首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The modification of commercial silica with solutions of NH4F or NH4Cl salts, followed by thermal treatment, enabled generation of the acidic sites in SiO2 and changed its textural properties. The use of ammonium salts solution also caused the generation of additional porosity. Using NH4F solution caused significant decrease in the specific surface area and the increase in the average pore diameter. The number and strength of resulting acid sites depend on the nature of anion in the applied ammonium salt and the concentration of salt solution. It has been found that the sample treated with NH4F presented higher total acidity (TPD–NH3) and the amount as well as the strength of acid sites increased with the concentration of the used modifier. As modified amorphous SiO2 materials used as a support for iridium (1 wt %, Ir(acac)3) nanoparticles permitted to obtain highly active catalysts for toluene hydrogenation under atmospheric pressure. The highest activity (expressed as the apparent rate and TOF) was obtained for iridium catalysts supported on silica modified by NH4F with the highest acidity. The modification of silica with NH4F favors the generation of centers able to adsorb toluene, which results in higher activity of this catalyst.  相似文献   

2.
Li-air batteries have attracted considerable attention as rechargeable secondary batteries with a high theoretical energy density of 11,400 kWh/g. However, the commercial application of Li-air batteries is hindered by issues such as low energy efficiency and a short lifetime (cycle numbers). To overcome these issues, it is important to select appropriate cathode materials that facilitate high battery performance. Carbon materials are expected to be ideal materials for cathodes due to their high electrical conductivity and porosity. The physicochemical properties of carbon materials are known to affect the performance of Li-air batteries because the redox reaction of oxygen, which is an important reaction for determining the performance of Li-air batteries, occurs on the carbon materials. In this study, we evaluated the effect of the surface modification of carbon cathode materials on the charge–discharge performance of Li-air batteries using commercial Ketjenblack (KB) and KB subjected to vacuum ultraviolet (VUV) irradiation as cathodes. The surface wettability of KB changed from hydrophobic to hydrophilic as a result of the VUV irradiation. The ratio of COOH and OH groups on the KB surface increased after VUV irradiation. Raman spectra demonstrated that no structural change in the KB before and after VUV irradiation was observed. The charge and discharge capacities of a Li-air battery using VUV-irradiated KB as the cathode decreased compared to original KB, whereas the cycling performance of the Li-air battery improved considerably. The sizes and shapes of the discharge products formed on the cathodes changed considerably due to the VUV irradiation. The difference in the cycling performance of the Li-air battery was discussed from the viewpoint of the chemical properties of KB and VUV-irradiated KB.  相似文献   

3.
Polyester fibers (PES) are the most consumed textile fibers due to their low water absorption; non-ionic character and high crystallinity. However, due to their chemical structure, the chemical interactions between polyester, finishing products, and dyes are quite challenging. We report on the use of ozone to modify the surface of polyester fibers with the goal of improving the interaction of the modified surface with finishing compounds and dyes. We used C.I. Disperse Yellow 211 to dye ozone-treated polyester fabrics and evaluated the effects of ozone treatment using FTIR-ATR, Raman spectroscopy, SEM imaging, rubbing tests, and capillarity measurements. We evaluated the dyeing performance via color analysis, and determined the dyeing kinetics. Experimental results indicate that the modification of polyester fabrics with ozone is a feasible pre-treatment that improves dyeing efficiency allowing better solidity of color and a decrease in the amount of dye required.  相似文献   

4.
Water-soluble, commercially-available poly(amidoamine) (PAMAM) dendrimers are highly-branched, well-defined, monodisperse macromolecules having an ethylenediamine core and varying surface functional groups. Dendrimers are being employed in an increasing number of biomedical applications. In this study, commercially obtained generation 5 hydroxyl-terminated (G5OH) PAMAM dendrimers were studied as potential proteomimetics for ophthalmic uses. To this end, the surface of G5OH PAMAM dendrimers were hydrophobically modified with varying amounts of dodecyl moieties, (flexible long aliphatic chains), or cholesteryl moieties (rigid lipid found in abundance in biological systems). Dendrimers were characterized by 1H-NMR, DLS, DSC and HPLC. The hydrophobic modification caused aggregation and molecular interactions between dendrimers that is absent in unmodified dendrimers. In vitro tissue culture showed that increasing the amount of dodecyl modification gave a proportional increase in toxicity of the dendrimers, while with increasing cholesteryl modification there was no corresponding increase in toxicity. Storage and loss modulus were measured for selected formulations. The hydrophobic modification caused an increase in loss modulus, while the effect on storage modulus was more complex. Rheological properties of the dendrimer solutions were comparable to those of porcine lens crystallins.  相似文献   

5.
The carbon black N-220 surface was subjected to modification through H2O2 oxidation and deposition of aminopropyltriethoxysilane. The pristine (CB-NM) and modified materials (CB-Ox and CB-APTES) were characterized by N2 adsorption–desorption isotherms, scanning electron microscopy, energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetry, and FTIR spectroscopy. Carbon black samples were applied as adsorbents for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) herbicides from aqueous solutions. The influence of their surface properties on adsorption efficiency was analyzed and discussed. The results showed that the adsorption of the herbicides was pH-dependent, and the most favorable adsorption was observed in an acidic environment. The experimental data best fit pseudo-second-order and Langmuir models for kinetic and equilibrium data, respectively. The adsorption rate of both the herbicides increased in the order of CB-APTES < CB-Ox < CB-NM and was closely correlated with the mesopore volume of the carbon blacks. The monolayer adsorption capacities were found to be 0.138, 0.340, and 0.124 mmol/g for the adsorption of 2,4-D and 0.181, 0.348, and 0.139 mmol/g for the adsorption of MCPA on CB-NM, CB-APTES, and CB-Ox, respectively. The results showed that the surface chemistry of the adsorbent plays a more important role than its porous structure. Both herbicides were preferably adsorbed on APTES-modified carbon black and were adsorbed the worst on oxidized carbon black (CB-APTES > CB-NM > CB-Ox).  相似文献   

6.
This article presents a method of reusing aluminum scrap from alloy 6082 using the hot extrusion process. Aluminum chips from milling and turning processes, having different sizes and morphologies, were cold pressed into briquettes prior to hot pressing at 400 °C at a ram speed of 2 mm/s. The study of mechanical properties combined with observations of the microstructures, as well as tests of density, hardness and electrical conductivity were carried out. On the basis of the results, the possibility of using the plastic consolidation method and obtaining materials with similar to a solid ingot mechanical properties, density and electrical conductivity was proven. The possibility of modifying the surface of consolidated aluminum scrap was tested in processes examples: polishing, anodizing and coloring. For this purpose, a number of analyses and tests were carried out: comparison of colors on color histograms, roughness determination, SEM and chemical composition analysis. It has been proven there are differences in the surface treatment of the solid material and that of scrap consolidation, and as such, these differences may significantly affect the final quality.  相似文献   

7.
Materials composed of a polymer matrix reinforced with carbon/glass fibres providing lightweight and superior mechanical properties are widely used as structural components for automotive and aerospace applications. However, such parts need to be joined with various metal alloys to obtain better mechanical performance in many structural elements. Many studies have reported enhancements in polymer–metal bonding using adhesives, adhesive/rivet combined joints, and different surface treatments. This study investigated the influences of various surface treatments on the adhesion between glass-reinforced poly(phenylene) sulphide (PPS) and aluminium alloy during the injection over-moulding process. Adhesion strength was evaluated via the shear test. Correlations for the shear strength of the polymer–metal with different metal–substrate treatments were studied. Since the strongest bonding was attained in the treatment with the highest roughness, this value, as it determines the level of micromechanical interlocking of connected materials, seems to be a critical factor affecting the adhesion strength. Three-dimensional (3D) topographic images characterized with a 3D optical microscope indicated that there was a meaningful influence exerted by the interface topologies of the aluminium substrates used for the over-moulding process. The results further indicated that increases in a substrate’s surface energy in connection with atmospheric plasma treatments negatively influence the final level of the bonding mechanism.  相似文献   

8.
In this paper, the influence of occurrence of surface texture features on the values of surface topography parameters calculated after the application of various data processing techniques was presented. Different types of surface topographies were considered, as follows: cylinder liners, some with additionally burnished dimples, turned, ground, milled, laser-textured, composite, ceramic, or isotropic in general. The effects of feature size on the areal form removal, noise suppressions, or end-effect reducing in surface texture measurements were studied. The variations of the ISO 25178 standard surface topography parameters were taken into consideration in detail. It was assumed that some of the feature sizes, distributions, and densities have a substantial impact on the values of surface topography parameters calculated after applications of regular (commonly used) algorithms and procedures, defined as basic operations, provided for raw surface texture data obtained directly from the measurement process. In the end, some of the practical applications for receiving the relevant values of surface topography parameters were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号