首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Aim of this study was to prepare polyamine-conjugated PAMAM dendrimers and study their permeability across Caco-2 cell monolayers. Polyamines, namely, arginine and ornithine were conjugated to the amine terminals of the G4 PAMAM dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (Papp) for the PAMAM dendrimers increased by conjugating the dendrimers with both of the polyamines. The enhancement in permeability was dependent on the dendrimer concentration and duration of incubation. The correlation between monolayer permeability and the decrease in transepithelial electrical resistance (TEER) with both the PAMAM dendrimers and the polyamine-conjugated dendrimers suggests that paracellular transport is one of the mechanisms of transport across the epithelial cells. Cytotoxicity of the polyamine-conjugated dendrimers was evaluated in Caco-2 cells by MTT (methylthiazoletetrazolium) assay. Arginine-conjugated dendrimers were slightly more toxic than PAMAM dendrimer as well as ornithine-conjugated dendrimers. Though investigations on the possible involvement of other transport mechanisms are in progress, results of the present study suggest the potential of dendrimer–polyamine conjugates as drug carriers to increase the oral absorption of drugs.  相似文献   

2.
Transepithelial and endothelial transport of poly (amidoamine) dendrimers   总被引:9,自引:0,他引:9  
This article summarizes our efforts to evaluate the potential of poly (amidoamine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the permeability of a series of cationic PAMAM-NH2 (G0-G4) dendrimers across Caco-2 cell monolayers was evaluated as a function of dendrimer generation, concentration, and incubation time. The influence of dendrimer surface charge on the integrity, paracellular permeability, and viability of Caco-2 cell monolayers was monitored by measuring the transepithelial electrical resistance (TEER), 14C-mannitol permeability, and leakage of lactate dehydrogenase (LDH) enzyme, respectively. Microvascular extravasation of PAMAM-NH2 dendrimers in relation to their size, molecular weight, and molecular geometry is also discussed. Results of these studies show that transepithelial transport and microvascular extravasation of PAMAM dendrimers are dependent on their structural features including molecular size, molecular geometry, and surface chemistry. These results suggest that by optimizing the size and surface charge of PAMAM dendrimers, it is possible to develop oral delivery systems based on these carriers for targeted drug delivery.  相似文献   

3.
The aim of our study was to prepare arginine-and ornithine-conjugated Polyamidoamine (PAMAM) dendrimers and study their permeability across IPEC-J2 cell monolayers, a new intestinal cell line model for drug absorption studies. Arginine and ornithine were conjugated to the amine terminals of the PAMAM(G4) dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (P(app)) for the PAMAM dendrimers increased by conjugating the dendrimers with both of these polyamines. The enhancement in permeability was dependent on the dendrimer concentration and duration of incubation. Correlation between monolayer permeability and the decrease in transepithelial electrical resistance (TEER) with the PAMAM dendrimers and the polyamine-conjugated dendrimers suggests that paracellular transport is one of the mechanisms of transport across the epithelial cells. Cytotoxicity of these surface-modified dendrimers was evaluated in IPEC-J2 cells by MTT (methylthiazoletetrazolium) assay. Arginine-conjugated dendrimers were insignificantly more toxic than PAMAM dendrimer as well as ornithine-conjugated dendrimers. Though investigations on the possible involvement of other transport mechanisms are in progress, results of the present study suggest the potential of dendrimer-polyamine conjugates as the carriers for antigen/drug delivery through the oral mucosa.  相似文献   

4.
The aim of our study was to prepare arginine-and ornithine-conjugated Polyamidoamine (PAMAM) dendrimers and study their permeability across IPEC-J2 cell monolayers, a new intestinal cell line model for drug absorption studies. Arginine and ornithine were conjugated to the amine terminals of the PAMAMG4 dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (Papp) for the PAMAM dendrimers increased by conjugating the dendrimers with both of these polyamines. The enhancement in permeability was dependent on the dendrimer concentration and duration of incubation. Correlation between monolayer permeability and the decrease in transepithelial electrical resistance (TEER) with the PAMAM dendrimers and the polyamine-conjugated dendrimers suggests that paracellular transport is one of the mechanisms of transport across the epithelial cells. Cytotoxicity of these surface-modified dendrimers was evaluated in IPEC-J2 cells by MTT (methylthiazoletetrazolium) assay. Arginine-conjugated dendrimers were insignificantly more toxic than PAMAM dendrimer as well as ornithine-conjugated dendrimers. Though investigations on the possible involvement of other transport mechanisms are in progress, results of the present study suggest the potential of dendrimer-polyamine conjugates as the carriers for antigen/drug delivery through the oral mucosa.  相似文献   

5.
Purpose To investigate the transport of poly(amidoamine) (PAMAM) dendrimers with positive, neutral and negatively charged surface groups across Caco-2 cell monolayers. Methods Cationic PAMAM-NH2 (G2 and G4), neutral PAMAM-OH (G2), and anionic PAMAM-COOH (G1.5–G3.5) dendrimers were conjugated to fluorescein isothiocyanate (FITC). The permeability of fluorescently labeled PAMAM dendrimers was measured in the apical-to-basolateral direction. 14C-Mannitol permeability was measured in the presence of unlabeled and FITC labeled PAMAM dendrimers. Caco-2 cells were incubated with the dendrimers followed by mouse anti-occludin or rhodamine phalloidin, and visualized using confocal laser scanning microscopy to examine tight junction integrity. Results The overall rank order of PAMAM permeability was G3.5COOH > G2NH2 > G2.5COOH > G1.5COOH > G2OH. 14C-Mannitol permeability significantly increased in the presence of cationic and anionic PAMAM dendrimers with significantly greater permeability in the presence of labeled dendrimers compared to unlabeled. PAMAM dendrimers had a significant influence on tight junction proteins occludin and actin, which was microscopically evidenced by disruption in the occludin and rhodamine phalloidin staining patterns. Conclusions These studies demonstrate that enhanced PAMAM permeability is in part due to opening of tight junctions, and that by appropriate engineering of PAMAM surface chemistry it is possible to increase polymer transepithelial transport for oral drug delivery applications.  相似文献   

6.

Purpose

Poly(amidoamine) (PAMAM) dendrimers show great promise for utilization as oral drug delivery vehicles. These polymers are capable of traversing epithelial barriers, and have been shown to translocate by both transcellular and paracellular routes. While many proof-of-concept studies have shown that PAMAM dendrimers improve intestinal transport, little information exists on the mechanisms of paracellular transport, specifically dendrimer-induced tight junction modulation.

Methods

Using anionic G3.5 and cationic G4 PAMAM dendrimers with known absorption enhancers, we investigated tight junction modulation in Caco-2 monolayers by visualization and mannitol permeability and compared dendrimer-mediated tight junction modulation to that of established permeation enhancers. [14C]-Mannitol permeability in the presence and absence of phospholipase C-dependent signaling pathway inhibitors was also examined and indicated that this pathway may mediate dendrimer-induced changes in permeability.

Results

Differences between G3.5 and G4 in tight junction protein staining and permeability with inhibitors were evident, suggesting divergent mechanisms were responsible for tight junction modulation. These dissimilarities are further intimated by the intracellular calcium release caused by G4 but not G3.5. Based on our results, it is apparent that the underlying mechanisms of dendrimer permeability are complex, and the complexities are likely a result of the density and sign of the surface charges of PAMAM dendrimers.

Conclusions

The results of this study will have implications on the future use of PAMAM dendrimers for oral drug delivery.  相似文献   

7.
Previous studies from our group demonstrated visual evidence that endocytosis mechanism(s) contribute to the internalization and intracellular trafficking of cationic and anionic poly(amidoamine) (PAMAM) dendrimers across Caco-2 cells. These dendrimers colocalized with established endocytosis markers, which suggested PAMAM dendrimers may be internalized by a clathrin-dependent endocytosis mechanism and are rapidly trafficked to endosomal and lysosomal compartments. In the present study, generation 4 PAMAM-NH2 (G4NH2) dendrimer was labeled with tritium to measure the rate of uptake and permeability in Caco-2 cells. The effect of endocytosis inhibitors brefeldin A, colchicine, filipin, and sucrose on G4NH2 absorption and transport was examined to give further insight into the endocytosis mechanisms that transport PAMAM dendrimers across Caco-2 cell monolayers. G4NH2 showed linear uptake at lower concentrations, and rapidly increased as a function of concentration. The rate of G4NH2 uptake significantly declined at high concentrations in the presence of the endocytosis inhibitors, and the apparent permeability similarly reduced in the presence of these inhibitors. A significant reduction in G4NH2 permeability was observed in the presence of brefeldin A and colchicine, which generally disrupt vesicular trafficking and formation during the endocytosis process. Coincubation with filipin and sucrose reduced G4NH2 permeability to a lesser extent, which suggests G4NH2 could be nonspecifically internalized in coated vesicles at the plasma membrane. The observations from this study further confirm that G4NH2 internalization and transport involves an endocytosis pathway.  相似文献   

8.
隐丹参酮在Caco-2细胞模型中的吸收机制   总被引:4,自引:0,他引:4  
目的 研究隐丹参酮在Caco-2细胞模型中的吸收机制。方法 用Caco-2细胞单层模型研究隐丹参酮的双向转运,并考察时间、药物浓度及抑制剂对隐丹参酮吸收的影响。用高效液相色谱法检测药物浓度,计算其表观渗透系数。结果 隐丹参酮在Caco-2细胞模型中,从单层细胞层顶端到基底端的转运大于基底端到顶端的转运,随时间和浓度的增加,药物吸收呈饱和趋势,且可被其结构类似物丹参酮Ⅱ。竞争性抑制。结论 隐丹参酮在Caco-2细胞模型中的吸收主要是由载体介导的主动转运,且该主动转运的载体位于Caco-2细胞单层的顶端。  相似文献   

9.
Transport of parthenolide across human intestinal cells (Caco-2)   总被引:4,自引:0,他引:4  
This study examined the intestinal epithelial membrane transport of the sesquiterpene lactone parthenolide, a bioactive compound present in the migraine prophylactic herb feverfew. The Caco-2 human colonic cell line was used as an in vitro model of the human intestinal mucosal barrier. The bidirectional transport (apical to basolateral and basolateral to apical) of parthenolide was investigated using Caco-2 monolayers grown on Transwell inserts. Quantitation of parthenolide was performed using high performance liquid chromatography (HPLC). Apical to basolateral and basolateral to apical permeability coefficients and percent transport were calculated and a potential bioavailability of parthenolide was determined. Sodium fluorescein was used as a marker for paracellular leakage. Parthenolide, at a concentration of 250 microM, demonstrated substantial linear transport across the monolayer. The transport parameters were not affected by the presence of MK-571, an inhibitor of multidrug resistance transporter P-glycoprotein (MRP). Upon comparison of the transport parameters of parthenolide with atenolol under identical conditions and the reported values for model compounds like mannitol and propranolol, it is concluded that parthenolide is effectively absorbed through the intestinal mucosa via a passive diffusion mechanism.  相似文献   

10.
The purpose of this study was to investigate the utility of stably transfected MDCK-hPepT1 cells for identifying peptide transporter substrates in early drug discovery and compare the characteristics of this cell line with Caco-2 cells. MDCK-hPepT1, MDCK-mock, and Caco-2 cells grown to confluence on 24-well Transwell were used for this study. Expression levels of different transporter proteins (PepT1, PepT2, P-gp) in these cell lines were assessed by qRT-PCR. Permeability studies were conducted in parallel in all the cells with a diverse set of peptide substrates using the optimized experimental condition: 100 microM, apical pH 6.0, basolateral pH 7.4, 2 hr incubation at 37 degrees C. Permeability studies were also conducted with classical P-gp substrates (tested in bi-directional mode) and paracellularly absorbed probes to investigate the differences between the cell lines. As expected, MDCK-hPepT1 cells express significantly higher level of PepT1 mRNA compared to both Caco-2 and MDCK-mock cells. Efflux transporter, P-gp, was expressed adequately in all the cell lines. Permeability studies demonstrated that classical peptide substrates had significantly higher permeability in stably transfected MDCK-hPepT1 cells compared to MDCK-mock and Caco-2 cells. The transfected MDCK-hPepT1 cells were qualitatively similar to Caco-2 cells with respect to functional P-gp efflux activity and paracellular pore activity. Stably transfected MDCK-hPepT1 cells have been demonstrated as a viable alternative to Caco-2 cells for estimating the human absorption potential of peptide transporter substrates. These cells behave similar to Caco-2 cells with regards to P-gp efflux and paracellular pore activity but demonstrate greater predictability of absorption values for classical peptide substrates (for which Caco-2 cells under-estimate oral absorption).  相似文献   

11.
It has been shown in vivo and in vitro that P-glycoprotein (P-gp) may be able to influence the permeability of its substrates across biological membranes. However, the quantitative contribution of the secretion process mediated by P-gp on the overall permeability of membranes has not been determined yet. In particular, observations need to be clarified in which substrates showing high affinity to P-glycoprotein, e.g., verapamil, apparently do not seem to be greatly influenced by P-gp in their permeability and consequently also with respect to their extent of GI-absorption after oral administration, whereas weaker substrates of P-gp, e.g., talinolol, have clearly shown P-gp-related absorption phenomena such as nonlinear intestinal permeability and bioavailability. Experiments with Caco-2 cell monolayers and mathematical simulations based on a mechanistic permeation model should aid in clarifying the underlying mechanism for these observations and quantifying the influence of passive membrane permeability and affinity to P-gp to the overall transmembrane drug flux. In addition, the concentration range of drug at which P-glycoprotein-mediated transport across the biological membrane is relevant should be examined. The permeability of various drugs in Caco-2 monolayers was determined experimentally and modeled using a combination of passive absorptive membrane permeability and a Michaelis-Menten-type transport process in the secretory direction. The passive permeabilities were experimentally obtained for the apical and basolateral membrane by efflux experiments using Caco-2 monolayers in the presence of a P-gp inhibitor. The Michaelis-Menten parameters were determined by a newly developed radioligand-binding assay for the quantification of drug affinity to P-gp. The model was able to accurately simulate the permeability of P-glycoprotein substrates, with differing passive membrane permeabilities and P-glycoprotein affinities. Using the outlined approach, permeability vs donor-concentration profiles were calculated, and the relative contribution of passive and active transport processes to the overall membrane permeability was evaluated. A model is presented to quantitatively describe and predict direction-dependent drug fluxes in Caco-2 monolayers by knowing the affinity of a compound to the exsorptive transporter P-gp and its passive membrane permeability. It was shown that a combination of high P-gp affinity with good passive membrane permeability, e.g., in the case of verapamil, will readily compensate for the P-gp-mediated reduction of intestinal permeability, resulting in a narrow range in which the permeability depends on the apical drug concentration. On the other hand, the permeability of compounds with low passive membrane permeability (e. g., talinolol) might be affected over a wide concentration range despite low affinity to P-gp.  相似文献   

12.
Purpose The purpose of this work was to investigate the involvement of carrier-mediated apical (AP) uptake and efflux mechanisms in the absorptive intestinal transport of the hydrophilic cationic drug ranitidine in Caco-2 cells. Methods Absorptive transport and AP uptake of ranitidine were determined in Caco-2 cells as a function of concentration. Permeability of ranitidine in the absorptive and secretory directions was assessed in the absence or presence of the P-glycoprotein (P-gp) inhibitor, GW918. Characterization of the uptake mechanism was performed with respect to inhibitor specificity, pH, energy, membrane potential, and Na+ dependence. Efflux from preloaded monolayers was evaluated over a range of concentrations and in the absence or presence of high extracellular ranitidine concentrations. Results Saturable absorptive transport and AP uptake of ranitidine were observed with Km values of 0.27 and 0.45 mM, respectively. The ranitidine absorptive permeability increased and secretory permeability decreased upon inhibition of P-gp. AP ranitidine uptake was inhibited in a concentration-dependent fashion by a diverse set of organic cations including tetraethylammonium, 1-methyl-4-phenylpyridinium, famotidine, and quinidine. AP ranitidine uptake was pH and membrane potential dependent and reduced under conditions that deplete metabolic energy. Efflux of [3H]ranitidine across the basolateral membrane was neither saturable as a function of concentration nor trans stimulated by unlabeled ranitidine. Conclusions Saturable absorptive transport of ranitidine in Caco-2 cells is partially mediated via a pH-dependent uptake transporter for organic cations and is subject to attenuation by P-gp. Inhibition and driving force studies suggest the uptake carrier exhibits similar properties to cloned human organic cation transporters. The results also imply ranitidine transport is not solely restricted to the paracellular space.  相似文献   

13.
This study investigated the effects of copper on paracellular permeability and P-glycoprotein (P-gp) in Caco-2 cells. Apical treatment with 100-300 microM CuSO4 in Hanks' balanced salt solution (HBSS, up to 3 hours) induced a time- and concentration-dependent increase in permeability of Caco-2 cell monolayers monitored by transepithelial electrical resistance (TEER). Copper treatment also induced a concentration-dependent reduction of F-actin stain, but not of tight junctional protein ZO-1. In addition, without any adverse effects on TEER, apical treatment with 300 microM CuSO4 in complete medium (for 24 hours) could reduce basolateral-to-apical transport, and increase apical-to-basolateral transport of rhodamine-123 (Rho-123) and accumulation of Rho-123 in Caco-2 cells. Treatment with 10-100 microM CuSO4 in HBSS (up to 3 hours) also induced a time- and concentration-dependent increase in accumulation of Rho-123 in Caco-2 cells. The results indicated that copper treatment increased the paracellular permeability probably by perturbing F-actin skeleton, and inhibited P-gp, thus altering the barrier functions of Caco-2 cells.  相似文献   

14.
Purpose. The purpose of this work was to elucidate transport pathways of the P-glycoprotein (P-gp) substrates rhodamine 123 (R123) and doxorubicin across Caco-2 cells. Methods. Experiments were designed to identify saturable and nonsaturable transport processes and transport barriers for R123 and doxorubicin transport across Caco-2 cells. Confocal laser scanning microscopy (CLSM) imaged R123 transport under normal conditions and in the presence of the P-gp inhibitor, GW918 (used to abolish P-gp-mediated efflux activity). Results. R123 secretory P app (P app,BA) showed concentration dependence, whereas R123 absorptive P app (P app,AB) did not. Inhibition of P-gp efflux revealed that P-gp-mediated efflux had no effect on R123 or doxorubicin P app,AB, but enhanced R123 and doxorubicin P app,BA. In calcium-free medium, R123 P app,AB increased 15-fold, indicating intercellular junctions are a barrier to R123 absorption. CLSM of R123 fluorescence during absorptive transport under normal conditions and in the presence of GW918 was identical, and was limited to paracellular space, confirming that P-gp is not a barrier to R123 absorption. CLSM revealed that R123 fluorescence during secretory transport under normal conditions and in the presence of GW918 was localized intracellularly and in paracellular space. R123 and doxorubicin uptake across Caco-2 cells basolateral membrane was saturable. Conclusions. R123 absorptive transport occurs primarily by paracellular route, whereas R123 secretory transport involves influx across BL membrane mediated solely by a saturable process followed by apically directed efflux via P-gp. Doxorubicin utilizes similar transport pathways to cross Caco-2 cells.  相似文献   

15.
Irinotecan (CPT-11) is a camptothecin analog with low (about 10--20%) and variable oral bioavailability in animal models. Here, Caco-2 cells were used to evaluate the transepithelial transport of CPT-11 and its metabolites. Caco-2 cells demonstrated significant expression of P-glycoprotein (P-gp), multidrug resistance-associated protein and canalicular multispecific organic anion transporter. Both the lactone and carboxylate forms of CPT-11 and SN-38 were actively transported across the cell monolayers, mainly by the apical-localized P-gp pump. Cellular permeability of CPT-11 at a concentration of 17 microM converted from active to passive-diffusional transport between the 2 and 6 h exposure time points. Antiproliferative effects of CPT-11 were related to permeability of the lactone form, whereas for SN-38 efficacy was dependent on lactone accumulation. Exposure of CPT-11 with cyclosporin A significantly enhanced its efficacy, whereas this was not observed with verapamil and R101933. In contrast, SN-38 efficacy decreased in the presence of P-gp inhibitors due to active transport toward the basolateral side, thereby reducing drug accumulation. Hence, multiple-active transport systems could be demonstrated to be responsible for not only accumulation profiles but also cytotoxic efficacy of CPT-11 and SN-38 in the intestinal Caco-2 cells. It is suggested that CPT-11 might act in a time-dependent manner and that SN-38-mediated cytotoxicity relates to (dose-dependent) lactone kinetics. The results detailed in this report could contribute toward the development of a clinically useful oral formulation of CPT-11 with improved absorption characteristics and suggest that cyclosporin A is a suitable agent for further research of this concept.  相似文献   

16.
Cell accumulation, transendothelial permeability, and efflux studies were conducted in bovine brain capillary endothelial cells (BBCECs) to assess the role of P-glycoprotein (P-gp) in the blood-brain barrier (BBB) transport of morphine in the presence and absence of P-gp inhibitors. Cellular accumulation of morphine and rhodamine 123 was enhanced by the addition of the P-gp inhibitors N-{4-[2-(1,2,3,4-tetrahydro-6,7dimethoxy-2-isoquinolinyl)-ethyl]-phenyl}-9,10-dihydro-5-methoxy-9- carboxamide (GF120918), verapamil, and cyclosporin A. Positive (rhodamine 123) and negative (sucrose and propranolol) controls for P-gp transport also were assessed. Morphine glucuronidation was not detected, and no alterations in the accumulation of propranolol or sucrose were observed. Transendothelial permeability studies of morphine and rhodamine 123 demonstrated vectorial transport. The basolateral to apical (B:A) fluxes of morphine (50 microM) and rhodamine (1 microM) were approximately 50 and 100% higher than the fluxes from the apical to the basolateral direction (A:B), respectively. Decreasing the extracellular concentration of morphine to 0.1 microM resulted in a 120% difference between the B:A and A:B permeabilities. The addition of GF120918 abolished any significant directionality in transport rates across the endothelial cells. Efflux studies showed that the loss of morphine from BBCECs was temperature- and energy-dependent and was reduced in the presence of P-gp inhibitors. These observations indicate that morphine is transported by P-gp out of the brain capillary endothelium and that the BBB permeability of morphine may be altered in the presence of P-gp inhibitors.  相似文献   

17.
Purpose. The objectives of this work were to evaluate the importance of moderate passive permeability on apparent P-glycoprotein (P-gp) kinetics, and demonstrate that inspection of basolateral to apical and apical to basolateral (BL-AP/AP-BL) permeability ratios may result in a compound being overlooked as a P-gp substrate and inhibitor of another drug's transport via P-gp inhibition. Methods. The permeability ratios of nicardipine, vinblastine, cimetidine, and ranitidine were determined across Caco-2 monolayers that express P-gp, in the presence and absence of the specific P-gp inhibitor, GF120918. In addition, the permeability ratio of vinblastine was studied after pretreatment of Caco-2 monolayers with nicardipine, ranitidine, or cimetidine. Similar studies were repeated with hMDR1-MDCK monolayers. Results. The permeability ratios for cimetidine and vinblastine were >2. The permeability ratios for nicardipine and ranitidine were close to unity, and were not affected by the addition of GF120918. Based solely on ratios, only compounds with moderate transcellular permeability (vinblastine and cimetidine) would be identified as P-gp substrates. Although the permeability ratios appeared to be unity for nicardipine and ranitidine, both compounds affected the permeability of vinblastine, and were identified as substrates and inhibitors of P-gp. Studies performed in hMDR1-MDCK cells confirmed these experimental results. Data were explained in the context of a kinetic model, where passive permeability and P-gp efflux contribute to overall drug transport. Conclusions. Moderate passive permeability was necessary for P-gp to reduce the AP-BL drug permeability. Inspection of the permeability ratio after directional transport studies did not effectively identify P-gp substrates that affected the P-gp kinetics of vinblastine. Because of the role of passive permeability, drug interaction studies with known P-gp substrates, rather than directional permeability studies, are needed to elucidate a more complete understanding of P-gp kinetics.  相似文献   

18.
The intestinal epithelium is a significant barrier for oral absorption of hydrophilic drugs because they cannot easily traverse the lipid bilayer of the cell membrane and their passage through the intercellular space (paracellular transport) is restricted by the tight junctions. In this report we show that dodecylphosphocholine (DPC) can improve the paracellular permeability of hydrophilic compounds across Caco-2 cell monolayers by modulating the tight junctions. The results show that the alkyl chain as well as the zwitterionic head group of DPC are required for its activity. DPC appears to act by modulating the permeability of tight junctions as evidenced by the fact that treatment of Caco-2 cell monolayers by this agent results in a decreased transepithelial electrical resistance (TEER), increased permeability of paracellular markers (e. g., mannitol) with no change in the permeability of the transcellular marker testosterone, and redistribution of the tight junction-associated protein ZO-1. The effect of DPC on Caco-2 cells (e.g., decrease in TEER) is reversible, and is not caused by gross cytotoxicity (as indicated by the MTT test) or by nonspecific disruption of the cell membrane (as indicated by only slight nuclear staining due to the nonpermeable DNA-specific dye propidium iodide). We propose in the present study a parameter, potency index, that allows comparison of various enhancers of paracellular transport in relation to their cytotoxicity. The potency index is a ratio between the IC(50) value (concentration at which 50% inhibition of control mitochondrial dehydrogenase activity occurs in the MTT test) and the EC(50) value (concentration at which TEER drops to 50% of its control (untreated) value). By this parameter, DPC is significantly safer than the commonly used absorption enhancer palmitoyl carnitine (PC), which has the potency index of approximately 1 (i.e., no separation between effective and toxic concentration).  相似文献   

19.
The transport characteristics of a selective peripheral H1 receptor antagonist, ebastine, a substrate for cytochrome P450 3A4, and its three major metabolites, i.e., the hydroxy metabolite of ebastine (M-OH), the pharmacologically active metabolite carebastine (Car), and the desbutyrophenone metabolite (des-BP), were studied in cultured human intestinal Caco-2 cells expressing a drug efflux pump, P-glycoprotein (P-gp), on the apical membrane. The polarized transport of [3H]cyclosporin A (CyA), mediated by P-gp in the basolateral to apical direction across the Caco-2 cell monolayers, was affected by the presence of ebastine in a concentration-dependent manner and significant inhibition was observed at high concentrations (>50 microM). M-OH (300 microM) also significantly inhibited whereas Car and des-BP did not. Although no marked polarized transport of [14C]ebastine in a secretory direction was observed in the Caco-2 systems, the flux in the basolateral to apical direction was slightly higher than that in the opposite direction at concentrations less than 30 microm. [14C]Ebastine (2 microM) uptake from the apical side was significantly increased in the presence of an excess of cold CyA, suggesting that the efflux process mediated by P-gp may be involved in the ebastine uptake by Caco-2 cells. Collectively, these results indicate that ebastine (and presumably M-OH) is transported via P-gp in Caco-2 cells, however, the affinity for P-gp is very low. It is unlikely that the secretory transport of ebastine mediated by P-gp will dramatically affect overall intestinal absorption in vivo because efficient passive diffusion of this drug should occur due to its high lipophilicity. However, it may be advantageous for its efficient first-pass metabolism.  相似文献   

20.
Fexofenadine is a nonsedative antihistamine that exhibits good oral bioavailability despite its zwitterionic chemical structure and efflux by P-gp. Evidence exists that multiple uptake and efflux transporters play a role in hepatic disposition of fexofenadine. However, the roles of specific transporters and their interrelationship in intestinal absorption of this drug are unclear. This study was designed to elucidate vectorial absorptive transport of fexofenadine across Caco-2 cells involving specific apical uptake and efflux transporters as well as basolateral efflux transporters. Studies with cellular models expressing single transporters showed that OATP2B1 expression stimulated uptake of fexofenadine at pH 6.0. Apical uptake of fexofenadine into Caco-2 cells was decreased by 45% by pretreatment with estrone 3-sulfate, an OATP inhibitor, at pH 6.0 but not at pH 7.4, indicating that OATP2B1 mediates apical uptake of fexofenadine into these cells. Examination of fexofenadine efflux from preloaded Caco-2 cells in the presence or absence of (i) the MRP inhibitor MK-571 and (ii) the P-gp inhibitor GW918 showed that apical efflux is predominantly mediated by P-gp, with a small contribution by MRP2, whereas basolateral efflux is predominantly mediated by MRP3. These results also showed that while OSTαβ is functionally active in the basolateral membrane of Caco-2 cells, it does not play a role in the export of fexofenadine. MK-571 decreased the absorptive transport of fexofenadine by 17%. However, the decrease in absorptive transport by MK-571 was 42% when P-gp was inhibited by GW918. The results provide a novel insight into a vectorial transport system mainly consisting of apical OATP2B1 and basolateral MRP3 that may play an important role in delivering hydrophilic anionic and zwitterionic drugs such as pravastatin and fexofenadine into systemic circulation upon oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号