首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C J Ong  J P Dutz  D Chui  H S Teh    J D Marth 《Immunology》1997,91(1):95-103
T-cell development is arrested at the CD4+CD8+ (DP; double-positive) stage of thymocyte development in CD45 null mice. However, the mechanism by which CD45 participates in the positive selection of T cells remains to be investigated. In this report we describe a DP thymocyte population that associates positive selection with expression of high levels of CD45, CD4 and CD8. DP thymocytes of this phenotype are large, cycling cells and represent approximately 20% of DP thymocytes in normal mice. In mice expressing a transgenic T-cell receptor (TCR) specific for the male antigen presented by H-2Db (H-Y TCR), the up-regulation of TCR, CD5 and CD69 in this large DP population occurred in a major histocompatibility complex (MHC)-restricted manner. To investigate further the role of CD45 in positive selection, we determined whether thymocytes that expressed a transgenic CD45RO molecule under the control of the proximal lck promoter can influence the positive selection of T cells in H-Y TCR transgenic mice. It was found that in female H-Y TCR transgenic mice, MHC-restricted positive selection of CD4- CD8+ H-Y TCR+ thymocytes was enhanced by increased CD45RO expression. Thus, CD45 increases the efficacy of positive selection of CD4- CD8+ thymocytes that express H-Y TCR.  相似文献   

2.
The differentiation process from CD4-CD8- double-negative (DN) thymocytes to CD4+CD8+ double-positive (DP) stage is accompanied by vigorous proliferation. The resulting DP cells contain a sizable proportion of large cycling cells, but most DP cells are small resting cells. To explore the molecular mechanisms which regulate cell proliferation of DP thymocytes prior to further development, we used TCR-transgenic (Tg) mice with non-selecting MHC (Tg-Neut), which contain almost exclusively DP thymocytes that are not subject to either positive or negative selection. In Tg-Neut, the thymus contained DP cells of relatively large size, which showed higher extracellular signal-regulated kinase activity and enhanced responsiveness to mitogen compared to small DP cells. This indicates that all the large DP cells in the thymus are not positively selected and that they possess proliferative potential. When Tg-Neut mice were backcrossed with CD45 knockout mice (CD454-/- Tg-Neut), the thymus showed an increase of large DP cells and cycling cells, but a decrease of apoptotic cells. Furthermore, Bcl-2 expression and Jun N-terminal kinase activity, which are associated with resistance to apoptosis, were enhanced. These observations suggest that thymocyte proliferation in the DP stage is suppressed by a CD45-related process with regulation of mitogen-activated protein kinase and Bcl-2 unless DP cells receive TCR-mediated signals.  相似文献   

3.
Two populations of CD4 single positive (SP) thymocytes were found in transgenic mice bearing class I-restricted Mls-1a reactive (V beta 8.1) TCR genes in the absence of the restriction element. CD3high CD4 SP cells were deleted in the presence of Mls-1a and were cortisone resistant, whereas CD3low CD4 SP cells were not deleted in the presence of Mls-1a and were cortisone sensitive. Intravenous transfer of CD3low CD4 SP cells into nude mice resulted in significant peripheral expansion of these cells with apparent upregulation of CD3. These data indicate that CD3low CD4 SP thymocytes represent an intermediate stage in the transition from CD3low double positive (DP) to CD3high SP thymocytes and raise the possibility that these cells may hve undergone positive but not negative selection events (at least to Mls-1a). Furthermore the fact that CD3high DP thymocytes were also deleted by Mls-1a in these mice suggests strongly that sensitivity to Mls-1a deletion is dependent upon stage of thymic maturation (as revealed by TCR density) rather than CD4/CD8 phenotype.  相似文献   

4.
Sosinowski T  Killeen N  Weiss A 《Immunity》2001,15(3):457-466
In this report, we show that the Src-like adaptor protein (SLAP) plays an important role in thymocyte development. SLAP expression is developmentally regulated; it is low in CD4-CD8- thymocytes, it peaks in the CD4+CD8+ subset, and it decreases to low levels in more mature cells. Disruption of the SLAP gene leads to a marked upregulation of TCR and CD5 expression at the CD4+CD8+ stage. The absence of SLAP was also developmentally significant because it enhanced positive selection in mice expressing the DO11.10 transgenic T cell receptor. Moreover, SLAP deletion at least partially rescued the development of ZAP-70-deficient thymocytes. These results demonstrate that SLAP participates in a novel mechanism of TCR downregulation at the CD4+CD8+ stage and regulates positive selection.  相似文献   

5.
Interaction of TCRs on CD4+CD8+ immature T cell with MHC-peptide complexes on stromal cells is required for positive and negative selection in the thymus. Identification and characterization of a subpopulation of CD4+CD8+ thymocytes undergoing selection in the thymus will aid in understanding the mechanisms underlying lineage commitment and thymic selection. Herein, we describe the expression of Ly-6 ThB on developing thymocytes. The majority of CD4+CD8+ thymocytes express Ly-6 ThB at high levels. Its expression is downregulated in a subset of CD4+CD8+ thymocytes as well as in mature CD4+CD8- and CD4-CD8+ T cells. More importantly, interaction of TCR/coreceptor with the self-MHC-peptide contributes to the downregulation of ThB expression on developing thymocytes. These findings indicate that downregulation of ThB on CD4+CD8+ thymocytes identifies a unique subset (CD4+CD8+ThBneg-low) of thymocytes that has received the initial signals for thymic selection but have not yet downregulated the CD4 and CD8 cell surface expression. In addition, these results also indicate that a high frequency (approximately 20-40%) of CD4+CD8+ immature thymocytes receive these initial signals during thymic selection.  相似文献   

6.
7.
Thymocyte positive selection is based on protection of immatureCD4/CD8 double-positive (DP) thymocytes from apoptosis and theirdifferentiation into CD4 or CD8 single-positive (SP) cells.Intracellular signals essential for positive selection appearto be induced through the TCR and some of the accessory moleculesincluding LFA-1, CD4 and CD8 upon Interaction with thymic stromalcells. The signals, however, still remain to be identified.Since physiological levels of glucocorticoids potentially induceor enhance thymocyte apoptosis even in vivo, the signals arelikely to inhibit the apoptotic effect of glucocorticoids. Wehave previously shown that proper cross-linking of TCR-CD3 withLFA-1, CD4 or CD8 inhibited glucocortlcold-lnduced thymocyteapoptosis in vitro, and that a proper combination of the calciumionophore, ionomycin and the protein kinase C (PKC) activator,phorbol 12-myrlstate 13-acetate (PMA), mimicked the inhibitoryeffect. Here we determined whether this combination of ionomycinand PMA induces differentiation of isolated DP thymocytes fromnormal and TCR transgenic mice. We found that pretreatment ofDP thymocytes with ionomycin and PMA followed by 1 day cultureof the cells without the reagents resulted in the differentiationof the cells into CD4 SP and CD4+ CD8lo T cells that have mostlycommitted to the CD4 lineage. The changes in expression of otherdifferentiation markers were also in good accordance with thoseassociated with positive selection, except the final maturation.The results indicate that moderate and transient increases inintracellular Ca2+ level and PKC activity induce differentiationand commitment of DP thymocytes to the CD4 lineage, and suggestedthat the biochemical pathway leading to positive selection isbased on a similar mechanism.  相似文献   

8.
9.
During T-cell development the transition in the thymus of CD4-CD8- double negative (DN) progenitor T cells into CD4+CD8+ double positive (DP) cells is dependent on the expression of a T-cell receptor (TCR)-beta-chain protein. In this study purified peripheral CD4+ and CD8+ T lymphocytes from the C.B-17 strain of mice were adoptively transferred into syngeneic, neonatal SCID mice, where donor cells resided at constant numbers in thymus from 2 weeks until 10 weeks post cell transfer. In the recipient thymus the CD8+ donor cells outnumbered the CD4+ cells by a factor of three to five and both subsets contained a large fraction of activated cells. During the late phase of treatment, CD8+ T cells induced high numbers of DP thymocytes in the SCID mice, a process accompanied by the maturation of medullary epithelial cells. Such thymic development in the SCID mouse was inhibited by coresiding CD4+ donor T cells. These results indicate a regulatory role by mature peripheral T cells on medullary epithelial growth and thymocyte development in the treated SCID mice.  相似文献   

10.
The diacylglycerol kinases (DGK) form a family of isoenzymes that catalyse the conversion of diacylglycerol (DAG) to phosphatidic acid (PA), both powerful second messengers in the cell. DGKalpha is expressed in brain, peripheral T cells and thymocytes and has been shown to translocate to the nuclear matrix upon T-cell receptor (TCR) engagement. Here, we show that high level expression of DGKalpha is induced following a signal transmitted through the pre-TCR and the protein tyrosine kinase, lck. Activity of DGKalpha contributes to survival in CD4+ 8+ (DP) thymocytes as pharmacological inhibition of DGK activity results in death of this cell population both in cell suspension and thymic explants. DGKalpha promotes survival in these thymocytes through a Bcl-regulated pathway. A consequence of inhibition of DGKalpha is the specific down-regulation of Bcl-xl, whereas in transgenic mice that over-express Bcl-2, death induced by the inhibitor is partially blocked. Thus we report a novel activity of DGKalpha in survival of thymocytes immediately after entry into the DP stage in development.  相似文献   

11.
CD6, a 130-kDa surface glycoprotein, is expressed primarily on cells of T lineage. A co-stimulatory role for CD6 in mature T cells has been shown, but the function of CD6 during thymocyte development is unknown. Since CD6 ligands are expressed on thymic epithelium, their interactions with CD6 could be important in thymic selection. In this report we show that CD6 is developmentally regulated in human and mouse thymocytes, and further demonstrate that increase in the level of CD6 expression correlates with expression of the selection marker CD69. We also show that activation via CD2 induces CD6 expression on mature human thymocytes and on a subset of immature human thymocytes that are resistant to apoptosis. In human and mouse thymocytes that express heterogeneous TCR, CD6 increases occur as double-positive thymocytes are selected to a single-positive stage. In contrast, in thymocytes from TCR transgenic mice, CD6 is barely increased following selection, suggesting that as functional avidity increases, requirements for CD6-dependent co-stimulation decrease. Taken together, these results indicate that during thymic development CD6-dependent signals may contribute both to thymocyte survival, and to the overall functional avidity of selection in both man and mouse.  相似文献   

12.
Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells   总被引:6,自引:0,他引:6  
Foxp3(+)CD4(+)CD25(+) regulatory T cells can differentiate from Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) naive T cells. However, the impact of these two processes on size and composition of the peripheral repertoire of regulatory T cells is unclear. Here we followed the fate of individual Foxp3(+)CD4(+)CD25(+) thymocytes and T cells in vivo in T cell receptor (TCR) transgenic mice that express a restricted but polyclonal repertoire of TCRs. By utilizing high-throughput single-cell analysis, we showed that Foxp3(+)CD4(+) peripheral T cells were derived from thymic precursors that expressed a different TCRs than Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) T cells. Furthermore, the diversity of TCRs on Foxp3(+)CD4(+) regulatory T cells exceeded the diversity of TCRs on Foxp3(-)CD4(+) naive T cells, even in mice that lack expression of tissue-specific antigens. Our results imply that higher TCR diversity on Foxp3(+) regulatory T cells helps these cells to match the specificities of autoreactive and naive T cells.  相似文献   

13.
Amongst CD4-CD8- (double negative) thymocytes there is a sizeable population (variable from strain to strain) of cells expressing surface T cell receptor (TCR). These TCR+ double negatives are predominantly non-cycling, have very little precursor activity, and, unlike the TCR-CD4-CD8- thymocytes, appear not to be part of the mainstream of thymocyte development. A unique feature of this population is the biased V beta-gene region usage. In CBA mice, 60-70% of TCR+ CD4-CD8- cells express receptors that utilize V beta 8 gene products, compared with peripheral T cells from the same strain which are only 20-30% V beta 8+. This suggests that the high V beta 8 usage may be the result of some selective process. A growing body of experimental data suggests that TCR specificity selection occurs at the CD4+CD8+ stage of thymocyte development. In order to gain some insight into the previous history of the TCR+ double negatives, in particular whether or not they have previously expressed CD8 and therefore been eligible for selection, we have determined the methylation state of the CD8 gene and compared it to other thymocyte populations. We show that the TCR+ CD4-CD8- thymocytes are demethylated at some sites in the CD8 gene, consistent with previous CD8 expression. However, the demethylation pattern is distinct from that seen on typical peripheral T cells or on mature thymocytes, suggesting that the TCR+ CD4-CD8- thymocytes are not derived from mature thymocytes or peripheral T cells which have returned to the thymus and downregulated CD8 expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Intrathymic selection of murine TCR alpha beta+CD4-CD8- thymocytes   总被引:5,自引:0,他引:5  
The CD4-CD8- thymocyte population contains the precursors of all other thymocytes. However, it also contains a significant proportion of cells which express surface TCR alpha beta, and have little or no precursor activity. Like peripheral T cells, but unlike most other thymocytes, these TCR alpha beta+CD4-CD8- thymocytes do not express heat stable antigen. Both the origin and developmental status of these cells are unclear, and are the subject of this report. We have measured the proportion of V beta 8.1+ cells amongst TCR+HSA-CD4-CD8- thymocytes in MIs-1a versus MIs-1b mice, in order to determine whether they have undergone negative selection. The proportions were similar in both strains, in contrast to mature T cells, indicating that neither they nor their precursors had undergone clonal deletion. We also measured the accumulation of these cells over the early life of the animal and found that it was extremely slow. Our data also show that although TCR-V beta 8.1+ cells are reactive to MIs-1a in association with MHC class II, most mature TCR-V beta 8.1+ cells in MIs-1b mice are CD8+, suggesting an additional reactivity with MHC class I. We raise the possibility that TCR-V beta 8.1+CD4-CD8- thymocytes are derived from TCR-V beta 8.1+CD4+CD8+ thymocytes, and that the reactivity of TCR-V beta 8.1 with both MHC classes I and II has resulted in the down-regulation of both CD4 and CD8.  相似文献   

15.
Falk I  Eichmann K 《Immunology letters》2002,82(1-2):123-130
Recent studies have shown that apoptotic cell death associated with selection for thymocytes that express clonotypic TCRbeta or TCRgammadelta proteins takes place in the DN4 (CD44-CD25-) subset of CD4-CD8- double negative (DN) thymocytes. A detailed analysis of the DN4 subset is therefore of interest. Using intracellular (IC) staining for clonotypic TCR and CD3varepsilon proteins we find that DN4 cells consist of five subpopulations: TCRbetaIC(high)/CD3varepsilonIC(high)/TCRgammadeltaIC-, TCRbetaI-C-/CD3varepsilonIC(high)/TCRgammadeltaIC(+), TCRbetaIC(high)/CD3varepsilonIC(high)/TCRgammadeltaIC(+), TCRbetaIC(low)/CD3varepsilonIC(low)/TCRgammadeltaIC(-), and TCRbetaIC(-)/CD3varepsilonIC(-)/TCRgammadeltaIC(-). Expression levels of IC TCRbeta/CD3varepsilon, and of Thy1.2, CD2, and CD69 at the cell surface suggest that the TCRbetaIC(low)/CD3varepsilonIC(low)/TCRgammadeltaIC(-) subset harbors the direct precursors of DP cells, and is critical for life/death decisions in early thymic selection. TCRbeta/CD3varepsilon downregulation is less pronounced in DN4 and DP cells of mice deficient for CD3zeta or for p56(lck), suggesting that the dynamics of TCR protein regulation in the DN4 subset is dependent on CD3 signaling.  相似文献   

16.
Recent data suggest that accessory molecules like CD4 and CD8 act as co-receptors in intrathymic T-cell development. Soluble CD4 (sCD4) molecules offer a novel experimental approach to investigate the relevance of CD4 interaction with its putative intrathymic receptor for T-cell maturation. We attempted to inhibit binding of surface CD4 on thymocytes to its intrathymic receptor competitively by introduction of human sCD4 into human thymus tissue cultures. Our results demonstrate that sCD4, while not affecting peripheral T-cell responses as shown in control experiments, significantly affects intrathymic development of T lymphocytes. Immature CD4CD8 double positive (DP) thymocytes responded with reduced expression of both CD4 and CD8 molecules. This phenomenon could be followed up to the stage of single positive (SP) thymocytes: density of CD4 molecules on CD4 SP thymocytes and, even more interestingly, CD8 expression on CD8 SP cells, were reduced, indicating that the effect observed in immature DP thymocytes persists during their further development. Beyond that, analysis of T-cell receptor (TCR) expression in the low density CD4CD8 DP population revealed a slight decrease of alpha beta-TCR surface expression, suggesting a possible role of CD4 engagement in the generation of TCR in man. Since sCD4 is considered a therapeutical agent in HIV infections, these findings are not only of basic but also of clinical interest.  相似文献   

17.
Antigen recognition by T cell antigen receptors (TCRs) is thought to 'unmask' a proline-rich sequence (PRS) present in the CD3epsilon cytosolic segment, which allows it to trigger T cell activation. Using 'knock-in' mice with deletion of the PRS, we demonstrate here that elimination of the CD3epsilon PRS had no effect on mature T cell responsiveness. In contrast, in preselection CD4+CD8+ thymocytes, the CD3epsilon PRS acted together with the adaptor protein SLAP to promote CD3zeta degradation, thereby contributing to downregulation of TCR expression on the cell surface. In addition, analysis of CD4+CD8+ thymocytes of TCR-transgenic mice showed that the CD3epsilon PRS enhanced TCR sensitivity to weak ligands. Our results identify previously unknown functions for the evolutionarily conserved CD3epsilon PRS at the CD4+CD8+ developmental stage and suggest a rather limited function in mature T cells.  相似文献   

18.
Huang F  Kitaura Y  Jang I  Naramura M  Kole HH  Liu L  Qin H  Schlissel MS  Gu H 《Immunity》2006,25(4):571-581
Casitas B cell lymphoma (Cbl) proteins are negative regulators for T cell antigen receptor (TCR) signaling. Their role in thymocyte development remains unclear. Here we show that simultaneous inactivation of c-Cbl and Cbl-b in thymocytes enhanced thymic negative selection and altered the ratio of CD4(+) and CD8(+) T cells. Strikingly, the mutant thymocytes developed into CD4(+)- and CD8(+)-lineage T cells independent of the major histocompatibility complex (MHC), indicating that the CD4(+)- and CD8(+)-lineage development programs are constitutively active in the absence of c-Cbl and Cbl-b. The mutant double-positive (DP) thymocytes exhibited spontaneous hyperactivation of nuclear factor-kappa B (NF-kappaB). Additionally, they failed to downregulate the pre-TCR and pre-TCR signaling. Thus, our data indicate that Cbl proteins play a critical role in establishing the MHC-dependent CD4(+) and CD8(+) T cell development programs. They likely do so by suppressing MHC-independent NF-kappaB activation, possibly through downmodulating pre-TCR signaling in DP thymocytes.  相似文献   

19.
By three colour flow microfluorimetry, we have recently shown that neonatal mouse CD4 single positive thymocytes are a population of proliferating cells. Furthermore, analysis of CD4+ thymocytes from (C57BL/6 x DBA/2)F1 mice showed that they proliferate regardless of whether they express particular V beta-encoded TCR molecules (V beta 6 and V beta 11) that are undergoing intrathymic deletion. In this report, cell culture experiments demonstrate that unstimulated neonatal CD4+ thymocytes from such mice proliferate in vitro in response to a combination of r-IL-2 and r-IL-7. Simultaneous three colour analysis of V beta TCR, CD4 expression, and DNA content of these cultured cells shows that V beta 6+, -8+, and -11+ cells grow equally well. Experiments where cells were cultured overnight in unsupplemented medium did not reveal preferential loss of negatively selected (V beta 6+ and V beta 11+) subpopulations of CD4+ cells. Taken together, these results suggest that IL-2 and IL-7 play a role in the intrathymic proliferation of developing mature T cells.  相似文献   

20.
Activation of self-reactive T cells in healthy adults is prevented by the presence of autoantigen-specific CD4+CD25+ regulatory T cells (CD25+ Treg). To explore the functional development of autoantigen-reactive CD25+ Treg in humans we investigated if thymic CD25+ Treg from children aged 2 months to 11 years and cord blood CD25+ Treg are able to suppress proliferation and cytokine production induced by specific antigens. While CD4+CD25- thymocytes proliferated in response to myelin oligodendrocyte glycoprotein (MOG), tetanus toxoid and beta-lactoglobulin, suppression of proliferation was not detected after the addition of thymic CD25+ Treg. However, CD25+ Treg inhibited interferon (IFN)-gamma production induced by MOG, which indicates that MOG-reactive CD25+ Treg are present in the thymus. In contrast, cord blood CD25+ Treg suppressed both proliferation and cytokine production induced by MOG. Both cord blood and thymic CD25+ Treg expressed FOXP3 mRNA. However, FOXP3 expression was lower in cord blood than in thymic CD25+ T cells. Further characterization of cord blood CD25+ T cells revealed that FOXP3 was highly expressed by CD25+CD45RA+ cells while CD25+CD45RA- cells contained twofold less FOXP3, which may explain the lower expression level of FOXP3 in cord blood CD25+ T cells compared to thymic CD25+ T cells. In conclusion, our data demonstrate that low numbers of MOG-reactive functional CD25+ Treg are present in normal thymus, but that the suppressive ability of the cells is broader in cord blood. This suggests that the CD25+ Treg may be further matured in the periphery after being exported from the thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号