首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the plant-mediated preparation of silver nanoparticles with aqueous extract and infusion of Cistus incanus leaves. To evaluate aqueous extract and infusion antioxidant capacity and total phenolic content the DPPH and Folin–Ciocalteau methods were utilized. The antioxidant capacity and total phenolic content of extract and infusion were equal to 85.97 ± 6.54 mg gallic acid equivalents per gram of dry weight.; 10.76 ± 0.59 mg/mL and 12.65 ± 1.04 mg gallic acid equivalents per gram of dry weight.; 3.10 ± 0.14 mg/mL, respectively. The formed nanoparticles displayed the characteristic absorption band in the 380–450 nm wavelength range. The average size of particles was in the 68.8–71.2 nm range. Morphology and phase composition analysis revealed the formation of spherical nanoparticles with a face-centred cubic structure. Immune compatibility tests of nanoparticles and plant extracts showed no activation of the THP1-XBlue™ monocyte. Cytotoxicity tests performed with L929 mice fibroblasts showed that nanoparticles should be utilized at a concentration of 16 ppm. The minimum inhibitory concentrations determined with the microdilution method for nanoparticles prepared with plant infusion for S. aureus and S. epidermidis were 2 ppm and 16 ppm, respectively.  相似文献   

2.
The synthesis of nanoparticles (NPs) using the green route is environmentally harmonious and cost-effective compared to conventional chemical and physical methods. In this study, the green synthesis of silver NPs was carried out using an extract of Debregeasia salicifolia. The synthesized Ag NPs were characterized by means of different techniques i.e., UV-Vis spectroscopy, FTIR spectroscopy, SEM, and XRD. The XRD pattern exhibited distinctive Bragg’s peaks at (200), (111), (311), and (220). The XRD analysis confirmed the face-centered cubic geometry of the synthesized NPs and revealed that the nature of these NPs is crystalline. The synthesized NPs were verified for their antibacterial activities against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria. It showed that antibacterial activity of synthesized silver (NPs) was increased with increasing concentrations of both calcined and non-calcined NPs. The antioxidant activities of Ag NPs were also determined against ABTS at different concentrations for both calcined and non-calcined Ag NPs. Non-calcined Ag NPs have greater antioxidant activity than calcined Ag NPs. This report has a significant medicinal application, and it might open up new horizons in this field.  相似文献   

3.
The present study aims to bring an addition to biomass resources valorization for environmental-friendly synthesis of nanoparticles. Thus, the green synthesis of silver nanoparticles (AgNPs) was performed, using a novel and effective reducing agent, Primula officinalis extract. The synthesis was optimized by monitoring the characteristic absorption bands, using UV–Vis spectroscopy, and by evaluating the size and physical stability. The phenolic consumption was established using Folin-Ciocâlteu method (1.40 ± 0.42 mg, representing ~5% from the total amount of poly--phenols) and the antioxidant activity was evaluated using chemiluminescence and TEAC methods. The optimum ratio extract to Ag ions was 1:3, for which the AgNPs presented a zeta potential value of −29.3 ± 1.2 mV and particles size of 5–30 nm. For characterization, EDS and XRD techniques were used, along with microscopy techniques (TEM). The AgNPs dispersions were applied on natural textile samples (cotton and wool), as a novel antimicrobial treatment for textile preservation. The treated fabrics were further characterized in terms of chromatic parameters and antimicrobial effect against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Penicillium hirsutum strains. The high percentages of bacterial reduction, >99%, revealed that the AgNPs produced are a good candidate for textiles preservation against microbial degradation.  相似文献   

4.
In recent years, many researchers have begun to shift their focus onto the synthesis of nanomaterials as this field possesses an immense potential that may provide incredible technological advances in the near future. The downside of conventional synthesis techniques, such as co-precipitation, sol-gel and hydrothermal methods, is that they necessitate toxic chemicals, produce harmful by-products and require a considerable amount of energy; therefore, more sustainable fabrication routes are sought-after. Biological molecules have been previously utilized as precursors for nanoparticle synthesis, thus eliminating the negative factors involved in traditional methods. In addition, transition-metal nanoparticles possess a broad scope of applications due to their multiple oxidation states and large surface areas, thereby allowing for a higher reactivity when compared to their bulk counterpart and rendering them an interesting research topic. However, this field is still relatively unknown and unpredictable as the biosynthesis of these nanostructures from fungi, bacteria and plants yield undesired diameters and morphologies, rendering them redundant compared to their chemically synthesized counterparts. Therefore, this review aims to obtain a better understanding on the plant-mediated synthesis process of the major transition-metal and transition-metal oxide nanoparticles, and how process parameters—concentration, temperature, contact time, pH level, and calcination temperature affect their unique properties such as particle size, morphologies, and crystallinity.  相似文献   

5.
Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells—MCF7 and lung carcinoma epithelial cells—A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.  相似文献   

6.
In the current study, a green method for the preparation of silver nanoparticles (AgNPs) is presented as an alternative to conventional chemical and physical approaches. A biomass of Trichoderma reesei (T. reesei) fungus was used as a green and renewable source of reductase enzymes and metabolites, which are capable of transforming Ag+ ions into AgNPs with a small size (mainly 2–6 nm) and narrow size distribution (2–25 nm). Moreover, extracellular biosynthesis was carried out with a cell-free water extract (CFE) of T. reesei, which allows for facile monitoring of the bioreduction process using UV–Vis spectroscopy and investigation of the effect of experimental conditions on the transformation of Ag+ ions into AgNPs, as well as the simple isolation of as-prepared AgNPs for the study of their size, morphology and antibacterial properties. In continuation to our previous results about the influence of media on T. reesei cultivation, the amount of biomass used for CFE preparation and the concentration of Ag+ ion solution, herein, we present the impact of temperature (4, 20, 30 and 40 °C), agitation and time duration on the biosynthesis of AgNPs and their properties. A high stability of AgNPs in aqueous colloids was observed and attributed to the capping effect of the biomolecules as shown by the zeta potential (−49.0/−51.4 mV) and confirmed by the hydrodynamic size of 190.8/116.8 nm of AgNPs.  相似文献   

7.
Nanotechnology is the creation, manipulation and use of materials at the nanometre size scale (1 to 100 nm). At this size scale there are significant differences in many material properties that are normally not seen in the same materials at larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview of recent trends in synthesizing nanoparticles via biological entities and their potential applications.  相似文献   

8.
Couroupita guianensis Aubl. is an important medicinal tree. This tree is rich in various phytochemicals, and is therefore used as a potent antioxidant and antibacterial agent. This plant is also used for the treatment of various diseases. Here, we have improved its medicinal usage with the biosynthesis of silver nanoparticles (AgNPs) using Couroupita guianensis Aubl. flower extract as a reducing and capping agent. The biosynthesis of the AgNPs reaction was carried out using 1 mM of silver nitrate and flower extract. The effect of the temperature on the biosynthesis of AgNPs was premeditated by room temperature (25 °C) and 60 °C. The continuous stirring of the reaction mixture at room temperature for approximately one hour resulted in the successful formation of AgNPs. A development of a yellowish brown color confirmed the formation of AgNPs. The efficacious development of AgNPs was confirmed by the characteristic peaks of UV–Vis, X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy spectra. The biosynthesized AgNPs exhibited significant free radical scavenging activity through a DPPH antioxidant assay. These AgNPs also showed potent antibacterial activity against many pathogenic bacterial species. The results of molecular dynamics simulations also proved the average size of NPs and antibacterial potential of the flower extract. The observations clearly recommended that the green biosynthesized AgNPs can serve as effective antioxidants and antibacterial agents over the plant extract.  相似文献   

9.
The green synthesis of silver nanoparticles (AgNPs) from biological waste, as well as their excellent antibacterial properties, is currently attracting significant research attention. This study synthesized AgNPs from different mango peel extract concentrations while investigating their characteristics and antibacterial properties. The results showed that the AgNPs were irregular with rod-like, spherical shapes and were detected in a range of 25 nm to 75 nm. The AgNPs displayed antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), showing a more significant impact when synthesized with 0.20 g/mL of mango peel extract. Therefore, the antibacterial effect of different diluted AgNP concentrations on the growth kinetic curves of E. coli and S. aureus after synthesis with 0.20 g/mL mango peel extract was analyzed. The results indicated that the AgNP antibacterial activity was higher against S. aureus than against E. coli, while the AgNP IC50 in these two strains was approximately 1.557 mg/mL and 2.335 mg/L, respectively. This research provides new insights regarding the use of postharvest mango byproducts and the potential for developing additional AgNP composite antibacterial materials for fruit and vegetable preservation.  相似文献   

10.
Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.  相似文献   

11.
Along with the progress of nanoscience and nanotechnology came the means to synthesize nanometric scale materials. While changing their physical and chemical properties, they implicitly changed their application area. The aim of this paper was the synthesis of colloidal silver nanoparticles (Ag-NPs by ultrasonic disruption), using soluble starch as a reducing agent and further as a stabilizing agent for produced Ag-NPs. In this context, an important parameter for Ag-NPs preparation is the pH, which can determine the particle size and stability. The physical-chemical behavior of the synthesized Ag-NPs (shape, size, dispersion, electric charge) is strongly influenced by the pH value (experiment being conducted for pH values in the range between 8 and 13). The presence of a peak located at 412 nm into the UV-VIS spectra demonstrates the presence of silver nano-spheres into the produced material. In UV/VIS spectra, we observed a specific peak for yellow silver nano-spheres located at 412 nm. Samples characterization was performed by scanning electron microscopy, SEM, energy-dispersive X-ray spectroscopy, EDX, Fourier-transform infrared spectroscopy, and FT-IR. For all Ag-NP samples, we determined the zeta and observed that the Ag-NP particles obtained at higher pH and have better stability. Due to the intrinsic therapeutic properties and broad antimicrobial spectrum, silver nanoparticles have opened new horizons and new approaches for the control of different types of infections and wound healing abilities. In this context, the present study also aims to confirm the antimicrobial effect of prepared Ag-NPs against several bacterial strains (indicator and clinically isolated strains). In this way, it was confirmed that the antimicrobial activity of synthesized Ag-NPs was good against Staphylococcus aureus (ATCC 25923 and S. aureus MSSA) and Escherichia coli (ATTC 25922 and clinically isolated strain). Based on this observation, we conclude that the prepared Ag-NPs can represent an alternative or auxiliary material used for controlling important nosocomial pathogens. The fungal reference strain Candida albicans was more sensitive at Ag-NPs actions (zone of inhibition = 20 mm) compared with the clinically isolated strain (zone of inhibition = 10 mm), which emphasizes the greater resistance of fungal strains at antimicrobial agent’s action.  相似文献   

12.
Biosynthesis of silver nanoparticles (AgNPs) using the green matrix is an emerging trend and is considered green nanotechnology because it involves a simple, low-cost, and environmentally friendly process. The present research aimed to synthesize silver nanoparticles from a Leonotis nepetifolia (L.) R.Br. flower bud aqueous extract, characterize these nanoparticles, and perform in vitro determination of their biological applications. UV-Vis spectra were used to study the characterization of biosynthesized L. nepetifolia-flower-bud-mediated AgNPs (LnFb-AgNPs); an SPR absorption maximum at 418 nm confirmed the formation of LnFb-AgNPs. The presumed phytoconstituents subjected to reduction in the silver ions were revealed by FTIR analysis. XRD, TEM, EDS, TGA, and zeta potential with DLS analysis revealed the crystalline nature, particle size, elemental details, surface charge, thermal stability, and spherical shape, with an average size of 24.50 nm. In addition, the LnFb-AgNPs were also tested for antimicrobial activity and exhibited a moderate zone of inhibition against the selected pathogens. Concentration-dependent antioxidant activity was observed in the DPPH assay. Further, the cytotoxicity increased proportionate to the increasing concentration of the biosynthesized LnFb-AgNPs with a maximum effect at 200 μg/mL by showing the inhibition cell viability percentages and an IC50 of 35.84 μg/mL. Subsequently, the apoptotic/necrotic potential was determined using Annexin V/Propidium Iodide staining by the flow cytometry method. Significant early and late apoptosis cell populations were observed in response to the pancreatic ductal adenocarcinoma (PANC-1) cell line, as demonstrated by the obtained results. In conclusion, the study’s findings suggest that the LnFb-AgNPs could serve as remedial agents in a wide range of biomedical applications.  相似文献   

13.
Nanotechnology has become an emerging research field with numerous biomedical scientific applications. Silver possesses bactericidal activities that have been harnessed for centuries; however, there is a concern about the toxic effects of silver nanoparticles. This paper aims to provide an overview of silver-treated dental implants and discuss their potential to reduce the prevalence of peri-implant diseases. An electronic search was performed using PubMed. After screening, data extraction was performed on the 45 remaining articles using inclusion and exclusion criteria. Most of the articles demonstrated that silver nanoparticles embedded in a coating layer and/or on surface-treated titanium exhibit sound antibacterial effects and biocompatibility. Most of the reviewed studies revealed that silver nanoparticles on dental implant surfaces reduced cytotoxicity but provided a prolonged antibacterial effect. The cytotoxicity and antibacterial effect are closely linked to how the silver nanoparticles are released from the titanium surfaces, where a slower release increases cell viability and proliferation. However, to improve the clinical translation, there is still a need for more studies, especially evaluating the long-term systemic effects and studies recreating the conditions in the oral cavity.  相似文献   

14.
Lately, the development of green chemistry methods with high efficiency for metal nanoparticle synthesis has become a primary focus among researchers. The main goal is to find an eco-friendly technique for the production of nanoparticles. Ferro- and ferrimagnetic materials such as magnetite (Fe3O4) exhibit superparamagnetic behavior at a nanometric scale. Magnetic nanoparticles have been gaining increasing interest in nanoscience and nanotechnology. This interest is attributed to their physicochemical properties, particle size, and low toxicity. The present work aims to synthesize magnetite nanoparticles in a single step using extracts of green lemon Citrus Aurantifolia residues. The results produced nanoparticles of smaller size using a method that is friendlier to health and the environment, is more profitable, and can be applied in anticorrosive coatings. The green synthesis was carried out by a co-precipitation method under variable temperature conditions. The X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) characterization showed that magnetite nanoparticles were successfully obtained with a very narrow particle size distribution between 3 and 10 nm. A composite was produced with the nanoparticles and graphene to be used as a surface coating on steel. In addition, the coating’s anticorrosive behavior was evaluated through electrochemical techniques. The surface coating obtained showed good anticorrosive properties and resistance to abrasion.  相似文献   

15.
The one-pot synthesis process has emerged as an economical synthesis method without the involvement of purification or formation of intermediate compounds. Therefore, nickel nanoparticles were selectively synthesized by a simple hydrothermal method using nickel(II) chloride hexahydrate and borane–ammonia complex as a precursor and reducing agent, respectively. The morphology and crystal growth were observed by controlling the precursor concentration ratio of Ni:AB from 1:0.1 to 1:4 under various temperatures ranging from 80 to 140 degrees. In addition, we observed that the crystal growth rate under the influence of NaCl and KCl resulted in spherical Ni particles with size distributions controlled in the range of 297.65 nm to 1082.15 nm and 358.6 nm to 605 nm, respectively.  相似文献   

16.
Steady developments made in nanotechnology-based products have facilitated new perspectives for combating drug-resistant fungi. Silver nanoparticles represent one of the most attractive nanomaterials in biomedicine due to their exclusive optical, electromagnetic, and catalytic properties and antifungal potency compared with other metal nanoparticles. Most studies show that the physicochemical parameters affecting the antifungal potential of AgNPs include the shape, size, surface charge, and concentration and colloidal state. For the present study, pullulan (P) and its oxidized counterpart (PO) have been selected as matrices for the silver nanoparticles’ generation and stabilization (AgNPs). The TEMPO (2,2,6,6-tetramethylpiperidin-1-yl radical)–sodium hypochlorite–sodium bromide system was used for the C6 selective oxidation of pullulan in order to introduce negatively charged carboxylic groups in its structure. The structure and morphology of the synthesized AgNPs were analyzed using FTIR and EDX. The main objective of this study was to elucidate the antifungal activity of AgNPs on the clinical yeasts isolates and compare the performance of AgNPs with the conventional antifungals. In this study, different concentrations of AgNPs were tested to examine antifungal activity on various clinical isolates.  相似文献   

17.
The state-of-the-art technology of raw silver refining in a silver nitrate-based electrorefining process (Moebius-electrolysis) is accompanied by several disadvantages, both from a technological and from an ecological point of view. In addition, increasing concentrations of critical impurities from secondary sources, like palladium, in raw silver are a further challenge for the future of silver refining. Thus, there is strong motivation for the development of an adequate, alternative process of raw silver refining to substitute the existing Moebius-electrolysis. Due to its less environmentally toxic character and the high aqueous solubility of its silver salt, methanesulfonic acid (MSA) is a possible base chemical for the design of an efficient refining method based on leaching of raw silver followed by electrowinning, with less ecological and technological complications. In this paper the results of some fundamental investigations on the leaching of raw silver granules, containing approx. 94% silver, with methanesulfonic acid and hydrogen peroxide as an oxidation agent are presented. Agitation leaching experiments were conducted on a laboratory scale and the effects of the solid concentration, the hydrogen peroxide dosage and the temperature as leaching parameters were studied. The obtained results indicate that silver leaching yields of more than 90% are achievable with leaching at elevated temperatures of 65 °C or 80 °C, solid concentrations of 500 g/L and at a stoichiometric H2O2:Ag-ratio of 3:1. Increased solid concentrations greater than 500 g/L and elevated temperatures of 65 °C or 80 °C additionally improved the selectivity of the process regarding the leaching of Pd.  相似文献   

18.
The cadmium-contaminated water body is a worldwide concern for the environment and toxic to human beings and the removal of cadmium ions from drinking and groundwater sustainably and cost-effectively is important. A novel nano-biocomposite was obtained by impregnating silver nanoparticles (AgNPs) within kenaf-based activated carbon (KAC) in the presence of chitosan matrix (CS) by a simple, facile photoirradiation method. The nano-biocomposite (CS-KAC-Ag) was characterized by an environmental scanning electron microscope equipped with energy dispersive X-ray spectroscopy (ESEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) method. A Box–Behnken design of response surface methodology (RSM) was used to optimize the adsorption of Cd2+. It was found that 95.1% of Cd2+ (10 mg L−1) was eliminated at pH 9, contact time of 120 min, and adsorbent dosage of 20 mg, respectively. The adsorption of Cd2+ by CS-KAC-Ag is also in agreement with the pseudo-second-order kinetic model with an R2 (coefficient of determination) factor greater than 99%. The lab data were also corroborated by tests conducted using water samples collected from mining sites in Mexico. Along with Cd2+, the CS-KAC-Ag exhibited superior removal efficiency towards Cr6+ (91.7%) > Ni2+ (84.4%) > Co2+ (80.5%) at pH 6.5 and 0.2 g L−1 dose of the nano-adsorbent. Moreover, the adsorbent was regenerated, and the adsorption capacity remained unaltered after five successive cycles. The results showed that synthesized CS-KAC-Ag was a biocompatible and versatile porous filtering material for the decontamination of different toxic metal ions.  相似文献   

19.
The synthesis of nanoparticles by green approaches is gaining unique importance due to its low cost, biocompatibility, high productivity, and purity, and being environmentally friendly. Herein, biomass filtrate of Pseudomonas aeruginosa isolated from mangrove rhizosphere sediment was used for the biosynthesis of zinc oxide nanoparticles (ZnO-NPs). The bacterial isolate was identified based on morphological, physiological, and 16S rRNA. The bio-fabricated ZnO-NPs were characterized using color change, UV-visible spectroscopy, FT-IR, TEM, and XRD analyses. In the current study, spherical and crystalline nature ZnO-NPs were successfully formed at a maximum SPR (surface plasmon resonance) of 380 nm. The bioactivities of fabricated ZnO-NPs including antibacterial, anti-candida, and larvicidal efficacy were investigated. Data analysis showed that these bioactivities were concentration-dependent. The green-synthesized ZnO-NPs exhibited high efficacy against pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and unicellular fungi (Candida albicans) with inhibition zones of (12.33 ± 0.9 and 29.3 ± 0.3 mm), (19.3 ± 0.3 and 11.7 ± 0.3 mm), and (22.3 ± 0.3 mm), respectively, at 200 ppm. The MIC value was detected as 50 ppm for E. coli, B. subtilis, and C. albicans, and 200 ppm for S. aureus and P. aeruginosa with zones of inhibition ranging between 11.7 ± 0.3–14.6 ± 0.6 mm. Moreover, the biosynthesized ZnO-NPs showed high mortality for Culex pipiens with percentages of 100 ± 0.0% at 200 ppm after 24 h as compared with zinc acetate (44.3 ± 3.3%) at the same concentration and the same time.  相似文献   

20.
Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of interest. A borosiloxane (BS) can be used as one such material. A composite material combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm (half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than 0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and its characteristics are not inferior to the medical alloy nitinol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号