首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. F. Mitchell, G. R. Stoner, and J. H. Reynolds (2004) observed that exogenously cuing one of two superimposed transparent surfaces resulted in an enhanced perceptual bias for the cued surface during binocular rivalry. We investigated the neural bases of this effect by recording event-related potentials (ERPs). Subjects viewed two superimposed rotating transparent surfaces and compared the directions of two successive translations, either both of the same surface or one of each surface. Following the first translation, which cued attention to the translating surface, two surface images were removed-one from each eye (dichoptic viewing) or both from one eye (monocular viewing). Subjects were impaired at comparing the first and second translations when they occurred on different surfaces, and the impairment was greater during dichoptic viewing (rivalry). The P1 component (110-160 ms) of the ERP elicited by the second translation of the same surface was larger than for the different surface during dichoptic but not monocular viewing. Larger cueing effects were also observed for the subsequent posterior N1 (160-220 ms) and P2 (250-300 ms) components during rivalry than during monocular viewing. These results are in line with a hybrid model of rivalry whereby cuing one surface initiates an earlier interocular selection process when the competing surfaces are presented to separate eyes.  相似文献   

2.
Previous research has shown that observers with early unilateral enucleation have selectively better sensitivity to luminance contrast than monocular viewing controls [González et al., 2002; Vision Research 36 (1) (1996) 175; Vision Research 36 (1996) 3011; Vision Research 37 (17) (1997) 2465]. We asked whether unilateral enucleation specifically enhances all levels of luminance processing. Enucleated observers, as well as binocular and monocular viewing controls, detected global shape in radial frequency (RF) patterns [Vision Research 38 (1998) 2555] at low contrast. Control observers were tested in two monocular conditions in which the stimulus was presented to one eye, while the fellow eye: (1) viewed a luminance-matched grey field or (2) was covered by a dark eye patch. Sensitivity to low-contrast global shape was equivalent in enucleated observers and binocular controls. More importantly, enucleated observers showed superior performance to that of controls in either monocular condition. At low contrast, the dichoptic control group was more sensitive than controls wearing an eye patch, which suggests that dichoptic viewing is a superior method of testing when comparing monocular control performance to that of monocularly deprived populations. The previously reported enhanced sensitivity to luminance-defined form in early enucleated observers also occurs for low-contrast global shape discrimination.  相似文献   

3.
Using a transparent motion paradigm, [Valdes-Sosa, M., Bobes, M. A., Rodriguez, V., & Pinilla, T. (1998). Switching attention without shifting the spotlight object-based attentional modulation of brain potentials, Journal of Cognitive Neuroscience, 10, 137-151; Valdes-Sosa, M., Cobo, A., & Pinilla, T. (2000). Attention to object files defined by transparent motion, Journal of Experimental Psychological: Human Perception and Performance, 26, 488-505] found that when attention is endogenously directed to one surface, observers can more reliably report the direction of a brief translation of the cued than the uncued surface. Using a similar design [Reynolds, J. H., Alborzian, S., & Stoner, G. R. (2003). Exogenously cued attention triggers competitive selection of surfaces, Vision Research, 43, 59-66] found that even in the absence of an endogenous cue, the first translation acted as a potent exogenous cue that impaired the observer's ability to discriminate a subsequent translation of the other surface. We investigated the neural basis of this exogenous cueing effect by recording visual event-related potentials (ERPs) elicited by translations of the cued and uncued surfaces. Subjects were given the task of judging whether or not the first and second translations were identical in direction, and their performance was impaired when the second translation occurred on the uncued, as compared to the cued surface. The posterior C1 (75-110 ms) and N1 (160-210 ms) components of the ERP elicited by the second translation of the cued surface were larger than those elicited by translation of the uncued surface. These behavioral and ERP cueing effects were present even when the two surfaces were identical in color and thus could not be attributed to attention-related modulations of the gain of color channels. These findings provide evidence that exogenous cueing results in preferential selection of the cued surface at both early and intermediate stages of visual-cortical processing.  相似文献   

4.
During infancy and childhood, spatial contrast sensitivity and alignment sensitivity undergo maturation, and during this period the visual system has considerable plasticity. The purpose of this study was to compare the nature of interocular interactions of these spatial functions in normally sighted children and adults, and to study the extent to which interocular interactions are impaired in anisometropic amblyopia. Spatial functions were measured under three viewing conditions: monocular (fellow eye occluded), dichoptic (uniform stimulus presented to the fellow eye but with a peripheral fusion lock), and binocular. Measurements were made in each eye during monocular and dichoptic viewing. In the contrast sensitivity task, Gabor stimuli were presented in one of two temporal intervals. For the alignment task, a three-element Gabor stimulus was used. The task of the subject was to indicate the direction of displacement of the middle patch with respect to the outer patches. The findings indicate that in children, binocular contrast sensitivity was better than monocular (binocular summation) but so too was dichoptic sensitivity (dichoptic summation). The magnitude of binocular/dichoptic summation was significantly greater in children than in normally sighted adults for contrast sensitivity, but not for alignment sensitivity. In anisometropic amblyopes, however, we find that for the group as a whole the amblyopic eye does not benefit when the fellow eye views a dichoptic stimulus, compared to dark occlusion of that eye. In addition, we found considerable inter-individual variation within the amblyopic group. Implications of these findings for techniques used in vision therapy are discussed.  相似文献   

5.
The binocular interactions that occur during dichoptic and binocular viewing were investigated using a letter acuity task in normally sighted children (age range 6-14 years) and adults, and in adults with anisometropic amblyopia. Our aims were to investigate the nature of binocular interactions that occur in each group, and the extent to which the characteristics of binocular interactions differ across the groups. The non-tested eye was occluded during monocular (baseline) viewing, and was allowed to view a uniform stimulus with fusion lock in dichoptic viewing. In adults and children with normal vision, acuity under dichoptic viewing was unchanged relative to monocular baseline in the dominant eyes, while acuity of the non-dominant eye improved under dichoptic viewing relative to baseline. The magnitude of dichoptic change in the non-dominant eyes was similar in the two normally sighted groups, but the dichoptic advantage was found to decrease with increasing age within the children tested. Binocular acuity was better than monocular acuity in normal subjects, and a decrease in binocular summation with age was noted within the age range of the children tested. In contrast, the amblyopic observers showed no change in acuity with viewing conditions. The results demonstrate development of interocular interactions during childhood, and wide inter-individual variation in pattern of interocular interactions among anisometropic amblyopic adults.  相似文献   

6.
Baker DH  Meese TS  Hess RF 《Vision research》2008,48(15):1625-1640
To investigate amblyopic contrast vision at threshold and above we performed pedestal-masking (contrast discrimination) experiments with a group of eight strabismic amblyopes using horizontal sinusoidal gratings (mainly 3c/deg) in monocular, binocular and dichoptic configurations balanced across eye (i.e. five conditions). With some exceptions in some observers, the four main results were as follows. (1) For the monocular and dichoptic conditions, sensitivity was less in the amblyopic eye than in the good eye at all mask contrasts. (2) Binocular and monocular dipper functions superimposed in the good eye. (3) Monocular masking functions had a normal dipper shape in the good eye, but facilitation was diminished in the amblyopic eye. (4) A less consistent result was normal facilitation in dichoptic masking when testing the good eye, but a loss of this when testing the amblyopic eye. This pattern of amblyopic results was replicated in a normal observer by placing a neutral density filter in front of one eye. The two-stage model of binocular contrast gain control [Meese, T.S., Georgeson, M.A. & Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision 6, 1224-1243.] was 'lesioned' in several ways to assess the form of the amblyopic deficit. The most successful model involves attenuation of signal and an increase in noise in the amblyopic eye, and intact stages of interocular suppression and binocular summation. This implies a behavioural influence from monocular noise in the amblyopic visual system as well as in normal observers with an ND filter over one eye.  相似文献   

7.
Background We performed an electrophysiological study in order to objectify suppression in strabismus. The extent of cortical involvement in the process of interocular suppression was also explored. Possible differences in the suppressive process of esotropic and exotropic strabismics were also studied.Methods An electroencephalographic recorder with eight leads was applied to the posterior one-third of the skull; three occipital, three parietal, and two temporal leads. We measured the activity of these visual cortical areas during stimulation of each eye under monocular as well as binocular viewing conditions with hemisinusoidal light pulses in a nature-like complex visual background. Recordings were made from six primary esotropic strabismic subjects and four primary exotropic and one consecutive exotropic strabismic subject. Also, five normal controls were studied.Results A characteristic, triphasic response complex was found at approximately 80 ms following the start of each light pulse under monocular viewing conditions in the dominant and the nondominant eye. However, under dichoptic viewing conditions in the nondominant eye of all esotropic cases as well as in the nondominant eye of three of five exotropic cases, this response complex was completely absent. They showed approximately 100% reduction of their cortical response activity.Conclusions These results show the vast extent of the cortex that is involved in the suppressive process, giving a good insight in the power of suppression.  相似文献   

8.
S P Tripathy  D M Levi 《Vision research》1999,39(11):1917-1925
Recent work suggests that dichoptic lateral interactions occur in the region of the visual field of one eye that corresponds to the physiological blind spot in the other eye (Tripathy, S. P., & Levi, D. M. (1994). The two-dimensional shape of spatial interaction zones in the parafovea. Vision Research, 34, 1127-1138.) Here we ask whether dichoptic lateral interactions occur in the region of the visual field of one eye that corresponds to a pathological blind spot, a retinal coloboma in the other eye. To address this question we had the observer report the orientation of a letter 'T' presented within this region in the presence of flanking 'T's presented to the other eye around the coloboma. A large drop in performance was seen due to the flanks, showing the existence of dichoptic lateral interactions in this monocular region. The presence of these dichoptic interactions in a region lacking direct retinal afferents from one eye is consistent with the proposition that long-range horizontal connections of the primary visual cortex mediate these interactions.  相似文献   

9.
Perception of stabilized retinal stimuli was studied both in monocular and dichoptic viewing conditions. When identical stabilized stimuli of large size and high luminance were presented to both eyes, the phenomena characteristic of monocular perception (rapid fading of perceived images within a few seconds or their episodic disappearance and regeneration) failed to be observed: the visual images were perceived as decaying only gradually and slowly within several minutes. The results suggest that rapid changes and fluctuations of visual images perceived monocularly may be due to the effects of binocular interaction (cooperation/rivalry), episodic darkenings of the visual field seeming to be caused by temporary predominance of the occluded eye.  相似文献   

10.
PurposeThe mammalian brain can take into account the neural delays in visual information transmission from the retina to the cortex when accurately localizing the instantaneous position of moving objects by motion extrapolation. In this study, we wanted to investigate whether such extrapolation mechanism operates in a comparable fashion between the eyes in normally sighted and amblyopic observers.MethodsTo measure interocular extrapolation, we adapted a dichoptic version of the flash-lag effect (FLE) paradigm, in which a flashed bar is perceived to lag behind a moving bar when their two positions are physically aligned. Twelve adult subjects with amblyopia and 12 healthy controls participated in the experiment. We measured the FLE magnitude of the subjects under binocular, monocular, and dichoptic conditions.ResultsIn controls, the FLE magnitude of binocular condition was significantly smaller than that of monocular conditions (P ≤ 0.023), but there was no difference between monocular and dichoptic conditions. Subject with amblyopia exhibited a smaller FLE magnitude in the dichoptic condition when the moving bar was presented to the amblyopic eye and the flash to the fellow eye (DA condition) compared to the opposite way around (DF condition), consistent with a delay in the processing of the amblyopic eye (P = 0.041).ConclusionsOur observations confirm that trajectory extrapolation mechanisms transfer between the eyes of normal observers. However, such transfer may be impaired in amblyopia. The smaller FLE magnitude in DA compared to DF in patients with amblyopia could be due to an interocular delay in the amblyopic visual system. The observation that normal controls present a smaller FLE in binocular conditions raises the question whether a larger FLE is or is not an indicator of better motion processing and extrapolation.  相似文献   

11.
Under dichoptic viewing conditions, rivalrous gratings that differ in both color and form can give the percept of the color from one eye in part of the form in the other eye. This study examined the afterimage following such misbinding of color to form. The first experiment established that afterimages of the misbound percept were seen. Two possible mechanisms for the misbound afterimage are (1) persisting retinal representations that are rivalrous and subsequently resolved to give misbinding, as during rivalrous viewing, and (2) a persisting response from a central neural representation of the misbound percept with the form from one eye and color from the other eye. The results support afterimage formation from a central representation of the misbound percept, not from resolution of rivalrous monocular representations.  相似文献   

12.
PurposePatients with amblyopia are known to have fixation instability, which arises from alteration of physiologic fixation eye movements (FEMs) and nystagmus. We assessed the effects of monocular, binocular, and dichoptic viewing on FEMs and eye alignment in patients with and without fusion maldevelopment nystagmus (FMN).MethodsThirty-four patients with amblyopia and seven healthy controls were recruited for this study. Eye movements were recorded using infrared video-oculography during (1) fellow eye viewing (FEV), (2) amblyopic eye viewing (AEV), (3) both eye viewing (BEV), and (4) dichoptic viewing (DcV) at varying fellow eye (FE) contrasts. The patients were classified per the clinical type of amblyopia and FEM waveforms into those without nystagmus, those with nystagmus with and without FMN. Fixational saccades and intersaccadic drifts, quick and slow phases of nystagmus, and bivariate contour ellipse area were analyzed in the FE and amblyopic eye (AE).ResultsWe found that FEMs are differentially affected with increased amplitude of quick phases of FMN observed during AEV than BEV and during DcV at lower FE contrasts. Increased fixation instability was seen in anisometropic patients at lower FE contrasts. Incomitance of eye misalignment was seen with the greatest increase during FEV. Strabismic/mixed amblyopia patients without FMN were more likely to demonstrate a fixation switch where the AE attends to the target during DcV than patients with FMN.ConclusionsOur findings suggest that FEM abnormalities modulate with different viewing conditions as used in various amblyopia therapies. Increased FEM abnormalities could affect the visual function deficits and may have treatment implications.  相似文献   

13.
Multifocal VEP (mfVEP) responses were obtained from 13 normal human subjects for nine test conditions, covering three viewing conditions (dichoptic and left and right monocular), and three different temporal stimulation forms (rapid contrast reversal, rapid pattern pulse presentation, and slow pattern pulse presentation). The rapid contrast reversal stimulus had pseudorandomized reversals of checkerboards in each visual field region at a mean rate of 25 reversals/s, similar to most mfVEP studies to date. The rapid pattern pulse presentation had pseudorandomized presentations of a checkerboard for one frame, interspersed with uniform grey frames, with a mean rate of 25 presentations/s per region per eye. The slow pattern pulse stimulus had six presentations/s per region per eye. Recording time was 5.3 min/condition. For dichoptic presentation slow pattern pulse responses were 4.6 times larger in amplitude than the contrast reversal responses. Binocular suppression was greatest for the contrast reversal stimulus. Consideration of the signal-to-noise ratios indicated that to achieve a given level of reliability, slow pattern pulse stimuli would require half the recording time of contrast reversal stimuli for monocular viewing, and 0.4 times the recording time for dichoptically presented stimuli. About half the responses to the slow pattern pulse stimuli had peak value exceeding five times their estimated standard error. Responses were about 20% smaller in the upper visual field locations. Space-time decomposition showed that responses to slow pattern pulse were more consistent across visual field locations. We conclude that the pattern pulse stimuli, which we term temporally sparse, maintain the visual system in a high contrast gain state. This more than compensates for the smaller number of presentations in the run, and provides signal-to-noise advantages that may be valuable in clinical application.  相似文献   

14.
PURPOSE: To examine the development of rivalry, dichoptic masking, and binocular interactions in infants more than 5 months of age using the visual evoked potential (VEP). METHODS: VEPs were recorded in 35 infants between 5 and 15 months of age and 23 adults between 13 and 59 years of age. Counterphasing, sinusoidal, 1 cycle/deg gratings were presented dichoptically. Responses from each eye were isolated by "tagging" each half-image with a different temporal frequency (5 or 7.5 Hz). Observers were presented with fixed 80% contrast gratings in each eye in experiment 1. Rivalry was detected on the basis of a negative correlation between the simultaneously measured response amplitudes at the second harmonics of the two eye-tagging frequencies. In a second analysis of the same data, response amplitudes recorded under dichoptic viewing conditions were compared to those obtained in a monocular control condition (dichoptic masking). In experiment 2, a 40% fixed-contrast grating was presented to one eye, whereas the other eye viewed a grating that was swept in contrast from 1% to 67%. Dichoptic masking was measured as the reduction in the fixed-grating response caused by the variable contrast grating. RESULTS: Experiment 1: although adults showed evidence of VEP amplitude alternations between the eyes for cross-oriented half-images (physiological rivalry), infants did not. This immature response to rivalrous stimuli occurred despite the presence of responses at nonlinear combination frequencies recorded with gratings of the same orientation in each eye, a definitive indication of binocular interaction. In addition, both iso- and cross-oriented half-images produced less dichoptic masking in infants than in adults in this experiment. Experiment 2: dichoptic masking in the infants was equivalent to that seen in adults with parallel gratings in the two eyes; however, masking with cross-oriented configurations was approximately five times weaker in the infants relative to the adults. CONCLUSIONS: The authors have identified a set of stimulus conditions under which infants between 5 and 15 months of age fail to demonstrate physiological rivalry despite the presence of binocular interactions. The observed lack of binocular rivalry may be the result of a specific immaturity in dichoptic, cross-orientation suppression.  相似文献   

15.
Human observers are typically unaware of the eye of origin of visual inputs. This study shows that an eye of origin or ocular singleton, e.g., an item in the left eye among background items in the right eye, can nevertheless attract attention automatically. Observers searched for a uniquely oriented bar, i.e., an orientation singleton, in a background of horizontal bars. Their reports of the tilt direction of the search target in a brief (200 ms) display were more accurate in a dichoptic congruent (DC) condition, when the target was also an ocular singleton, than in a monocular (M) condition, when all bars were presented to the same single eye, or a dichoptic incongruent (DI) condition, when an ocular singleton was a background bar. The better performance in DC did not depend on the ability of the observers to report the presence of an ocular singleton by making forced choices in the same stimuli (though without the orientation singleton). This suggests that the ocular singleton exogenously cued attention to its location, facilitating the identification of the tilt singleton in the DC condition. When the search display persisted without being masked, observers' reaction times (RTs) for reporting the location of the search target were shorter in the DC, and longer in the DI, than the M condition, regardless of whether the observers were aware that different conditions existed. In an analogous design, similar RT patterns were observed for the task of finding an orientation contrast texture border. These results suggest that in typical trials, attention was more quickly attracted to or initially distracted from the target in the DC or DI condition, respectively. Hence, an ocular singleton, though elusive to awareness, can effectively compete for attention with an orientation singleton (tilted 20 or 50 degrees from background bars in the current study). Similarly, it can also make a difficult visual search easier by diminishing the set size effect. Since monocular neurons with the eye of origin information are abundant in the primary visual cortex (V1) and scarce in other cortical areas, and since visual awareness is believed to be absent or weaker in V1 than in other cortical areas, our results provide a hallmark of the role of V1 in creating a bottom-up saliency map to guide attentional selection.  相似文献   

16.
The visual system can adapt to optical blur, whereby the adapted image is perceived as sharp. Here we show that adaptation reduces blur-induced biases in shape perception, with repeated adaptations (perceptual learning), leading to unbiased perception upon re-exposure to blur. Observers wore a cylindrical lens of +1.00 D on one eye, thus simulating monocular astigmatism. The other eye was either masked with a translucent blurred lens (monocular) or unmasked (dichoptic). Adaptation was tested in several repeated sessions with a proximity-grouping task, using horizontally or vertically arranged dot-arrays, without feedback, before, after, and throughout the adaptation period. A robust bias in global-orientation judgment was observed with the lens, in accordance with the blur axes. After the observer wore the lens for 2 h, there was no significant change in the bias, but after 4 h, the monocular condition, but not the dichoptic, resulted in reduced bias. The adaptation effect of the monocular 4-h adaptation was preserved, and even improved, when the lens was re-applied the next day, indicating learning. After-effects were observed under all experimental conditions except for the 4-h monocular condition, where learning took place. We suggest that, with long experience, adaptation is transferred to a long-term memory that can be instantly engaged when blur is re-applied, or disengaged when blur is removed, thus leaving no after-effects. The comparison between the monocular and dichoptic conditions indicates a binocular cortical site of plasticity.  相似文献   

17.
Contrast-modulated (CM) gratings, composed of two luminance-modulated sinusoids of similar spatial frequency, mask the detection of test sinusoids at the difference frequency. However, the mechanism underlying masking by CM gratings remains poorly understood. In this paper, we aimed to determine whether the masking of 1 cycle deg(-1) LM test gratings by a 1 cycle deg(-1) beat (formed from a pair of carriers at 8 and 9 cycles deg(-1)) occurs in monocular channels or after the site of binocular combination, or both. Threshold elevations for the detection of a 1 cycle deg(-1) test grating were obtained for a number of stimulus conditions, including: (1) dichoptic CM (both 8 and 9 cycles deg(-1) mask components presented to one eye, with the 1 cycle deg(-1) test grating to the other); (2) dichoptic variant (8 and 9 cycles deg(-1) mask gratings presented to separate eyes, with the 1 cycle deg(-1) test grating presented to one eye); (3) binocular CM (all mask and test gratings presented to both eyes). As a control, masking magnitude was also measured for LM mask gratings of similar frequency (1 cycle deg(-1)) and effective contrast (3%) to that of the beat. For both LM and CM masks, the dichoptic condition yielded threshold elevations that were similar or greater than the binocular condition. When 8 and 9 cycles deg(-1) mask components were presented to separate eyes (the dichoptic variant condition), no beat pattern was visible and no elevations in detection threshold occurred. The results demonstrate that, like LM masking, detection of a target in the presence of a CM mask does not involve purely monocular mechanisms. Further, that the site of CM masking must occur beyond the stage at which monocular matching for stereopsis takes place. This is consistent with other studies which suggest that dichoptic masking is contingent on stereo matching, and thus occurs relatively late in the hierarchy of binocular visual processing.  相似文献   

18.
Wenderoth P 《Vision research》2000,40(16):2097-2100
Barlow and Reeves [1979. Vision Research, 19, 783-793] showed that bilateral symmetry detection in dot patterns is about equally efficient whether the displays are viewed monocularly or binocularly. If there is a binocular process which can be stimulated monocularly, this experiment does not indicate whether symmetry detection occurs before or after the site of binocular integration. This is so because the symmetrical patterns would have stimulated both monocular and binocular mechanisms under both viewing conditions. We presented stereoscopic 20-dot patterns, ten dots to each eye, for 150 ms so that 'false fusion' rather than rivalry occurred. Any axis of symmetry in the patterns was oriented at vertical (90 degrees ) or +/-1, 2, 3, or 4 degrees from vertical. The task was to judge whether the axis was tilted left or right of vertical, using the method of constant stimulus differences. Three kinds of pattern were used: SSS patterns were symmetrical in each eye alone and also dichoptically; NNS patterns were random monocularly but dichoptically symmetrical; and SSN patterns were symmetrical monocularly but dichoptically non-symmetrical. Orientation judgements were accurate, and equally so, for SSS and NNS displays but were extremely poor under SSN conditions. A control experiment showed that the poor performance in the SSN condition was not due to the axes of symmetry being eccentric to the fixation point. Thus, monocular symmetry is neither necessary nor sufficient for dichoptic bilateral symmetry perception; and symmetry mechanisms have no access to monocular signals.  相似文献   

19.
Foveal detection thresholds for LM and CM Gaussian blobs in the presence of visible, laterally placed blobs (separations of 0-6°) were measured monocularly and dichoptically in observers with normal vision. In the monocular and dichoptic viewing conditions, masking occurs for overlapping blobs, followed by facilitation when they are completely separated (2-8 blob sd units under monocular conditions and 4-12 blob sd units under dichoptic conditions). For LM blobs, facilitation of 24.1 ± 0.07% is demonstrated dichoptically, less than the 57.0 ± 0.06% demonstrated monocularly. For CM blobs, more robust facilitation of 39.0 ± 0.02% is demonstrated dichoptically, slightly more than the 34.6 ± 0.1% demonstrated monocularly. Lateral facilitation is thus not purely a monocular phenomenon. More robust dichoptic facilitation for CM stimuli suggests a more binocular locus for their neural processing.  相似文献   

20.
Evaluation of brain cluster activation using the functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) was sought in strabismic amblyopes. In this hospital-based case–control cross-sectional study, fMRI and DTI were conducted in strabismic amblyopes before initiation of any therapy and after visual recovery following the administration of occlusion therapy. FMRI was performed in 10 strabismic amblyopic subjects (baseline group) and in 5 left strabismic amblyopic children post-occlusion therapy after two-line visual improvement. Ten age-matched healthy children with right ocular dominance formed control group. Structural and functional MRI was carried out on 1.5T MR scanner. The visual task consisted of 8 Hz flickering checkerboard with red dot and occasional green dot. Blood-oxygen-level-dependent (BOLD) fMRI was analyzed using statistical parametric mapping and DTI on NordicIce (NordicNeuroLab) softwares. Reduced occipital activation was elicited when viewing with the amblyopic eye in amblyopes. An ‘ipsilateral to viewing eye’ pattern of calcarine BOLD activation was observed in controls and left amblyopes. Activation of cortical areas associated with visual processing differed in relation to the viewing eye. Following visual recovery on occlusion therapy, enhanced activity in bilateral hemispheres in striate as well as extrastriate regions when viewing with either eye was seen. Improvement in visual acuity following occlusion therapy correlates with hemodynamic activity in amblyopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号