首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is yet unknown how upper body exercise combined with high ambient temperatures affects plasma testosterone and cortisol concentrations and furthermore, how these hormones respond to exercise in people suffering spinal cord injuries. The purpose of this study was to characterize plasma testosterone and cortisol responses to upper body exercise in wheelchair athletes (WA) compared to able-bodied individuals (AB) at two ambient temperatures. Four WA [mean age 36 (SEM 13) years, mean body mass 66.9 (SEM 11.8) kg, injury level T7–T11], matched with five AB [mean age 33.4 (SEM 8.9) years, mean body mass 72.5 (SEM 13.1) kg] exercised (cross-over design) for 20 min on a wheelchair ergometer (0.03 kg resistance · kg−1 body mass) at 25 °C and 32 °C. Blood samples were obtained before (PRE), at min 10 (MID), and min 20 (END) of exercise. No differences were found between results obtained at 25 °C and 32 °C for any physiological variable studied and therefore these data were combined. Pre-exercise testosterone concentration was lower (P < 0.05) in WA [18.3 (SEM 0.9) nmol · l−1] compared to AB [21.9 (SEM 3.6) nmol · l−1], and increased PRE to END only in WA. Cortisol concentrations were similar between groups before and during exercise, despite higher rectal temperatures in WA compared to AB, at MID [37.21 (SEM  0.14) and 37.02 (SEM  0.08)°C, respectively] and END [37.36 (SEM 0.16) and 37.19 (SEM 0.10)°C, respectively]. Plasma norepinephrine responses were similar between groups. In conclusion, there were no differences in plasma cortisol concentrations, which may have been due to the low relative exercise intensities employed. The greater exercise response in WA for plasma testosterone should be confirmed on a larger population. It could have been the result of the lower plasma testosterone concentrations at rest in our group. Accepted: 4 September 2000  相似文献   

2.
Seven healthy young men participated in six trials with three different types of local cooling [cool air breathing (CAB), face skin cooling (FaC), and combined cooling (CoC)] in a warm environment for 90 min while either resting (operative temperature: T 0 = 40°C, dew point temperature: T dp = 15°C, air velocity: v a = 0.3 m·s−1) or exercising on a cycle ergometer with an external work load of 90 W (T 0 = 36°C, T dp = 15°C, v a = 0.3 m·s−1). Cool air (10°C) arrived at the entry point of the hood and/or the mask at a ventilation rate of 12 m · s−1. Oesophageal temperature was not affected by any kind of cooling, while tympanic temperature was decreased at rest by both FaC and CoC [respectively −0.15 (0.06) and −0.09 (0.03)°C, P ≤ 0.05]. Mean skin temperature was decreased by FaC and CoC at rest [respectively −0.31 (0.07) and −0.27 (0.09)°C, P ≤ 0.05] and during exercise [respectively −0.64 (0.15) and −1.04 (0.22)°C, P ≤ 0.01]. CAB had no effect on skin temperatures. CoC and FaC reduced head skin temperature during both rest and work (P < 0.001) with no effect on the skin temperature of the rest of the body, except under CoC with exercise (P < 0.05). CAB did not influence local sweating. FaC, however, decreased the more profuse sweat rates (P ≤ 0.05) at rest, while CoC decreased all sweating rates at rest (P ≤ 0.05) and only the back, head and leg sweating rates during exercise (P ≤ 0.05). These results suggest that head skin cooling causes a reduction in heat strain, while CAB does not. This beneficial influence does not, however, appear to be the result of selective brain cooling. Tympanic temperature seems to be a good index of the core thermal inputs to the hypothalamic regulatory system, since variations in that parameter were associated with similarly directed variations in the sweating outputs. Accepted: 12 April 1999  相似文献   

3.
Whole-body cooling prior to activity has the potential to reduce thermal strain and fatigue during subsequent endurance exercise. Intermittent activity is associated with greater increases in rectal temperature compared with continuous exercise. Thus, the effect of pre-cooling on thermoregulatory responses was examined during an intermittent test under “normal” environmental conditions. Six male university soccer players [mean (SD) age 27 (2) years; height 1.77 (0.3) m; mass 72.2 (1.5) kg; maximal oxygen consumption 58.9 (3.5) ml · kg−1 · min−1] completed a 90-minute soccer-specific intermittent exercise protocol on a non-motorised treadmill. The run was completed with and without pre-cooling under normal laboratory conditions (20°C) and without pre-cooling in a heated laboratory (26°C). The pre-cooling strategy involved exposure to a cold shower (26°C) for 60 min. The pre-cooling manipulation lowered rectal temperature prior to exercise [−0.6 (0.6)°C, range −1.5°C; P < 0.05]. The rectal temperature response to exercise was significantly lower following pre-cooling than in the heated condition [pre-cooled 38.1 (0.6)°C, heated 38.6 (0.3)°C]. The increase in rectal temperature during the second half of the protocol following pre-cooling was significantly greater than the increase observed under normal or heated conditions (P < 0.05). No significant differences were observed between the three conditions for oxygen consumption, heart rate, minute ventilation, rating of perceived exertion and plasma lactate, glucose or free fatty acid concentrations. Based on the current investigation, it can be concluded that there is no evidence for the beneficial effects of pre-cooling on the physiological responses to soccer-specific intermittent exercise under normal environmental conditions. Accepted: 30 June 1999  相似文献   

4.
The effects of the thermal state of the body (slightly cool and neutral) and moderate wind speeds on face temperature, blood pressure, respiratory function and pain sensation during cold exposure were studied on eight healthy male subjects. They were dressed in cold-protective clothing and preconditioned at +20 °C (TN) and −5 °C (CO) for 60 min, then exposed to −10 °C and 0 m · s−1 (NoW), 1 (W1) and 5 (W5) m · s−1 wind for 30 min. Thus, each individual was exposed six times. The exposure to wind entailed a combination of strong cooling of the bare face and mild body cooling. The forehead, cheek and nose temperatures decreased during cold exposure, and the decrease was greater at higher air velocities (P < 0.0001). All subjects reported pain sensations at 5 m · s−1. At the end of exposure only the nose temperature was significantly lower in CO than in TN subjects; it was about 2 °C and reached 0 °C in two experiments. The systolic and diastolic blood pressure (SBP and DBP, respectively) increased significantly by 7.7 and 5.9 mmHg, respectively, during preconditioning at −5 °C, but did not change at +20 °C. SBP and DBP increased during exposure to −10 °C in TN by approximately 9 mmHg. However, the total average increase of blood pressure (1–90 min) was similar in TN and CO (SBP 15 mmHg and DBP 13 mmHg). SBP and DBP increased more during exposure to 5 m · s−1 at −10 °C than NoW. Blood pressure responses as observed in this study (SBP and DBP up to 51 and 45 mmHg, respectively) are potential health risks for hypertensive individuals and angina patients. Respiratory functions (FVC, FEV1) were reduced by about 3% by the cold (−5 and −10 °C) compared to pre-experiment values. Furthermore, the Wind Chill Index seems to underestimate the cooling power of 5 m · s−1 at −10 °C of bare skin (e.g. face). Therefore it needs to be revised and we suggest that it is expanded to include risk levels for pain sensation. Accepted: 29 May 2000  相似文献   

5.
Eight female games players (GP) and eight female endurance athletes (EA) ran intermittently at high-intensity and for prolonged periods in hot (30°C) and moderate (16°C) ambient temperatures. The subjects performed a two-part (A, B) test based on repeated 20-m shuttle runs. Part A comprised 60 m of walking, a maximal 15-m sprint, 60 m of cruising (90% maximal oxygen uptake, O2max) and 60 m of jogging (45% O2max) repeated for 75 min with a 3-min rest every 15 min. Part B involved an exercise and rest pattern of 60-s running at 100% O2max and 60-s rest which was continued until fatigue. Although the GP and EA did not respond differently in terms of distances completed, performance was 25 (SEM 4)% less (main effect trial, P < 0.01) in the hot (HT) compared with the moderate trial (MT). Sprints of 15 m took longer to complete in the heat (main effect, trial, P < 0.01), and sprint performance declined during HT but not MT (interaction, trial × time, P < 0.01). A very high correlation was found between the rate of rise in rectal temperature in HT and the distance completed [GP, r =−0.94, P < 0.01; EA (n = 7), r = −0.93, P < 0.01]. Blood lactate [La ]b and plasma ammonia [NH3]p1 concentrations were higher for GP than EA, but were similar in HT and MT [La ]b, HT: GP vs EA, 8.0 (SEM 0.9) vs 4.9 (SEM 1.1) mmol · l−1; MT: GP vs EA, 8.0 (SEM 1.3) vs 4.4 (SEM 1.2) mmol · l−1; interaction, group × time, P < 0.01; [NH3]p1, HT: GP vs EA, 70.1 (SEM 12.7) vs 43.2 (SEM 6.1) mmol · l−1; MT: GP vs EA, 76.8 (SEM 8.8) vs 32.5 (SEM 3.8) μmol · l−1; interaction, group × time, P < 0.01. Ad libitum water consumption was higher in HT [HT: GP vs EA, 18.9 (SEM 2.9) vs 13.5 (SEM 1.7) ml · kg−1 · h−1; MT: GP vs EA, 12.7 (SEM 3.7) vs 8.5 (SEM 1.5) ml · kg−1 · h−1; main effect, group, n.s.; main effect, trial, P < 0.01]. These results would suggest that elevated body temperature is probably the key factor limiting performance of prolonged, intermittent, high-intensity running when the ambient temperature is high, but not because of its effect on the metabolic responses to exercise. Accepted: 19 July 1999  相似文献   

6.
The purpose of the present study was to investigate the effect of recruitment on the relationship between peak torque and physiological cross-sectional area (PCSA) in human muscle. A group of 11 healthy men participated in this study. Isokinetic knee extension torques at seven (0, 30, 60, 120, 180, 240, and 300° · s−1) velocities were determined. Magnetic resonance imaging (MRI) was performed to calculate PCSA of right quadriceps femoris (QF) muscle. Exercise-induced contrast shifts in spin-spin relaxation time (T2)-weighted MRI were taken at rest and immediately after repetitive knee-extension exercise and T2 of QF were calculated. The MRI pixels with T2 values more than 1 SD greater than the means at rest were considered to represent QF muscle that had contracted. The area of activated PCSA within the total in QF was expressed as percentage activated PCSA and used as an index of muscle recruitment. The PCSA correlated with peak torque at 0° · s−1 (r=0.615, P < 0.05); in contrast, activated PCSA correlated with peak torque at 120° · s−1 (r=0.603, P < 0.05) and 180° · s−1 (r=0.606, P < 0.05). Additionally, there was a significant difference in correlation coefficients between the activated PCSA-peak torque relationship and the PCSA-torque relationship (P < 0.05). These results suggested that muscle recruitment affects the PCSA-torque relationship. Accepted: 11 August 2000  相似文献   

7.
It is generally assumed that exercise and shivering are analogous processes with regard to substrate utilisation and that, as a consequence, exercise can be used as a model for shivering. In the present study, substrate utilisation during exercise and shivering at the same oxygen consumption (O2) were compared. Following an overnight fast, eight male subjects undertook a 2-h immersion in cold water, designed to evoke three different intensities of shivering. At least 1 week later they undertook a 2-h period of bicycle ergometry during which the exercise intensity was varied to match the O2 recorded during shivering. During both activities hepatic glucose output (HGO), the rate of glucose utilisation (Rd), blood glucose, plasma insulin, free fatty acid (FFA) and beta-hydroxybutyrate (B-HBA) concentrations were measured. The O2 measured during the different levels of shivering averaged 0.49 l · min−1 (level 1: low), 0.6 l · min−1 (level 2: low-moderate), and 0.9 l · min−1 (level 3: moderate), and corresponded closely to the levels measured during exercise. HGO and Rd were greater (P < 0.05) during exercise than during shivering at the same O2 (9.5% and 14.7%, respectively). The average (SD) HGO during level 3 exercise was 3.0 (0.91) mg · kg−1 . min−1 compared to 2.76 (1.0) mg · kg−1 . min−1 during shivering. The values for Rd were 3.06 (0.98) mg · kg−1 · min−1 during level 3 exercise and 2.68 (0.82) mg · kg−1 · min−1 during shivering. Blood glucose levels did not differ between conditions, averaging 5.4 (0.3) mmol . l−1 over all levels of shivering and 5.2 (0.3) mmol · l−1 during exercise. Plasma FFA and B-HBA were higher (P < 0.01) during shivering than during corresponding exercise (12.3% and 33.3%, respectively). FFA averaged 0.61 (0.2) mmol · l−1 over all levels of shivering and 0.47 (0.16) mmol · l−1 during exercise. The figures for B-HBA were 0.44 (0.13) mmol · l−1 during all levels of shivering and 0.32 (0.1) mmol · l−1 during exercise. Plasma insulin was higher (P < 0.05) during level 2 and 3 shivering compared to corresponding exercise; at these levels the average value for plasma insulin was 95.9 (21.9) pmol · l−1 during shivering and 80.6 (16.1) pmol · l−1 during exercise. On the basis of the present findings it is concluded that, with regard to substrate utilisation, shivering and exercise of up to 2 h duration should not be regarded as analogous processes. Accepted: 12 February 1997  相似文献   

8.
The prediction of the mean skin temperature used for the Required Sweat Rate index was criticised for not being valid in conditions with high radiation and high humidity. Based on a large database provided by 9 institutes, 1999 data points obtained using steady-state conditions, from 1399 experiments and involving 377 male subjects, were used for the development of a new prediction model. The observed mean skin temperatures ranged from 30.7 °C to 38.6 °C. Experimental conditions included air temperatures (T a) between 20 and 55 °C, mean radiant temperatures (T r) up to 145 °C, partial vapour pressures (P a) from 0.2 to 5.3 kPa, air velocities (v a) between 0.1 and 2 m/s, and metabolic rates (M) from 102 to 620 W. Rectal temperature (T re) was included in the models to increase the accuracy of prediction. Separate models were derived for nude (clothing insulation, Icl, ≤0.2 clo, where 1 clo=0.155 m2 · °C · W−1, which is equivalent to the thermal insulation of clothing necessary to maintain a resting subject in comfort in a normally ventilated room, air movement=10 cm/s, at a temperature of 21 °C and a humidity of less than 50%) and clothed (0.6 ≤ Icl ≤ 1.0 clo) subjects using a multiple linear regression technique with re-sampling (non-parametric bootstrap). The following expressions were obtained for nude and clothed subjects, respectively: T sk=7.19 + 0.064T a + 0.061T r + 0.198P a− 0.348v a + 0.616T re and T sk=12.17 + 0.020T a + 0.044T r + 0.194P a − 0.253v a + 0.0029M + 0.513T re. For the nude and clothed subjects, 83.3% and 81.8%, respectively, of the predicted skin temperatures were within the range of ±1 °C of the observed skin temperatures. It is concluded that the proposed models for the prediction of the mean skin temperature are valid for a wide range of warm and hot ambient conditions in steady-state conditions, including those of high radiation and high humidity. Accepted: 7 February 2000  相似文献   

9.
During exercise involving a small muscle mass, peak oxygen uptake is thought to be limited by peripheral factors, such as the degree of oxygen extraction from the blood and/or mitochondrial oxidative capacity. Previously, the maximal activity of the Krebs cycle enzyme oxoglutarate dehydrogenase has been shown to provide a quantitative measure of maximal oxidative metabolism, but it is not known whether the increase in this activity after a period of training reflects the elevation in peak oxygen consumption. Fourteen subjects performed one-legged knee extension exercise for 5–7 weeks, while the other leg remained untrained. Thereafter, the peak oxygen uptake by the quadriceps muscle was determined for both legs, and muscle biopsies were taken for assays of maximal enzyme activities (at 25°C). The peak oxygen uptake was 26% higher in the trained than in the untrained muscle (395 vs. 315 ml min−1 kg−1, respectively; P < 0.01). The maximal activities of the Krebs cycle enzymes in the trained and untrained muscle were as follows: citrate synthase, 22.4 vs. 18.2 μmol min−1 g−1 (23%, P < 0.05); oxoglutarate dehydrogenase, 1.88 vs. 1.54 μmol min−1 g−1 (22%, P < 0.05); and succinate dehydrogenase, 3.88 vs. 3.28 μmol min−1 g−1 (18%, P < 0.05). The difference between the trained and untrained muscles with respect to peak oxygen uptake (80 ml min−1 kg−1) corresponded to a flux through the Krebs cycle of 1.05 μmol min−1 g−1, and the corresponding difference in oxoglutarate dehydrogenase activity (at 38°C) was 0.83 μmol min−1 g−1. These parallel increases suggest that there is no excess mitochondrial capacity during maximal exercise with a small muscle mass.  相似文献   

10.
The purpose of this study was to investigate the effects of exercise-induced muscle injury on passive and active wrist joint stiffness. Ten male subjects were repeatedly tested over a period of 11 days, once prior to, and four times following a bout of eccentric exercise with the wrist extensor muscles. Static wrist stiffness was measured by applying a 3° ramp and hold displacement of the manipulandum, which stretched the wrist extensor muscles. Wrist extension maximum voluntary contraction (MVC) declined by 24.5% from pre-exercise to 24 h after the exercise bout (P < 0.001). There was a reduced passive range of motion (ROM) from 82.8° pre-exercise to 70.2° on day 1 (P < 0.01), but no change in the passive joint stiffness at the neutral joint position, suggesting mechanical changes in the non-contractile tissues, or swelling that only resisted movement at the extremes of the ROM. Active joint stiffness at 50% pre-exercise MVC declined from 0.299 Nm deg−1 pre-exercise to 0.254 Nm deg−1 on day 1 (P < 0.025). Active joint stiffness at 10% pre-exercise MVC did not change on any of the days of testing compared to pre-exercise. These findings may indicate that large muscle fibers were more affected by the injury than small muscle fibers. Accepted: 7 February 2000  相似文献   

11.
Blood flow is the main regulator of skeletal muscle's oxygen supply, and several studies have shown heterogeneous blood flow among and within muscles. However, it remains unclear whether exercise changes the heterogeneity of flow in exercising human skeletal muscle. Muscle blood flow and spatial flow heterogeneity were measured simultaneously in exercising and in the contralateral resting quadriceps femoris (QF) muscle in eight healthy men using H15 2O and positron emission tomography. The relative dispersion (standard deviation/mean) of blood flow was calculated as an index of spatial flow heterogeneity. Average muscle blood flow in QF was 29 (10) ml · (kg muscle)−1 · min−1 at rest and 146 (54) ml · (kg muscle)−1 · min−1 during exercise (P=0.008 for the difference). Blood flow was significantly (P < 0.001) higher in the vastus medialis and the vastus intermedius than in the vastus lateralis and the rectus femoris, both in the resting and the exercising legs. Flow was more homogeneous in the exercising vastus medialis and more heterogeneous (P < 0.001) in the exercising vastus lateralis (P=0.01) than in the resting contralateral muscle. Flow was more homogeneous (P < 0.001) in those exercising muscles in which flow was highest (vastus intermedius and vastus medialis) as compared to muscles with the lowest flow (vastus lateralis and the rectus femoris). These data demonstrate that muscle blood flow varies among different muscles in humans both at rest and during exercise. Muscle perfusion is spatially heterogeneous at rest and during exercise, but responses to exercise are different depending on the muscle. Accepted: 16 June 2000  相似文献   

12.
The influence of glucose ingestion on substrate utilization during prolonged exercise in children and adolescents is currently unknown. In the present study we determined the effect of intermittent exogenous glucose (GLUexo) ingestion on substrate utilization during prolonged exercise, in adolescent boys ages 13–17 years. Healthy untrained volunteers performed four 30-min exercise bouts on a cycle ergometer, separated by 5-min rest periods (≅60% maximum O2 consumption), on two occasions spaced 1–4 weeks apart. Two trials were performed, a control trial (CT), in which subjects ingested water intermittently during the exercise, and a glucose trial (GT), in which subjects ingested a 13C-enriched GLUexo drink (≅3 g glucose · kg body mass−1), also intermittently during the exercise. Total free fatty acids (FATtotal), glucose (GLUtotal) and carbohydrate (CHOtotal) oxidation was determined from indirect calorimetry, while GLUexo oxidation was calculated from the 13C/12C ratio in expired air after 5–10 min and 25–30 min of exercise in each bout. Heart rate and rating of perceived exertion (RPE) were determined at the same time intervals. The oxidation of CHOtotal was 169.1 (12.9) g · 120 min−1 and 203.1 (15.9) g · 120 min−1 (P < 0.01) and that of FATtotal was 31.0 (4.2) g · 120 min−1 and 17.1 (2.5) g · 120 min−1 (P < 0.01) in CT and GT, respectively. GLUexo oxidation in GT was 57.8 (4.3) g · 120 min−1, or 34.2 (2.2)% of that ingested. Endogenous glucose oxidation was 169.1 (12.9) g · 120 min−1 and 145.3 (11.9) g · 120 min−1 (P < 0.01) in CT and GT, respectively. Insulin and glucose concentrations were higher in GT than in CT by 226% and 37%, respectively (both P < 0.05). Free fatty acids and glycerol concentrations were lower in GT than in CT, by 27% and 79%, respectively (both P < 0.05). Heart rate was similar between trials, but RPE was lower in GT vs CT at both 115 and 135 min. Thus, under these experimental conditions, GLUexo intake spares endogenous carbohydrate and fat by 16% and 45%, respectively, contributes to approximately 25% of the total energy demand of exercise, and lowers the RPE. Accepted: 21 May 2000  相似文献   

13.
Low exercise-induced plasma adrenaline (A) responses have been reported in resistance-trained individuals. In the study reported here, we investigated the interaction between strength gain and neural adaptation of the muscles, and the plasma A response in eight healthy men during a short-term resistance-training period. The subjects performed 5 resistance exercises (E1–E5), consisting of 6 sets of 12 bilateral leg extensions performed at a 50% load, and with 2 days rest in between. Average electromyographic (EMG) signal amplitude was recorded before and after the exercises, from the knee extensor muscles in isometric maximal voluntary contraction (MVC) as well as during the exercises (aEMGmax and aEMGexerc, respectively). Total oxygen consumed during the exercises (O2tot) was also measured. All of the exercises were exhaustive and caused significant decreases in MVC (34–36%, P < 0.001). As expected, the concentric one-repetition maximum (1-RM), MVC and aEMGmax were all higher before the last exercise (E5) than before the first exercise (E1; 7, 9 and 19%, respectively, P < 0.05). In addition, in E5 the aEMGexerc:load and O2tot:load ratios were lower than in E1 (−5 and −14%, P < 0.05), indicating enhanced efficiency of the muscle contractions, However, the post-exercise plasma noradrenaline (NA) and A were not different in these two exercises [mean (SD) 10.2 (3.8) nmol · l−1 vs 11.3 (6.0) nmol · l−1, ns, and 1.2 (1.0) nmol · l−1 vs 1.9 (1.1) nmol · l−1, ns, respectively]. However, although NA increased similarly in every exercise (P < 0.01), the increase in A reached the level of statistical significance only in E1 (P < 0.05). The post-exercise A was also already lower in E2 [0.7 (0.7) nmol · l−1, P < 0.05) than in E1, despite the higher post-exercise blood lactate concentration than in the other exercises [9.4 (1.1) mmol · l−1, P < 0.05]. Thus, the results suggest that the observed attenuation in the A response can not be explained by reduced exercise-induced strain due to the strength gain and neural adaptation of the muscles. Correlation analysis actually revealed that those individuals who had the highest strength gain during the training period even tended to have an increased post-exercise A concentration in the last exercise as compared to first one (r=0.76, P < 0.05). Accepted: 10 February 2000  相似文献   

14.
Red blood cells (RBC) from an Indian elephant (Elephas maximus) were studied by light microscopy (LM), scanning electron microscopy (SEM) and a new nuclear magnetic resonance (NMR) ‘imaging’ method based on the translational diffusion of water, NMR q-space analysis. Also, the transmembrane diffusional permeability, P d of water in RBC was measured by using a Mn2+-doping NMR technique, taking human RBC as a reference. The main diameter of the elephant RBC was measured as 9.3 ± 0.7 μm by LM, 9.3 ± 0.7 μm by ‘shrinkage-corrected’ SEM, and 9.3 ± 0.4 μm by q-space anlaysis. The value is ∼1.4 μm larger than that for the human RBC. The values of P d were, in the case of elephant RBC, 3.2 × 10−3 cm/s at 25 °C, 3.9 × 10−3 cm/s at 30 °C, 5.2 × 10−3 cm/s at 37 °C and 6.5 × 10−3 cm/s at 42 °C; all values were significantly lower than the corresponding values of P d for human RBC, namely 4.3 × 10−3 cm/s at 25 °C, 5.2 × 10−3 cm/s at 30 °C, 6.1 × 10−3 cm/s at 37 °C, 7.8 × 10−3 cm/s at 42°C. The maximal inhibition of P d (56%) was reached in 30 min at 37 °C with 2 mm p-chloromercuribenzene sulphonate (PCMBS) for both species of RBC. The basal permeability to water at 37 °C was estimated to be 2.3 × 10−3 cm/s for elephant and 2.6 × 10−3 cm/s for human RBC. The values of the activation energy for water permeability (E a,d ) was significantly higher for elephant RBC (31.9 kJ/mol) than for human RBC (25.9 kJ/mol). This indicated that features other than the number of transporters per cell are likely to be important in defining the differences in water permeability in the RBC from the two species.  相似文献   

15.
Red blood cells (RBC) from an Indian elephant (Elephas maximus) were studied by light microscopy (LM), scanning electron microscopy (SEM) and a new nuclear magnetic resonance (NMR) ‘imaging’ method based on the translational diffusion of water, NMR q-space analysis. Also, the transmembrane diffusional permeability, P d of water in RBC was measured by using a Mn2+-doping NMR technique, taking human RBC as a reference. The main diameter of the elephant RBC was measured as 9.3 ± 0.7 μm by LM, 9.3 ± 0.7 μm by ‘shrinkage-corrected’ SEM, and 9.3 ± 0.4 μm by q-space anlaysis. The value is ∼1.4 μm larger than that for the human RBC. The values of P d were, in the case of elephant RBC, 3.2 × 10−3 cm/s at 25 °C, 3.9 × 10−3 cm/s at 30 °C, 5.2 × 10−3 cm/s at 37 °C and 6.5 × 10−3 cm/s at 42 °C; all values were significantly lower than the corresponding values of P d for human RBC, namely 4.3 × 10−3 cm/s at 25 °C, 5.2 × 10−3 cm/s at 30 °C, 6.1 × 10−3 cm/s at 37 °C, 7.8 × 10−3 cm/s at 42°C. The maximal inhibition of P d (56%) was reached in 30 min at 37 °C with 2 mm p-chloromercuribenzene sulphonate (PCMBS) for both species of RBC. The basal permeability to water at 37 °C was estimated to be 2.3 × 10−3 cm/s for elephant and 2.6 × 10−3 cm/s for human RBC. The values of the activation energy for water permeability (E a,d ) was significantly higher for elephant RBC (31.9 kJ/mol) than for human RBC (25.9 kJ/mol). This indicated that features other than the number of transporters per cell are likely to be important in defining the differences in water permeability in the RBC from the two species.  相似文献   

16.
 To determine the effect of acute plasma volume (PV) expansion on substrate utilization, blood metabolites and catecholamines to prolonged, moderate intensity cycle exercise, eight untrained men mean maximal oxygen uptake,O2max 4.10 (SEM 0.32) l · min−1 were infused (10 ml·kg−1) with a 6% dextran (DEX) solution. These responses were also compared to those elicited using a short-term training (TR) protocol involving cycling for 90 to 120 min · day−1 at 60% O2max for 3 consecutive days. In general DEX, which resulted in a calculated expansion of PV by 23.9%, was without effect in modifying exercise oxygen uptake or the reduction in the respiratory exchange ratio (R) observed during prolonged exercise. In addition, the concentrations of blood glucose, glycerol, alanine and serum free fatty acids, although altered (P < 0.05) by exercise, were not altered by DEX. Blood lactate concentration was only higher (P < 0.05) at 30 min of exercise during DEX compared to the control. With the exception of blood lactate concentration, which was reduced (P < 0.05), TR did not change R or the concentrations of other blood metabolites. The concentrations of nonadrenaline and adrenaline, were depressed (P < 0.05) by DEX and TR at 60 and 90 min of exercise. These results would suggest that mechanisms as yet undefined can compensate for the estimated 10% reduction in arterial oxygen content mediated by acute PV expansion and enable prolonged exercise to be performed without adjustments in substrate selection and substrate mobilization. Accepted: 23 August 1996  相似文献   

17.
In the study reported here, we examined blood pressure and endocrine responses in cold conditions during salt load in young healthy subjects who had previously shown increased resting blood pressure during acutely increased sodium intake. Subjects (n=53) added 121 mmol sodium into their normal diet for 1 week. If their mean arterial pressure had increased by a minimum of 5 mmHg compared to the previous measure they were selected for subsequent experiments. The subjects (n=8) were given 121 mmol supplemental sodium · day−1 for 14 days. They were then put into a wind tunnel for 15 min (temperature −15 °C, wind speed 3.5 · ms−1). Their blood pressure increased (P < 0.05) during the cold exposure, independent of the sodium intake. Their mean (SEM) plasma noradrenaline increased from 3.58 (0.62) nmol · l−1 to 5.61 (0.79) nmol · l−1 (P < 0.05) when the subjects were given a normal diet, and from 2.45 (0.57) nmol · l−1 to 5.06 (0.56) nmol · l−1 (P < 0.05) when the subjects were given an elevated sodium diet. The starting concentrations and the endpoint concentrations were statistically similar. The plasma levels of the N-terminal fragment of pro-atrial natriuretic peptide decreased during the whole-body cold exposure: with the sodium load the change was from 256.6 (25.5) nmol · l−1 to 208.0 (25.3) nmol · l−1, and with the normal diet, from 205.8 (16.4) nmol · l−1 to 175.1 (16.1) nmol · l−1. The haematocrit and red blood cell count increased (P < 0.05) with normal and elevated sodium diet in cold conditions, but haemoglobin increased (P < 0.05) only with high salt in cold conditions. To conclude, acutely increased sodium intake does not change the blood pressure response or hormonal responses to exposure to acute cold stress in healthy subjects. Accepted: 28 September 2000  相似文献   

18.
This study examined whether a 5 mg dose of melatonin induced a lower rectal temperature (T re) response at rest in both a cool and hot environment while wearing normal military combat clothing, and then examined the influence of this response on tolerance to exercise in the heat while wearing protective clothing. Nine men performed four randomly ordered trials involving 2 h of rest at ambient temperatures of either 23 °C or 40 °C followed by exercise at an ambient temperature of 40 °C. The double-blind ingestion of placebo or melatonin occurred after 30 min of rest. The mean T re during rest at 23 °C had decreased significantly from 36.8 (SD 0.1) °C to 36.7 (SD 0.2) °C at 90 min following the ingestion of the drug, whereas values during the placebo trial did not change. The lower T re response during the melatonin trial remained during the first 50 min of exercise in the heat while wearing the protective clothing. Since the final mean T re at the end of exercise also was significantly reduced for the melatonin [39.0 (SD 0.4) °C] compared with the placebo [mean 39.1 (SD 0.3) °C] trial, tolerance times approximated 95 min in both conditions. During rest at 40 °C, melatonin did not affect the mean T re response which increased significantly during the last 90 min from 36.9 (SD 0.1) °C to 37.3 (SD 0.1) °C. This increase in T re during the rest period prior to donning the protective clothing decreased tolerance time approximately 30 min compared with the trials that had involved rest at 23 °C. Total heat storage summated over the rest and exercise periods was not different among the trials at 15 kJ · kg−1. It was concluded that the small decrease in T re following the ingestion of 5 mg of melatonin at rest in a cool environment had no influence on subsequent tolerance during uncompensable heat stress. Accepted: 26 June 2000  相似文献   

19.
Prediction equations of shivering metabolism are critical to the development of models of thermoregulation during cold exposure. Although the intensity of maximal shivering has not yet been predicted, a peak shivering metabolic rate (Shivpeak) of five times the resting metabolic rate has been reported. A group of 15 subjects (including 4 women) [mean age 24.7 (SD 6) years, mean body mass 72.1 (SD 12) kg, mean height 1.76 (SD 0.1) m, mean body fat 22.3 (SD 7)% and mean maximal oxygen uptake (O2max) 53.2 (SD 9) ml O2 · kg−1 · min−1] participated in the present study to measure and predict Shivpeak. The subjects were initially immersed in water at 8°C for up to 70 min. Water temperature was then gradually increased at 0.8 °C · min−1 to a value of 20 °C, which it was expected would increase shivering heat production based on the knowledge that peripheral cold receptors fire maximally at approximately this temperature. This, in combination with the relatively low core temperature at the time this water temperature was reached, was hypothesized would stimulate Shivpeak. Prior to warming the water from 8 to 20 °C, the oxygen consumption was 15.1 (SD 5.5) ml · kg−1 · min−1 at core temperatures of approximately 35 °C. After the water temperature had risen to 20 °C, the observed Shivpeak was 22.1 (SD 4.2) ml O2 · kg−1 · min−1 at core and mean skin temperatures of 35.2 (SD 0.9) and 22.1 (SD 2.2) °C, respectively. The Shivpeak corresponded to 4.9 (SD 0.8) times the resting metabolism and 41.7 (SD 5.1)% of O2max. The best fit equation predicting Shivpeak was Shivpeak (ml O2 · kg−1 · min−1)=30.5 + 0.348 ×O2max (ml O2 · kg−1 · min−1) − 0.909 × body mass index (kg · m−2) − 0.233 × age (years); (P=0.0001; r 2=0.872). Accepted: 7 September 2000  相似文献   

20.
This study investigated whether ambient temperature influences the distribution of blood as indicated by electrical impedance. In ten supine humans, the room temperature was raised from 14 to 35°C. Skin temperature and blood flow on the thorax increased by 3.6 (SD 0.3)°C and 84 (SD 40)%, respectively, and by 9.8 (SD 1)°C and 115 (SD 45)%, respectively, on the extremities (P < 0.05). Cardiac output remained unchanged, ear temperature and heart rate became elevated, and the oesophageal temperature and mean arterial pressure decreased (P < 0.05). At five discrete frequencies (1.5, 5, 50, 100, 200 kHz) thoracic impedance was increased by 1.2 (SD 1) to 1.5 (SD 1) Ω (P < 0.05). In contrast, total body impedance was reduced by 16.4 (SD 5) Ω and leg impedance was reduced by 4.0 (SD 2) Ω, while an index of intracellular water within the thorax (the difference between the admittances at 100 kHz and 1.5 kHz) was decreased by 10 (SD 1) · 10−4 S (P < 0.05). The results would suggest that total body impedance is dominated by the impedance of the extremities. The increase in thoracic impedance and a decrease in leg impedance (as in total body impedance) could be explained by a redistribution of blood from the thorax to the extremities during heating. Such a translocation of blood was confirmed by a reduced impedance based index of intracellular water within the thorax. Accepted: 4 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号