首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.

Background

Diarrheagenic Escherichia coli (DEC) is one of the most important etiological agents of diarrheal diseases. In this study we investigated the prevalence, virulence gene profiles, antimicrobial resistance, and molecular genetic characteristics of DEC at a hospital in western China.

Methods

A total of 110 Escherichia coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, antimicrobial susceptibility test, pulsed-field gel electrophoresis and multilocus sequence typing were used in this study.

Results

Molecular analysis of six DEC pathotype marker genes showed that 13 of the 110 E. coli isolates (11.82%) were DEC including nine (8.18%) diffusely adherent Escherichia coli (DAEC) and four (3.64%) enteroaggregative Escherichia coli (EAEC). The adherence genes fimC and fimH were present in all DAEC and EAEC isolates. All nine DAEC isolates harbored the virulence genes fyuA and irp2 and four (44.44%) also carried the hlyA and sat genes. The virulence genes fyuA, irp2, cnf1, hlyA, and sat were found in 100%, 100%, 75%, 50%, and 50% of EAEC isolates, respectively. In addition, all DEC isolates were multidrug resistant and had high frequencies of antimicrobial resistance. Molecular genetic characterization showed that the 13 DEC isolates were divided into 11 pulsed-field gel electrophoresis patterns and 10 sequence types.

Conclusions

To the best of our knowledge, this study provides the first report of DEC, including DAEC and EAEC, in western China. Our analyses identified the virulence genes present in E. coli from a hospital indicating their role in the isolated DEC strains’ pathogenesis. At the same time, the analyses revealed, the antimicrobial resistance pattern of the DEC isolates. Thus, DAEC and EAEC among the DEC strains should be considered a significant risk to humans in western China due to their evolved pathogenicity and antimicrobial resistance pattern.
  相似文献   

2.

Background

Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an intra-species signaling molecule. In contrast to E. coli, Salmonella does not produce indole because it does not harbor tnaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated that E. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in Salmonella remains unknown.

Results

To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of invasive activity and motility of Salmonella by indole was also observed phenotypically.

Conclusion

Our results suggest that indole is an important signaling molecule for inter-species communication to control drug resistance and virulence of S. enterica.  相似文献   

3.

Background

Apart from localized gastrointestinal infections, Escherichia coli and Salmonella species are major causes of systemic disease in both humans and animals. Salmonella spp. cause invasive infections such as enteric fever, septicemia, osteomyelitis and meningitis while certain types of E. coli can cause systemic infections, including pyelonephritis, meningitis and septicemia. These characteristic requires the involvement of a myriad of virulence factors.

Methods

This study investigated the virulence factors of Escherichia coli and Salmonella species in clinical specimens from patients with diarrhoea presenting to health care centres in Oliver R. Tambo District Municipality, Eastern Cape Province, Republic of South Africa. Microbiology analysis involved the use of cultural and molecular techniques.

Results

Out of a total of 315 samples screened, Salmonella isolates were obtained in 119 (37.8%) of cases and these comprised: S. choleraesuis (6%), S. enteritidis (4%), S. eppendorf (1%), S. hadar (1%), S. isangi (8%), S. panama (1%), S. typhi (52%), S. typhimurium (25%) and untyped Salmonella spp. (2%). Among the Salmonella species 87 (73.1%) were invasive. Using molecular diagnostic methods, diarrheagenic E. coli were detected in 90 cases (28.6%): the greater proportion of this were enteroaggregative E. coli (EAEC) 37 (41.1%), enteropathogenic E. coli (EPEC) 21 (23.3%) and enterohemorrhagic E. coli (EHEC) 21 (23.3%). The predominant virulence gene among the diarrheagenic E. coli was EAEC heat-stable enterotoxin astA genes while the virulence genes identified in the Salmonella strains were 15 (12.6%) flic and 105 (88.2%) inv genes. The amino acid identity of the representative genes showed 95-100% similarity to corresponding blast searched sequence.

Conclusions

This study showed the diversity of virulence gene expression in two major enteric pathogens. S. typhi and enteroaggregative E. coli were the predominant enteropathogens in our study area with an indication that EAEC is endemic within our study population. It was observed among other things that some diarrheagenic E. coli isolated from apparently asymptomatic subjects expressed some virulence genes at frequency as high as seen in diarrheagenic cases. This study underlines the importance of understanding the virulence composition and diversity of pathogens for enhanced clinico-epidemiological monitoring and health care delivery.  相似文献   

4.

Background

A nation-wide surveillance study was conducted in Greece in order to provide a representative depiction of pneumococcal carriage in the pre-vaccination era and to evaluate potential risk factors for carriage of resistant strains in healthy preschool children attending daycare centers.

Methods

A study group was organized with the responsibility to collect nasopharyngeal samples from children. Questionnaires provided demographic data, data on antibiotic consumption, family and household data, and medical history data. Pneumococcal isolates were tested for their susceptibility to various antimicrobial agents and resistant strains were serotyped.

Results

Between February and May 2004, from a total population of 2536 healthy children, a yield of 746 pneumococci was isolated (carriage rate 29.41%). Resistance rates differed among geographic regions. Recent antibiotic use in the last month was strongly associated with the isolation of resistant pneumococci to a single or multiple antibiotics. Serotypes 19F, 14, 9V, 23F and 6B formed 70.6% of the total number of resistant strains serotyped.

Conclusion

Recent antibiotic use is a significant risk factor for the colonization of otherwise healthy children's nasopharynx by resistant strains of S pneumoniae. The heptavalent pneumococcal conjugate vaccine could provide coverage for a significant proportion of resistant strains in the Greek community. A combined strategy of vaccination and prudent antibiotic use could provide a means for combating pneumococcal resistance.  相似文献   

5.

Background

Poultry remains one of the most important reservoir for zoonotic multidrug resistant pathogens. The global rise of antimicrobial resistance in Gram-negative bacteria is of reasonable concern and demands intensified surveillance.

Methods

In 2016, 576 cloacal swabs were collected from 48 broiler farms located in five governorates in northern Egypt. Isolates of Enterobacteriaceae could be cultivated on different media and were identified by MALDI-TOF MS and PCR. Escherichia coli isolates were genotyped by DNA-microarray-based assays. The antimicrobial susceptibility to 14 antibiotics was determined and resistance-associated genes were detected. The VITEK-2 system was applied for phenotypical confirmation of extended-spectrum β-lactamase-producing isolates. The determination of colistin resistance was carried out phenotypically using E-test and genotypically using PCR for detection of the mcr-1 gene.

Results

Out of 576 samples, 72 representatives of Enterobacteriaceae were isolated and identified as 63 E. coli (87.5%), 5 Enterobacter cloacae (6.9%), 2 Klebsiella pneumoniae (2.8%) and 2 Citrobacter spp. (2.8%). Seven out of 56 cultivated E. coli (12.5%) were confirmed as ESBL-producing E. coli and one isolate (1.8%) as ESBL/carbapenemase-producing E. coli. Five out of 63 E. coli isolates (7.9%) recovered from different poultry flocks were phenotypically resistant to colistin and harboured mcr-1 gene.

Conclusions

This is the first study reporting colistin resistance and emergence of multidrug resistance in Enterobacteriaceae isolated from healthy broilers in the Nile Delta region, Egypt. Colistin-resistant E. coli in poultry is of public health significance. The global rise of ESBL- and carbapenemase-producing Gram-negative bacteria demands intensified surveillance. ESBL-producing E. coli in poultry farms in Egypt are of major concern that emphasizes the possibility of spread of such strains to humans. The results also reinforce the need to develop strategies and to implement specific control procedures to reduce the use of antibiotics.
  相似文献   

6.

Background

Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria.

Results

C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni -infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter -infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics.

Conclusion

These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.  相似文献   

7.

Background

Egg-associated transmission to humans seems to be characteristic of the Salmonella serotype Enteritidis, explaining why this particular serotype has caused a worldwide pandemic since the mid '80s. Salmonella Enteritidis is much more capable to persistently colonize the laying hen reproductive tract and to survive in the hostile egg white, as compared to other serotypes.

Presentation of the hypothesis

It is hypothesized that stress-induced survival mechanisms enable the serotype Enteritidis to persistently colonize the oviduct without causing damage and excessive inflammation, and to cope with the antimicrobial compounds present in egg white.

Testing the hypothesis

To test the hypothesis first of all Salmonella Enteritidis genes that are essential for colonization of the oviduct and survival in eggs need to be identified. Comparative genomics tools should be used to identify genes or pathogenicity islands that are present in Salmonella Enteritidis and not in the multiple non egg-contaminating serotypes. High-throughput signature-tagged-mutagenesis approaches, coupled to micro-array detection of the genes that lead to an attenuated phenotype when mutated is proposed as an ideal tool to identify genes involved in oviduct colonization and egg white survival. Identifying the stressors and antibacterial molecules in the oviduct and in the egg white that limit colonization or survival of non-Enteritidis serotypes is a second important objective that can theoretically be achieved using screenings of expressed oviduct cDNA libraries for their antibacterial activity against strains from multiple serotypes. Finally, the effect of contact with these stressors in the oviduct or egg white on Salmonella gene expression will need to be analyzed, in order to clarify whether serotype Enteritidis-specific regulation of certain stress-survival pathways are either or not present.

Implications of the hypothesis

Knowledge on the pathogenesis of egg infections would furthermore give insights that might be extrapolated to other biological interactions, in which a highly specialized bacterial pathogen resists the host response in a specific biological niche. In addition, this info can be of value in developing early warning criteria to identify emerging egg-associated Salmonella strains and in developing safe live attenuated vaccine strains.  相似文献   

8.

INTRODUCTION:

Human exposure to antimicrobial-resistant bacteria may result in the transfer of resistance to commensal or pathogenic microbes present in the gastrointestinal tract, which may lead to severe health consequences and difficulties in treatment of future bacterial infections. It was hypothesized that the recreational waters from beaches represent a source of antimicrobial-resistant Escherichia coli for people engaging in water activities.

OBJECTIVE:

To describe the occurrence of antimicrobial-resistant E coli in the recreational waters of beaches in southern Quebec.

METHODS:

Sampling occurred over two summers; in 2004, 674 water samples were taken from 201 beaches, and in 2005, 628 water samples were taken from 177 beaches. The minimum inhibitory concentrations of the antimicrobial-resistant E coli isolates against a panel of 16 antimicrobials were determined using microbroth dilution.

RESULTS:

For 2004 and 2005, respectively, 28% and 38% of beaches sampled had at least one water sample contaminated by E coli resistant to one or more antimicrobials, and more than 10% of the resistant isolates were resistant to at least one antimicrobial of clinical importance for human medicine. The three antimicrobials with the highest frequency of resistance were tetracycline, ampicillin and sulfamethoxazole.

DISCUSSION:

The recreational waters of these beaches represent a potential source of antimicrobial-resistant bacteria for people engaging in water activities. Investigations relating the significance of these findings to public health should be pursued.  相似文献   

9.

Background

Many Escherichia coli strains are considered to be a component of the normal flora found in the human and animal intestinal tracts. While most E. coli strains are commensal, some strains encode virulence factors that enable the bacteria to cause intestinal and extra-intestinal clinically-relevant infections. Colibactin, encoded by a genomic island (pks island), and cytotoxic necrotizing factor (CNF), encoded by the cnf gene, are genotoxic and can modulate cellular differentiation, apoptosis and proliferation. Some commensal and pathogenic pks+ and cnf+ E. coli strains have been associated with inflammation and cancer in humans and animals.

Results

In the present study, E. coli strains encoding colibactin and CNF were identified in macaque samples. We performed bacterial cultures utilizing rectal swabs and extra-intestinal samples from clinically normal macaques. A total of 239 E. coli strains were isolated from 266 macaques. The strains were identified biochemically and selected isolates were serotyped as O88:H4, O25:H4, O7:H7, OM:H14, and OM:H16. Specific PCR for pks and cnf1 gene amplification, and phylogenetic group identification were performed on all E. coli strains. Among the 239 isolates, 41 (17.2%) were pks+/cnf1?, 19 (7.9%) were pks?/cnf1+, and 31 (13.0%) were pks+/cnf1+. One hundred forty-eight (61.9%) E. coli isolates were negative for both genes (pks?/cnf1?). In total, 72 (30.1%) were positive for pks genes, and 50 (20.9%) were positive for cnf1. No cnf2+ isolates were detected. Both pks+ and cnf1+ E. coli strains belonged mainly to phylogenetic group B2, including B21. Colibactin and CNF cytotoxic activities were observed using a HeLa cell cytotoxicity assay in representative isolates. Whole genome sequencing of 10 representative E. coli strains confirmed the presence of virulence factors and antibiotic resistance genes in rhesus macaque E. coli isolates.

Conclusions

Our findings indicate that colibactin- and CNF-encoding E. coli colonize laboratory macaques and can potentially cause clinical and subclinical diseases that impact macaque models.
  相似文献   

10.

Purpose

To identify the risk factors for incident enteric colonization by KPC-producing Klebsiella pneumoniae (KPC-Kp) resistant to colistin or tigecycline during Intensive Care Unit (ICU) stay.

Method

A prospective observational study of patients admitted to the ICU was conducted during a 27-month period. Rectal samples taken upon admission and weekly afterwards were inoculated on selective chromogenic agar. K. pneumoniae isolates were characterized by standard methodology. Mean inhibitory concentration (MIC) to colistin and tigecycline were determined by E-test. The presence of bla KPC gene was confirmed by PCR.

Results

Among 254 patients, 62 (24.4 %) became colonized by colistin- resistant KPC-Kp during their stay. Multivariate analysis revealed that corticosteroid, colistin administration and number of colonized patients in nearby beds per day were significantly associated with colonization. Among 257 patients, 39 (17.9 %) became colonized by tigecycline resistant KPC-Kp during their stay. Risk factors identified by multivariate analysis were: days at risk, obesity, number of colonized patients treated in nearby beds per day and administration of tigecycline.

Conclusions

The high prevalence of colistin or tigecycline resistant KPC-Kp enteric carriage in ICU patients indicate that dissemination is due to their transfer from patient to patient via the personnel and indicates the importance of strict infection control protocols.  相似文献   

11.

Purpose

In Japan, a national surveillance study of antimicrobial consumption has never been undertaken. This study aimed to describe antimicrobial consumption and resistance to Pseudomonas aeruginosa in 203 Japanese hospitals, to identify targets for quality improvement.

Methods

We conducted an ecological study using retrospective data (2010). Antimicrobial consumption was collected in the World Health Organization (WHO) anatomical therapeutic chemical/defined daily dose (ATC/DDD) format. Rates of imipenem (IPM), meropenem (MEPM), ciprofloxacin (CPFX), or amikacin (AMK) resistance were expressed as the incidence of non-susceptible isolates. Additionally, hospitals were asked to provide data concerning hospital characteristics and infection control policies. Hospitals were classified according to functional categories of the Medical Services Act in Japan.

Results

Data were collected from 203 Japanese hospitals (a total of 91,147 beds). The total antimicrobial consumption was 15.49 DDDs/100 bed-days (median), with consumptions for penicillins, carbapenems, quinolones, and glycopeptides being 4.27, 1.60, 0.41, and 0.49, respectively. The median incidences of IPM, MEPM, CPFX, and AMK resistance were 0.15, 0.10, 0.13, and 0.03 isolates per 1,000 patient-days, respectively. Antimicrobial notification and/or approval systems were present in 183 hospitals (90.1 %). In the multivariate analysis, the piperacillin/tazobactam, quinolones, and/or total consumptions and the advanced treatment hospitals showed a significant association with the incidence of P. aeruginosa resistant to IPM, MEPM, CPFX, and AMK [adjusted R 2 (aR 2) values of 0.23, 0.30, 0.22, and 0.35, respectively).

Conclusion

This is the first national surveillance study of antimicrobial consumption in Japan. A continuous surveillance program in Japan is necessary in order to evaluate the association among resistance, antimicrobial restriction, and consumption.  相似文献   

12.

Purpose

Urinary tract infections (UTIs), the most common serious bacterial infections in children, are frequently caused by Escherichia coli. The purpose of this study was to investigate E. coli resistance/multidrug resistance to antibiotics most frequently used for UTIs.

Methods

Children 0–18 years of age, hospitalized at the University Pediatric Hospital in Novi Sad, Serbia, were included in a 1-year observational prospective study. The microbiological analysis was performed using the standard Kirby–Bauer disk diffusion method. The results were analyzed using WHONET 5.4 software.

Results

E. coli was isolated from 61.7 % of positive urine specimens. In general, higher average E. coli antibiotic resistance was found in infants and toddlers compared to children and adolescents (33.4 vs. 25.0 %) (p < 0.0001). Furthermore, it was observed that the average resistance to all the tested antibiotics was higher in boys than in girls (37.0 vs. 25.1 %) (p < 0.0001). E. coli was highly susceptible to piperacillin/tazobactam (>93.1 %), amikacin (86.3 %), quinolones (>75.0 %), and penems (>96.6 %). The prevalence of multiresistant E. coli strains was significantly higher in infants and toddlers (72.3 vs. 36.8 %) (p < 0.0001).

Conclusions

E. coli, a common cause of UTIs in children admitted to pediatric hospitals, is highly resistant/multidrug-resistant to commonly used antibiotics. Higher average resistance is found in infants and toddlers than in children and adolescents, as well as in boys compared to girls. These findings are important for the regional empiric therapy of UTIs and call for actions to decrease E. coli antibiotic resistance.  相似文献   

13.

Background

Bloodstream infection is a common cause of hospitalization, morbidity and death in children. The impact of antimicrobial resistance and HIV infection on outcome is not firmly established.

Methods

We assessed the incidence of bloodstream infection and risk factors for fatal outcome in a prospective cohort study of 1828 consecutive admissions of children aged zero to seven years with signs of systemic infection. Blood was obtained for culture, malaria microscopy, HIV antibody test and, when necessary, HIV PCR. We recorded data on clinical features, underlying diseases, antimicrobial drug use and patients' outcome.

Results

The incidence of laboratory-confirmed bloodstream infection was 13.9% (255/1828) of admissions, despite two thirds of the study population having received antimicrobial therapy prior to blood culture. The most frequent isolates were klebsiella, salmonellae, Escherichia coli, enterococci and Staphylococcus aureus. Furthermore, 21.6% had malaria and 16.8% HIV infection. One third (34.9%) of the children with laboratory-confirmed bloodstream infection died. The mortality rate from Gram-negative bloodstream infection (43.5%) was more than double that of malaria (20.2%) and Gram-positive bloodstream infection (16.7%). Significant risk factors for death by logistic regression modeling were inappropriate treatment due to antimicrobial resistance, HIV infection, other underlying infectious diseases, malnutrition and bloodstream infection caused by Enterobacteriaceae, other Gram-negatives and candida.

Conclusion

Bloodstream infection was less common than malaria, but caused more deaths. The frequent use of antimicrobials prior to blood culture may have hampered the detection of organisms susceptible to commonly used antimicrobials, including pneumococci, and thus the study probably underestimates the incidence of bloodstream infection. The finding that antimicrobial resistance, HIV-infection and malnutrition predict fatal outcome calls for renewed efforts to curb the further emergence of resistance, improve HIV care and nutrition for children.  相似文献   

14.
Dr. C. Lübbert  S. Weis 《Der Internist》2013,54(11):1383-1392

Background

Diarrhea is one of the most commonly occurring diseases.

Aim

This article gives a review of the current state of the treatment of acute infectious diarrhea (part 1) and chronic infectious diarrhea (part 2) as well as of the most important pathogens.

Material and methods

Following a presentation of the general principles of the therapy of diarrhea, the targeted antimicrobial therapy of the most important bacterial gastrointestinal infections is described. This includes salmonellosis, shigellosis and Campylobacter infections, infections with pathogenic Escherichia coli strains, yersiniosis and cholera. Due to the increasing incidence and changes in the severity of the disease and important new aspects in the treatment of diarrhea caused by toxigenic Clostridium difficile strains, these disease entities will be described in detail.

Results

Symptomatic therapy is still the most important aspect of the treatment of infectious diarrhea. For severely ill patients with a high frequency of stools (>?8/day), immunodeficiency, advanced age or significant comorbidities, empirical antibiotic therapy should be considered. Increasing resistance, in particular against fluoroquinolones must also be taken into consideration. Due to the risk of excessive pathogen proliferation and concomitant intestinal toxin production with protracted or multiple complications during the disease, therapy with motility inhibitors is not recommended. With respect to the treatment of Clostridium difficile infections a promising novel aspect arose in 2012. The macrocyclic antibiotic fidaxomycin can reduce the rate of recurrent disease with the same effectiveness as vancomycin. Furthermore, evidence for the benefits of allogenic stool transplantation is increasing.

Conclusion

The treatment of acute diarrhea is still primarily supportive. The benefits of general empirical antibiotic therapy for acute diarrhea are not evidence-based.  相似文献   

15.

Background

Gemcitabine is a promising drug for cholangiocarcinoma treatment. However, the kinetics and metabolism of this drug in cholangiocarcinoma treatment are not well defined. We aimed to investigate the potential clinical role of gemcitabine metabolism-related genes in the gemcitabine sensitivity of cholangiocarcinoma and identify and characterize novel gemcitabine resistance-related genes.

Methods

Expressions of genes related to gemcitabine sensitivity and gemcitabine metabolism were measured in 10 cholangiocarcinoma cell lines, and the association between gene expression and gemcitabine sensitivity was evaluated. Furthermore, gemcitabine-resistant cell lines were established from YSCCC cells and subjected to genome-wide microarray analysis. The 2-fold upregulated and downregulated genes were then subjected to pathway analysis.

Results

p53R2 mRNA expression was significantly higher in gemcitabine-resistant cell lines (IC50?>?1000?nM), and all subunits of ribonucleotide reductase were upregulated in the established gemcitabine-resistant cell lines. Microarray analysis revealed that the upregulated genes in the resistant cells belonged to the glutathione and pyrimidine metabolism pathways, and that the downregulated genes belonged to the N-glycan biosynthesis pathway.

Conclusions

Increased expression of p53R2 may predict gemcitabine resistance, and upregulated RNR activity may influence gemcitabine resistance in cholangiocarcinoma cells. Glutathione pathway-related genes were induced by continuous exposure to gemcitabine and may contribute to gemcitabine resistance.  相似文献   

16.

Background

Food products of animal origin brought into the EU from third countries, both legally and illegally, can harbor foodborne pathogens such as Salmonella enterica. In this study, we examined five S. enterica isolates recovered either from legally imported chicken meat (n?=?3) or from meat products confiscated from air travel passengers arriving in Germany (n?=?2). The isolates were serotyped and further characterized by antimicrobial susceptibility testing, PCR-detection and sequencing of genes associated with antimicrobial resistances, and macrorestriction analysis. Transferability of resistance to third-generation cephalosporins was assessed by conjugation experiments and the plasmids tested for their incompatibility groups.

Results

The three isolates from legal imports were identified as S. Heidelberg or as non-flagellated. All three isolates were identified as AmpC producers carrying blaCMY-2 and as non-susceptible to ciprofloxacin. They were additionally resistant to tetracycline and sulfamethoxazole. The blaCMY-2-carrying plasmids were transferable by conjugation and belonged to incompatibility groups IncI1 or IncA/C. The two isolates from illegally imported meat belonged to the serovars Infantis or Weltevreden. The former was phenotypically resistant to five classes of antimicrobial agents while the S. Weltevreden isolate was fully susceptible to all agents tested.

Conclusion

The results of this study demonstrate that meat products imported from third countries, both legally and illegally, can harbor multiresistant Salmonella enterica. Consequently, these imports could constitute a source for the dissemination of antimicrobial resistant isolates, including those resistant to third-generation cephalosporins and fluoroquinolones.
  相似文献   

17.

Introduction

We studied the trend and seasonality of community-acquired Escherichia coli resistance and quantified its correlation with the previous use of certain antibiotics.

Methods

A time series study of resistant community-acquired E. coli isolates and their association with antibiotic use was conducted in a Primary Health Care Area from 2008 to 2012. A Poisson regression model was constructed to estimate the trend and seasonality of E. coli resistance.

Results

A significant increasing trend in mean E. coli resistance to cephalosporins, aminoglycosides and nitrofurantoin was observed. Seasonal resistance to ciprofloxacin and amoxicillin-clavulanic acid was significantly higher in autumn-winter. There was a delay of 7, 10 and 12 months between the use of cotrimoxazole (P<0.038), fosfomycin (P<0.024) and amoxicillin-clavulanic acid (P<0.015), respectively, and the occurrence of E. coli resistance.

Conclusions

An average delay of 10 months between the previous use of amoxicillin-clavulanic acid, cotrimoxazole and fosfomycin and the appearance of resistant community-acquired E. coli strains was detected.  相似文献   

18.
19.

Background

The diagnosis and antimicrobial treatment of pneumonia in African children in the absence of diagnostic means such as x-ray facilities or microbiological laboratories relies primarily on clinical symptoms presented by the patients. In order to assess the spectrum of bacterial pathogens, blood cultures were performed in children fulfilling the clinical criteria of pneumonia.

Methods

In total, 1032 blood cultures were taken from children between 2 months and 5 years of age who were admitted to a rural hospital in Ghana between September 2007 and July 2009. Pneumonia was diagnosed clinically and according to WHO criteria classified as "non-severe pneumonia" and "severe pneumonia" ("severe pneumonia" includes the WHO categories "severe pneumonia" and "very severe pneumonia").

Results

The proportion of bacteriaemia with non-typhoid salmonella (NTS) was similar in children with pneumonia (16/173, 9.2%) compared to children hospitalized for other reasons (112/859, 13%). NTS were the predominant organisms isolated from children with clinical pneumonia and significantly more frequent than Streptococcus pneumoniae (8/173, 4.6%). Nine percent (9/101) of children presenting with severe pneumonia and 10% (7/72) of children with non-severe pneumonia were infected with NTS. Nineteen out of 123 NTS isolates (15%) were susceptible to aminopenicillins (amoxycillin/ampicillin), 23/127 (18%) to chlorampenicol, and 23/98 (23%) to co-trimoxazole. All NTS isolates were sensitive to ceftriaxone and ciprofloxacin.

Conclusion

In Sub-saharan Africa, sepsis with NTS should be considered in children with symptoms of pneumonia and aminopenicillins might often not be the adequate drugs for treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号