首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of an alternative predictive test for the identification of contact sensitizing chemicals is described. The method is based upon the fact that, following epicutaneous application, sensitizing chemicals initiate a primary immunological response in the draining lymph node(s) which is characterized by lymphocyte proliferation. Experimental conditions for the measurement in vitro of the induced lymph node cell proliferative response have been optimized. On the basis of the data presented a local lymph node assay was developed in which CBA/Ca strain mice were exposed daily, for 3 consecutive days, to various concentrations of the test chemical, or to vehicle alone, on the dorsum of the ear. Lymph node activation was measured subsequently as a function of increased node weight, the frequency of large pyroninophilic cells and lymphocyte proliferation in the presence or absence of an exogenous source of interleukin 2 (IL-2). The results of a validation study are reported in which 22 well-characterized sensitizing chemicals of varying potency were examined. With the exception of three chemicals where water was used as the application vehicle, positive responses, defined as a substantial increase in lymphocyte proliferative activity, were recorded with all these test materials. Under the conditions employed non-sensitizing chemicals, including non-sensitizing irritant chemicals, failed to influence the immunological status of the draining lymph node. Taken together, the data suggest that the local lymph node assay provides the basis for a rapid and cost-effective alternative to the currently available guinea pig predictive test methods. The local lymph node assay may be of particular value for the evaluation of coloured or irritant chemicals.  相似文献   

2.
The murine local lymph node assay, an alternative predictive test for the identification of contact sensitizing chemicals, is based upon the fact that skin allergens induce proliferation in lymph nodes draining the site of application. In the present study we have examined whether pre-exposure to the test chemical at a distant site enhances subsequent draining lymph node cell proliferation and, thereby, the sensitivity of the assay. Experiments were performed using both in vitro and in situ measurement of induced lymph node cell proliferation. It was found that, with the exception of potent skin sensitizers such as picryl chloride and oxazolone, which impair subsequent proliferative activity as a consequence of induced immunoregulatory processes, pre-treatment with the test allergen resulted in enhanced proliferation. Evidence is presented that the local lymph node assay response to a variety of skin allergens (including eugenol, isoeugenol, dihydrocoumarin, 4-vinylpyridine, cinnamic aldehyde and 2,4,5-trichlorophenol) was augmented when mice received a single exposure to the same chemical 5 days earlier. It is concluded that the use of a modified protocol, incorporating pre-exposure to the test material, can enhance local lymph node assay responses to all but the most potent skin allergens, and may be of particular value when increased sensitivity is required.  相似文献   

3.
New test methods are being developed to improve the prediction of human and environmental risks and to benefit animal welfare by reducing, refining, and replacing animal use. Regulatory adoption of new test methods is often a complex and protracted process, requiring test method validation, regulatory acceptance, and implementation. Assessments of new test methods have not always been uniform within or among regulatory agencies. Thus, there have been increased pressures for a harmonized approach to test method evaluation and acceptance. In 1997, in response to these pressures and to U.S. Public Law 103-43, the National Institute of Environmental Health Sciences (NIEHS) established the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) to coordinate interagency consideration of new and revised test methods. This article describes the validation and acceptance criteria and process used for the first test method evaluated by ICCVAM, the murine local lymph node assay (LLNA). Based on ICCVAM's conclusions and recommendations, the LLNA has been accepted by U.S. regulatory agencies as a stand-alone assay for allergic contact dermatitis. Two related articles in this series of three present the results of the independent peer review evaluation of the LLNA and summarize the performance characteristics of the database substantiating the validity of the LLNA.  相似文献   

4.
A murine local lymph node assay has been developed for the identification of contact sensitizing chemicals. In the present study, the performance of the local lymph node assay has been evaluated with twenty-four coded chemicals of previously unknown skin sensitizing potential and the results compared with predictions made from concurrent occluded patch tests (Buehler tests) in guinea pigs. The data presented demonstrate that the local lymph node assay successfully identified those chemicals that were classified as moderate or strong skin sensitizers in the Buehler test. In the present series of experiments, chemicals predicted to be mild sensitizers in the Buehler test were classified as 'not strong sensitizers' in the local lymph node assay. In the majority of instances, the Buehler test and local lymph node assay were in agreement with regard to the identification of non-sensitizing chemicals. However, two chemicals that were classified as non-sensitizers in the guinea pig test exhibited positive responses in the local lymph node assay and were predicted to be sensitizers. Some coloured chemicals resulted in obscured Buehler readings and, here, assessment was based upon histological examination of the challenge site. These compounds were examined also in the local lymph node assay and similar predictions of sensitizing potential were made. Taken together, the data reveal close, but not absolute, concordance between the local lymph node assay and the Buehler test. The relative merits of these predictive test methods are discussed.  相似文献   

5.
T Maurer  I Kimber 《Toxicology》1991,69(2):209-218
The local lymph node assay in the mouse is a novel predictive test for the identification of contact sensitizing chemicals. The purpose of the studies described was to determine whether a similar local lymph node assay could be performed successfully in guinea pigs; currently the species of choice for assessment of sensitizing potential for regulatory purposes. Ten sensitizing chemicals (oxazolone, picryl chloride, 2,4-dinitrofluorobenzene, benzocaine, cinnamic aldehyde, 2,4,-dinitrothiocyanobenzene, p-nitrosodimethylaniline, formaldehyde, p-phenylenediamine and cyanuric chloride) and equal concentrations of sodium lauryl sulphate were examined in a guinea pig local lymph node assay. Animals received three consecutive daily applications of various concentrations of the test chemical on the dorsum of both ears. Control animals were untreated. Five days following the initiation of exposure, draining auricular lymph nodes were excised and weighed. Suspensions of lymph node cells (LNC) were prepared and cultured for 24 or 48 h and proliferation measured by incorporation of [3H]thymidine. Exposure to at least one concentration of all sensitizing chemicals, other than benzocaine, induced proliferation by draining LNC. Responses were higher at 24 h rather than 48 h. Evidence is presented that guinea pig LNC proliferation may be enhanced or maintained by addition to culture of an exogenous source of the T cell growth factor interleukin 2 (IL-2). Draining lymph node weight was increased following exposure to some sensitizing chemicals but, compared with LNC proliferation, provided a less sensitive correlate of lymph node activation. Exposure to sodium lauryl sulphate failed to induce changes in either lymph node weight of LNC proliferation. Data are compared with three-day murine local lymph node assays performed concurrently. The available information indicates that the local lymph node assay may be performed in guinea pigs.  相似文献   

6.
Chemicals that can act as contact allergens have been identified successfully using guinea-pig models. However, contact allergy is still common, probably because of, at least in part, failures of risk assessment. A new method, the local lymph node assay, replaces the guinea-pig as a tool for hazard identification and offers the real prospect of accurate prediction of allergen potency, the missing link in skin sensitization risk assessment.  相似文献   

7.
Woolhiser MR  Munson AE  Meade BJ 《Toxicology》2000,146(2-3):221-227
The local lymph node assay (LLNA), as recommended by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), only allows for the use of CBA mice. The objective of these studies was to begin to assess the response of chemical sensitizers in the LLNA across six strains of female mice (C57BL/6, SJL/J, BALB/c, B6C3F1, DBA/2 and CBA). The moderate sensitizer alpha-hexylcinnamaldehyde (HCA) was chosen as the test chemical, while toluene diisocyanate (TDI) and 2,4-dinitrofluorobenzene (DNFB) were evaluated at single concentrations as positive controls. Draining lymph node cell proliferation following acetone exposure varied across strains. SJL mice had a significantly higher degree of proliferation with 2111 d.p.m./2 nodes. The remaining five strains demonstrated responses which ranged from 345 to 887 dpm/2 nodes. DBA/2, B6C3F1, BALB/c and CBA mice had essentially equal levels of lymph node proliferation following exposure to the three chemicals. While C57BL/6 mice gave similar results as CBA mice following DNFB and HCA administration, the LLNA response to TDI was considerably lower. SJL mice provided low stimulation indexes (SI) values for all three chemicals evaluated. Regardless of the level of LLNA response, all six mouse strains identified the sensitization potential of HCA, TDI or DNFB. Based on these studies, DBA/2, B6C3F1 and BALB/c mice are good choices for continued evaluation as additional mouse strains for use in the LLNA.  相似文献   

8.
The local lymph node assay is a novel predictive test for the identification of contact allergens. The collaborative study reported here was performed to evaluate the reliability of the method when performed in independent laboratories. Eight chemicals were examined in each of 4 participating laboratories and results compared with predictions of skin-sensitizing activity made from concurrent Magnusson and Kligman guinea-pig maximization tests performed in a single laboratory. The local lymph node assay has as its theoretical basis the fact that contact allergens induce T-lymphocyte proliferative responses. In practice, predictions of contact-sensitizing potential are made following measurement of proliferation in lymph nodes draining the site of exposure to chemical, and derivation of a stimulation index using control values as the comparator. Although in the present study there was some variation between laboratories with respect to the absolute stimulation indices recorded, it was found that with all chemicals each laboratory made the same predictions of sensitizing activity. Six chemicals (2,4-dinitrochlorobenzene, formalin, eugenol, isoeugenol, p-phenylenediamine and potassium dichromate) yielded positive responses, and two (methyl salicylate and benzocaine) were negative, in each laboratory. Furthermore, with 7 of the 8 chemicals tested there was no significant difference between laboratories in terms of the characteristics of the dose-response relationships recorded. With the exception of one chemical (benzocaine), predictions made with the local lymph node assay were in accord with those derived from guinea-pig maximization tests. These inter-laboratory comparisons demonstrate that the local lymph node assay is a robust and reliable method for the identification of at least moderate and strong contact allergens.  相似文献   

9.
Disperse dyes, which are suitable for dyeing synthetic fibres, are responsible for the great majority of allergic contact dermatitis (ACD) cases to textile dyes. The aim of the present study was to investigate the sensitising potential of various disperse dyes using a biphasic protocol of the local lymph node assay (LLNA). Briefly, mice were shaved over a surface of approximately 2 cm2 on their backs and treated using a “sensitisation-challenge protocol”. The shaved surface was treated once daily on days 1–3 with 50 μl of the test solution. Animals remained untreated on days 4–14. On days 15–17, mice were treated with 25 μl of the test solution on the dorsum of both ears. Mice were killed on day 19 with deep CO2 anaesthesia, the lymph nodes prepared and various end points, such as ear thickness, ear punch weight, lymph node weight, lymph node cell count and the proportion of various lymphocyte subpopulations, were determined by flow cytometry. The results were compared to control group treated with the vehicle alone. Our results showed that almost all of the tested textile dyes caused a significant increase in lymph node cell count and lymph node weight. We also observed an increase in ear thickness and ear punch weight in most of the concentrations tested for various textile dyes. We observed a decrease in CD4+ and CD8+ cells and an increase in CD19+, CD45+ and CD45+/1A+ cells in most of the cases, which is characteristic for allergens. The CD4+/CD69+ cells increased in only few experiments mainly with Disperse Blue 124 and Disperse Blue 106. Based on our results, the disperse dyes could be arranged in four groups on the basis of their sensitising potency in the following decreasing order (in parenthesis: lowest concentration causing a significant increase in lymph node cell number): group 1, strong: Disperse Blue 124 and Disperse Blue 106 (0.003%); group 2, moderate: Disperse Red 1 and Disperse Blue 1 (3%); group 3, weak: Disperse Orange 37 and Disperse Blue 35 (10%); and group 4, very weak: Disperse yellow 3 and Disperse Orange 3 (increase at 30% or no increase at 30%). In conclusion, our study shows that the biphasic LLNA protocol was proficient enough to study the sensitisation potential of tested textile dyes and provides data allowing to discriminate them according to their potency.  相似文献   

10.
Mycophenolic acid sodium salt (ERL080) is currently in Phase III clinical trials for the prophylaxis of kidney transplant rejection upon coadministration with Neoral (cyclosporin A microemulsion). To assess the relative side effect profile of ERL080 and MMF as drug substances in Lewis rats, a rat strain commonly used in transplantation experiments, a comparative 4-week tolerability study was performed. Escalating doses of ERL080 and MMF were administered orally at 10-30 mg/kg/d (i.e., doses within or above the immunosuppressive range in rats), either in single compound treatment or in combination with cyclosporine (CsA) at a daily oral dose of 7.5 mg/kg. The compounds were well tolerated as documented by body weight monitoring, hematologic parameters, and weight and histology of organs. Major abnormalities observed were a dose-dependent reduction in thymus weight associated with immunosuppression, in some cases villous atrophy in the jejunum, a reduction in white blood cell counts and lymphocyte counts (mean value in distinct treatment groups not exceeding 40-50%), a decrease in red blood cell counts and hemoglobin concentration (at maximum 25-30%), and an increase in platelet counts (in some groups up to doubling). At a given dose, these adverse effects were slightly more pronounced for MMF than for ERL080, and for groups under CsA coadministration compared to both compounds given alone. No significant potentiation effect of CsA on the changes induced by ERL080 or MMF was observed. Moreover, there were no new toxic entities evident upon CsA microemulsion coadministration.  相似文献   

11.
The original Organisation for Economic Co-operation and Development Test Guideline 429 (OECD TG 429) for the murine local lymph node assay (LLNA) required five mice/group if mice were processed individually. We used data from 83 LLNA tests (275 treated groups) to determine the impact on the LLNA outcome of reducing the group size from five to four. From DPM measurements, we formed all possible four- and five-mice combinations for the treated and control groups. Stimulation index (SI) values from each four-mice combination were compared with those from five-mice combinations, and agreement (both SI<3 or both SI ≥ 3) determined. Average agreement between group sizes was 97.5% for the 275 treated groups. Compared test-by-test, 90% (75/83) of the tests had 100% agreement; agreement was 83% for the remaining eight tests. Disagreement was due primarily to variability in animal responses and closeness of the SI to three (positive response threshold) rather than to group size reduction. We conclude that using four rather than five mice per group would reduce animal use by 20% without adversely impacting LLNA performance. This analysis supported the recent update to OECD TG 429 allowing a minimum of four mice/group when each mouse is processed individually.  相似文献   

12.
McGarry HF 《Toxicology》2007,238(2-3):71-89
From June 2007, new chemicals legislation on the registration, evaluation, authorization and restriction of chemicals (REACH) will come into force across the European Union. This will require the submission of data on human health effects of chemicals, including chemical safety assessments which will require measurements of potency. For skin sensitization hazard identification, REACH states that the first-choice in vivo assay is the local lymph node assay (LLNA). This test has also been the UK competent authority's preferred test for skin sensitization since 2002, and has now replaced guinea pig tests in dossiers submitted to it under the Notification of New Substances Regulations. Advantages of the LLNA over guinea pig tests include improvements in animal welfare, a more scientific approach to hazard identification, and the inclusion of a dose-response element in the endpoint, which enables an estimation of potency. However, notifiers to the UK competent authority have sometimes been reluctant to use the assay because of concerns over false-positive reactions. Across Europe, these concerns have been heightened in the lead-up to the introduction of REACH, since the use of in vivo alternatives to the LLNA will require scientific justification. This review will address some of these concerns from a regulatory perspective.  相似文献   

13.
Melatonin is a good candidate for transdermal delivery considering its short plasma half life, low molecular weight and a favorable octanol:water partition coefficient. Nimesulide is a nonsteroidal anti-inflammatory agent used orally and rectally for inflammatory disorders. The objective of this study was to investigate the skin sensitization potential of melatonin and nimesulide using the standard murine local lymph node assay (LLNA). Melatonin (0.5, 2.5, 5.0 and 10.0%, w/v) and nimesulide (0.5, 2.5, 5.0 and 10.0%, w/v) dissolved in acetone:olive oil (4:1, AOO) was applied (25 microl) on the dorsal surface of each ear of female CBA/Ca mice for three consecutive days. On the sixth day, [3H]methyl thymidine was administered intravenously and the uptake of [3H]methyl thymidine (dpm) by the draining lymph nodes was determined by established methods. Dinitrochlorobenzene (DNCB, 0.25%, w/v) and para-aminobenzoic acid (PABA, 2.5%, w/v) were used as positive and negative control, respectively. The mean dpm obtained with melatonin and nimesulide treatment at all concentrations were not significantly different (P>0.05) from that of AOO. The stimulation index (SI) values of melatonin and nimesulide at different concentrations were close to 1. The results of the present study using the standard LLNA approved by US Interagency Coordinating Committee in the Validation of Alternative Methods (ICCVAM) indicate that melatonin and nimesulide are not skin sensitizers. However, since LLNA has shown false negatives with many drugs, clinical trials are certainly needed to exclude the possibility of a weak or delayed type skin sensitization reaction. Further studies using modified LLNA procedures (extended exposure, alternative vehicle systems, pre-abrasion, etc.) may be useful in identifying the weak or delayed type skin sensitization reactions.  相似文献   

14.
15.
Jet A and JP-8 are the major jet fuels used in civilian and military (US Air Force) flights, respectively. JP-8+100 is a new jet fuel recently introduced by the US Air Force. Besides lung exposure, skin is the potential route of exposure to jet fuels. The purpose of the present study was to investigate the skin sensitization potential of jet fuels (Jet A, JP-8 and JP-8+100) using murine Local lymph node assay (LLNA). Female CBA/Ca mice (8-12-weeks-old) were used in the study. Dinitrochlorobenzene (DNCB, 0.25% w/v) and paraaminobenzoic acid (PABA, 2.5% w/v) were used as positive and negative control, respectively and acetone: olive oil (4:1, AOO) was used as the vehicle (control). All three jet fuels caused a proliferative activity significantly greater than the control (P<0.01). Our results demonstrate that JP-8 is a weak skin sensitizer [stimulation index (SI)=3.17]. The SI of Jet A and JP-8+100 were 2.44 and 2.38, respectively, hence are not considered as skin sensitizers. Interestingly, the SI of JP-8 with butylated hydroxytoluene (BHT) was consistently lower than JP-8, though the difference was not statistically significant (P>0.05). BHT, which is an antioxidant additive of JP-8+100, reduced the skin sensitization potential of JP-8. Furthermore, the lower SI of JP-8+100 could be partially attributed to the presence of BHT. The findings reported here suggest that care should be taken to minimize dermal exposure to jet fuels especially JP-8 to avoid skin sensitization.  相似文献   

16.
The murine local lymph node assay is a predictive test for the identification of contact allergens. This paper provides a historical background to the development of the assay and describes the performance of a recently completed interlaboratory trial designed to evaluate further the utility of the method as an alternative or adjunct to guinea-pig predictive tests. On the basis of these and supplementary investigations, a number of recommendations can be made regarding the use and interpretation of the local lymph node assay. Finally, a number of issues arising from recent studies are discussed, including comparisons of the local lymph node assay with guinea-pig methods.  相似文献   

17.
The local lymph node assay (LLNA) is used to assess the skin sensitization potential of chemicals. In the standard assay, mice are treated topically on the dorsum of both ears with test substance for 3 days. Following 2 days of rest, the initiation of the hypersensitivity response is evaluated by injecting (3)H-thymidine into a tail vein, and then measuring the levels of radioisotope incorporated into the DNA of lymph node cells draining the ears. In the current study, BALB/c mice were treated with the contact sensitizers hexylcinnamic aldehyde (HCA) and oxazolone, and the nonsensitizer methyl salicylate. The proliferative response of lymph node cells was evaluated in an ex vivo assay, in which isolated cells were cultured in vitro with (3)H-thymidine. Treatment of mice with HCA at 5-50% resulted in concentration-related increases in (3)H-thymidine incorporation, with stimulation indices ranging from 3 to 14. Low animal-to-animal variability was seen in three replicate assays testing HCA at 25%. As anticipated, the proliferative response induced by the potent sensitizer oxazolone at 0.25% was greater than HCA at all concentrations tested. Stimulation indices of 1.5 and 3 were seen in two independent experiments with methyl salicylate. These equivocal findings were likely due to the irritancy properties of the compound. Importantly, measuring ex vivo (3)H-thymidine incorporation was more sensitive than evaluating lymph node weight and cellularity, and in vitro bromodeoxyuridine incorporation. Furthermore, the results of the ex vivo LLNA were comparable to the standard assay. This study provided evidence that supports the use of an ex vivo LLNA for hazard assessment of contact hypersensitivity.  相似文献   

18.
The murine local lymph node assay (LLNA) is a validated method for identifying skin sensitization hazard. Vehicle choice can influence the sensitization potential of haptens in both the LLNA and in humans, therefore selection of an appropriate vehicle is important. Suggested vehicles for the LLNA include organic solvents and organic-aqueous mixtures. However, due to its high surface tension and poor wetting qualities, water is not recommended and therefore testing aqueous soluble materials can be problematic. The aims of this investigation were to identify a water-based vehicle that possesses better skin wetting properties than water alone, and to assess its performance relative to other solvents in the LLNA using aqueous soluble haptens. The selected wetting agent was the surfactant Pluronic(R) L92 (L92). Concentrations of L92 of up to 50% did not induce positive responses in the LLNA. 1% aqueous L92 was chosen for further examination. Dose-response analyses were performed with dinitrobenzene sulfonic acid (DNBS) and formaldehyde formulated either in water, 1% L92, dimethyl sulfoxide (DMSO) or dimethyl formamide (DMF). Potassium dichromate (PDC) and nickel sulfate were tested in 1% L92, DMSO or DMF. The highest concentration of potassium dichromate was retested in each vehicle and in water to assess the effect of the wetting agent. Estimates of the relative sensitizing potency in each vehicle were determined by calculation of EC3 values (the estimated concentration required to induce a threshold positive response). While DNBS and formaldehyde produced positive responses in all four vehicles, their relative potency varied among the vehicles. The rank ordering of potencies for both materials was, from highest to lowest, DMF > or = DMSO > 1% L92 > water. Compared with water, use of 1% L92 resulted in >2-fold increase in potency for DNBS and >3-fold increase for formaldehyde. PDC was positive in DMF, DMSO and 1% L92. The potency ranking was DMF > or = DMSO > 1% L92. Re-evaluation of 0.5% PDC confirmed that formulations of both DMSO and DMF induced strong proliferative responses, whereas somewhat less proliferation was recorded with the 1% L92 vehicle. PDC in water was without activity. The performance of 1% L92 as a vehicle for nickel sulfate was assessed relative to DMSO and DMF. In DMSO, nickel sulfate produced a stimulation index (SI) >3 at only the highest level. Testing in DMF induced low levels of proliferation, but failed to produce a SI of 3 at any concentration tested. When formulated in 1% L92, nickel sulfate caused a SI of 3 when tested at 2.5%. Based on the results of these experiments, for identification of sensitization hazard of aqueous soluble materials using the LLNA, DMF and DMSO are the preferred vehicles. However, if a test material is not soluble in DMF or DMSO, or if higher test concentrations can be achieved in an aqueous vehicle, then 1% L92 may provide a better alternative to water alone in terms of improved assay performance.  相似文献   

19.
Accurate risk assessment in allergic contact dermatitis is dependent on the successful prospective identification of chemicals which possess the ability to behave as skin sensitisers, followed by appropriate measurement of the relative ability to cause sensitisation; their potency. Tools for hazard identification have been available for many years; more recently, a novel approach to the quantitative assessment of potency--the derivation of EC3 values in the local lymph node assay (LLNA)--has been described. It must be recognised, however, that these evaluations of chemical sensitisers also may be affected by the vehicle matrix in which skin exposure occurs. In this article, our knowledge of this area is reviewed and potential mechanisms through which vehicle effects may occur are detailed. Using the LLNA as an example, it is demonstrated that the vehicle may have little impact on the accuracy of basic hazard identification; the data also therefore support the view that testing ingredients in specific product formulations is not warranted for hazard identification purposes. However, the effect on potency estimations is of greater significance. Although not all chemical allergens are affected similarly, for certain substances a greater than 10-fold vehicle-dependent change in potency is observed. Such data are vital for accurate risk assessment. Unfortunately, it does not at present appear possible to predict notionally the effect of the vehicle matrix on skin sensitising potency without recourse to direct testing, for example by estimation of LLNA EC3 data, which provides a valuable tool for this purpose.  相似文献   

20.
Photoallergic dermatitis, caused by pharmaceuticals and other consumer products, is a very important issue in human health. However, S10 guidelines of the International Conference on Harmonization do not recommend the existing prediction methods for photoallergy because of their low predictability in human cases. We applied local lymph node assay (LLNA), a reliable, quantitative skin sensitization prediction test, to develop a new photoallergy prediction method. This method involves a three‐step approach: (1) ultraviolet (UV) absorption analysis; (2) determination of no observed adverse effect level for skin phototoxicity based on LLNA; and (3) photoallergy evaluation based on LLNA. Photoallergic potential of chemicals was evaluated by comparing lymph node cell proliferation among groups treated with chemicals with minimal effect levels of skin sensitization and skin phototoxicity under UV irradiation (UV+) or non‐UV irradiation (UV?). A case showing significant difference (P < .05) in lymph node cell proliferation rates between UV? and UV+ groups was considered positive for photoallergic reaction. After testing 13 chemicals, seven human photoallergens tested positive and the other six, with no evidence of causing photoallergic dermatitis or UV absorption, tested negative. Among these chemicals, both doxycycline hydrochloride and minocycline hydrochloride were tetracycline antibiotics with different photoallergic properties, and the new method clearly distinguished between the photoallergic properties of these chemicals. These findings suggested high predictability of our method; therefore, it is promising and effective in predicting human photoallergens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号