-administration of the atria with CTP inhibited the ouabain-induced arrhythmia in isolated atria. Ouabain alone (1.2 microg/ml) produced arrhythmia at 4.5 min, and asystole at 20.7 min. Pretreatment with CTP (8 microg/ml) significantly increased the time of onset of arrhythmia to 9.5 min. In addition CTP prolonged the beating of atria (survival time) to more than 56 min, and inhibited the occurrence of asystole. These findings indicate that CTP produces direct cardiac action, probably due to the inhibition of cardiac Na(+) and Ca(2+) channels. Moreover our results suggest that CTP may reduce the membrane conductance through inhibition of ionic channels which decrease ouabain-induced arrhythmia.  相似文献   

12.
Propranolol and a new ‘cardioselective’ β-adrenergic blocking agent, H 93/26, 1 -isopropylamino-3-[4-(2-meth-oxyethyl)-phenoxyl]-2-propanol, have been studied with regard to their ability to inhibit isoprenaline (IP)- and noradrenaline (NA)-induced chronotropic and inotropic responses of isolated rat atria. NA responses were studied on preparations from hearts which had been ‘chemically sympathectomized’ by 6-hydroxydopamine. This treatment shifted the concentration-effect curves for NA to the left but had no significant influence on the IP curves. Chronotropic and inotropic responses to IP and chronotropic responses to NA were about equally affected by propranolol, no significant differences in KB being found. H 93/26 also acted as a typical competitive β-blocker with regard to these effector responses but its KB-values were about 7 times those of propranolol. The results gave no evidence for a differential action of the blockers on the β-adrenoceptors mediating chronotropic and inotropic effects, respectively. With regard to the inotropic responses to NA the plots of log (dose ratio -1) versus log [antagonist] seemed to deviate from the theoretical, linear relationship for both propranolol and H 93/26. Experiments with phenoxybenzamine suggested that this deviation might be due to an α-adrenergic positive inotropic action of NA or to an influence of extraneuronal NA uptake on the responses.  相似文献   

13.
Summary On addition to dog blood or plasma about 40% of exogenous nor-adrenaline escaped detection by photofluorimetric methods, when noradrenaline was present in concentrations ranging from 10 to 1000 ng/ml. As shown by bioassay the missing noradrenaline was not inactivated, but rather bound to plasma proteins; this was shown by experiments using labelled noradrenaline and precipitation of proteins, or Sephadex gel filtration. Cellulose acetate electrophoresis demonstrated binding by all protein fractions, alpha 1 and 2 globulins showing the greatest avidity for noradrenaline. Drugs known to be highly bound by proteins did not affect the binding capacity for noradrenaline. It is concluded that plasma noradrenaline values found after injection or infusion of noradrenaline may be only about half of the real values.Supported by Instituto de Alta Cultura (Research Project PMC-2).  相似文献   

14.
Summary Transmural stimulation of non-adrenergic, non-cholinergic sensory nerves in guinea-pig atria, isolated from reserpine-pretreated animals, in the presence of atropine and the beta-adrenoceptor-blocking drug CGP 20712A, induced a positive inotropic effect. Adenosine (0.1–10 M) concentration-dependently reduced the cardic response to transmural nerve stimulation, without modifying the response to exogenous calcitonin gene-related peptide; the inhibitory effect of adenosine was antagonized by 1 M 8-phenyltheophylline. Moreover, the cardiac response to field stimulation was enhanced by 8-phenyltheophylline (0.1, 1 M) and by adenosine deaminase (1 g/ml), but was reduced by dipyridamole (1 M). These findings indicate the presence of inhibitory adenosine receptors on cardiac sensory nerves and suggest a modulatory effect of endogenous adenosine on cardiac non-adrenergic, non-cholinergic neurotransmission.Send offprint requests to A. Rubino at the above address  相似文献   

15.
16.
We examined the question of whether cannabinoid receptors modulating noradrenaline release are detectable in the brain of humans and experimental animals. For this purpose, hippocampal slices from humans, guinea-pigs, rats and mice and cerebellar, cerebrocortical and hypothalamic slices from guinea-pigs were incubated with [3H]noradrenaline and then superfused. Tritium overflow was evoked either electrically (0.3 or 1Hz) or by introduction of Ca2+ ions (1.3μM) into Ca2+-free, K+-rich medium (25μM) containing tetrodotoxin 1μM. Furthermore, the cAMP accumulation stimulated by forskolin 10μM was determined in guinea-pig hippocampal membranes. We used the following drugs: the cannabinoid receptor agonists (–)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP-55,940) and R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone (WIN 55,212-2), the inactive S(–)-enantiomer of the latter (WIN 55,212-3) and the CB1 receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR 141716). The electrically evoked tritium overflow from guinea-pig hippocampal slices was reduced by WIN 55,212-2 (pIC30% 6.5) but not affected by WIN 55,212-3 up to 10μM. The concentration-response curve of WIN 55,212-2 was shifted to the right by SR 141716 (0.032μM) (apparent pA2 8.2), which by itself did not affect the evoked overflow. WIN 55,212-2 1μM also inhibited the Ca2+-evoked tritium overflow in guinea-pig hippocampal slices and the electrically evoked overflow in guinea-pig cerebellar, cerebrocortical and hypothalamic slices as well as in human hippocampal slices but not in rat and mouse hippocampal slices. SR 141716 (0.32μM) markedly attenuated the WIN 55,212-2-induced inhibition in guinea-pig and human brain slices. SR 141716 0.32μM by itself increased the electrically evoked tritium overflow in guinea-pig hippocampal slices but failed to do so in slices from the other brain regions of the guinea-pig and in human hippocampal slices. The cAMP accumulation stimulated by forskolin was reduced by CP-55,940 and WIN 55,212-2. The concentration-response curve of CP 55,940 was shifted to the right by SR 141716 (0.1μM; apparent pA2 8.3), which by itself did not affect cAMP accumulation. In conclusion, cannabinoid receptors of the CB1 subtype occur in the human hippocampus, where they may contribute to the psychotropic effects of cannabis, and in the guinea-pig hippocampus, cerebellum, cerebral cortex and hypothalamus. The CB1 receptor in the guinea-pig hippocampus is located presynaptically, is activated by endogenous cannabinoids and may be negatively coupled to adenylyl cyclase. Received: 5 June 1997 / Accepted: 6 August 1997  相似文献   

17.
The effect of histamine and related drugs on the tritium overflow evoked electrically (0.3 Hz) or by introduction of Ca2+ ions into Ca2+-free K+-rich (25 mmol/l) medium containing tetrodotoxin was studied in superfused guinea-pig brain cortex, cerebellum, hippocampus or hypothalamus slices and in mouse brain cortex slices preincubated with 3H-noradrenaline. The electrically evoked tritium overflow in guinea-pig cortex slices was inhibited by histamine; the H3 receptor antagonist clobenpropit reversed the effect of histamine to a slight facilitation. The facilitatory effect of histamine (obtained in the presence of clobenpropit) was not affected by the H1 receptor antagonist mepyramine but abolished by the H2 receptor antagonist ranitidine. In the absence of clobenpropit, ranitidine augmented the inhibitory effect of histamine. In slices superfused in the presence of ranitidine, the evoked overflow was inhibited by histamine and, more potently, by the H3 receptor agonist R-α-methylhistamine in a concentration-dependent manner (maximum inhibitory effect obtained for both agonists 30–35%). The concentration-response curve of histamine was shifted to the right by the H3 receptor antagonist thioperamide. R-α-Methylhistamine inhibited the electrically evoked tritium overflow also in guinea-pig cerebellar, hippocampal and hypothalamic slices. In cortex slices superfused in the presence of clobenpropit, the H2 receptor agonists impromidine and, less potently, R-sopromidine facilitated the evoked overflow in a concentration-dependent manner. S-Sopromidine only tended to increase the evoked overflow. The effect of impromidine was counteracted by the H2 receptor antagonists ranitidine and cimetidine. The extent of the maximum facilitatory effect of impromidine (by 15–20%) was about the same when (i) the Ca2+ concentration in the medium was reduced from 1.3 to 0.98 mmol/l, (ii) the time of exposure to impromidine was reduced from 28 to 8 min or (iii) cerebellar, hippocampal or hypothalamic slices were used instead of cortical slices. The Ca2+-induced tritium overflow in guinea-pig cortex slices was inhibited by histamine (in the presence of ranitidine); this effect was abolished by clobenpropit. In slices superfused in the presence of clobenpropit, impromidine failed to facilitate the Ca2+-evoked tritium overflow. The electrically evoked tritium overflow in mouse brain cortex slices was inhibited by histamine by about 60% (both in the absence or presence of ranitidine). The inhibitory effect of histamine was abolished (but not reversed) by clobenpropit. In conclusion, noradrenaline release in the guinea-pig brain cortex is inhibited via presynaptic H3 receptors and facilitated via H2 receptors not located presynaptically. In the mouse brain cortex, only inhibitory H3 receptors occur. The extent of the H3 receptor-mediated effect is more marked in the mouse than in the guinea-pig brain cortex. Received: 25 September 1997 / Accepted: 17 November 1997  相似文献   

18.
This study aimed firstly to compare the in vivo cardiovascular effects of exogenously administered and of endogenously released noradrenaline; secondly to characterize the adrenoceptors mediating these responses; thirdly to assess the influence of parasympathetic tone on the cardiovascular effects of noradrenaline. In two randomised placebo-controlled studies, healthy, young, male volunteers received intravenous (i.v.) infusions of noradrenaline at six incremental doses of 10–160 ng/kg/min and – in order to release endogenous noradrenaline – tyramine at four incremental doses of 5–20 μg/kg/min. Noradrenaline and tyramine were administered in the absence and presence of α1-adrenoceptor blockade with doxazosin (2 mg p.o.), α2-adrenoceptor blockade with yohimbine (15 mg p.o.), selective β1-adrenoceptor blockade with bisoprolol (15 mg p.o.) and muscarinic receptor blockade with atropine (15 μg/kg i.v. loading dose followed by 0.15 μg/kg/min by i.v. infusion). Vasoconstrictor effects were assessed by measurement of diastolic blood pressure (Pdiast) and myocardial effects by measurement of systolic time intervals, namely the duration of electromechanical systole corrected for heart rate (QS2c). I.v. noradrenaline increased Pdiast (Δmax 17 mmHg) and this was nearly completely suppressed by doxazosin but only slightly blunted by yohimbine. Noradrenaline also slightly shortened QS2c (Δmax –22 ms), and this was potentiated by both doxazosin and yohimbine and completely blocked by bisoprolol. I.v. tyramine reduced Pdiast (Δmax –7 mmHg), which was not affected by α1-adrenoceptor blockade, and profoundly shortened QS2c (Δmax -104 ms) which was significantly correlated with a marked increase in systolic blood pressure (Psyst) (Δmax 57 mmHg). The shortening of QS2c and the rise in Psyst were not influenced by α-adrenoceptor blockade but were antagonized by bisoprolol. Atropine potentiated the blood pressure rise and the shortening of QS2c induced by i.v. noradrenaline and converted the fall in Pdiast induced by i.v. tyramine into an increase. Thus the cardiovascular effects of exogenous noradrenaline are mainly characterized by α1-adrenoceptor-mediated vasoconstriction and the actions of endogenous noradrenaline (released by i.v. tyramine) by β1-adrenoceptor-mediated positive inotropic effects. The rise in Psyst with i.v. tyramine most likely reflects positive inotropism and not a vascular ‘pressor’ response. Received: 27 June 1996 / Accepted: 25 October 1996  相似文献   

19.
1. Doxorubicin (DOX), a standard chemotherapeutic anthracycline agent, causes a positive inotropic effect in guinea-pig isolated atria in a concentration-dependent manner with an ED(50) of 3.6 micromol/L. This increase in contractility is strictly related to the generation of reactive oxygen species (ROS) as a consequence of quinone metabolism. The ED(50) of DOX is significantly increased (P < 0.05) in the presence of 150 U superoxide dismutase (SOD). In the heart, DOX may be subjected to one- or two-electron reductions catalysed by flavoenzymes in the presence of suitable electron donors. Two-electron reduction is catalysed by NAD(P)H quinone acceptor oxidoreductase (DT-diaphorase; DTD). Whether DOX will be activated or detoxified by two-electron reduction is important for the understanding of the mechanism of both the toxic and antitumour actions of DOX. 2. In order to assess the role of DTD in cardiac responses to DOX, we examined the effect of both a specific inhibitor (dicoumarol) and an inducer (3-methylcholanthrene; MCA) of the enzyme on the inotropic action of DOX. 3. In guinea-pig isolated left atria, 4 micromol/L dicoumarol significantly enhanced the positive inotropic effect of DOX, especially at lower concentrations of DOX. In atria isolated from guinea-pigs treated with MCA (44 mg/kg, i.p. for 4 days), DTD activity was enhanced (approximately twice that of the control; P < 0.01), whereas the activity of glutathione S-transferase (GST) was not significantly altered. In these preparations, DOX caused a significantly lower increase in force of contraction than in atria isolated from untreated animals. 4. These results demonstrate that cardiac DTD does not contribute to ROS generation, but represents a detoxification system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号