首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The short arm of chromosome 16 (16p) is enriched for segmental duplications, making it susceptible to recurrent, reciprocal rearrangements implicated in the etiology of several phenotypes, including intellectual disability, speech disorders, developmental coordination disorder, autism spectrum disorders, attention deficit hyperactivity disorders, obesity and congenital skeletal disorders. In our clinical study 73 patients were analyzed by chromosomal microarray, and results were confirmed by fluorescence in situ hybridization or polymerase chain reaction. All patients underwent detailed clinical evaluation, with special emphasis on behavioral symptoms. 16p rearrangements were identified in 10 individuals. We found six pathogenic deletions and duplications of the recurrent regions within 16p11.2: one patient had a deletion of the distal 16p11.2 region associated with obesity, while four individuals had duplications, and one patient a deletion of the proximal 16p11.2 region. The other four patients carried 16p variations as second-site genomic alterations, acting as possible modifying genetic factors. We present the phenotypic and genotypic results of our patients and discuss our findings in relation to the available literature.  相似文献   

2.
With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient''s clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders.  相似文献   

3.
One of the recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome (593 kb; ~29.5 Mb to ~30.1 Mb), associated with developmental delay, autism spectrum disorder, epilepsy, and obesity. Less frequently reported is a smaller 220 kb deletion, adjacent and distal to this 16p11.2 deletion, which has been referred to as the atypical 16p11.2 deletion (220 kb; ~28.74 Mb to ~28.95 Mb). We describe three patients with this deletion and update the manifestations in two sibs who have been described as possibly new entity in this Journal in 1997 [Bakker and Hennekam (1997); Am J Med Genet 70:312–314] and were recently found to have the “atypical 16p11.2 deletion” as well. Patients show a developmental delay, behavioral problems, and unusual facial morphology (prominent forehead, downslanted, and narrow palpebral fissures), and some are obese. We suggest that this “atypical” deletion may turn out to become a microdeletion syndrome that will be recognizable in the future, or at least to show a phenotype that is recognizable in retrospect. As it may no longer be so “atypical,” we suggest renaming the entity “distal 16p11.2 deletion,” to distinguish it from the common proximal 16p11.2 deletion. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
5.
We evaluated 966 consecutive pediatric patients with various developmental disorders by high-resolution microarray-based comparative genomic hybridization and found 10 individuals with pathogenic copy number variants (CNVs) on the short arm of chromosome 8 (8p), representing approximately 1% of the patients analyzed. Two patients with 8p terminal deletion associated with interstitial inverted duplication (inv dup del(8p)) had different mechanisms leading to the formation of a dicentric intermediate during meiosis. Three probands carried an identical ∼5.0 Mb interstitial duplication of chromosome 8p23.1. Four possible hotspots within 8p were observed at nucleotide coordinates of ∼10.45, 24.32–24.82, 32.19–32.77, and 38.94–39.72 Mb involving the formation of recurrent genomic rearrangements. Other CNVs with deletion- or duplication-specific start or stop coordinates on the 8p provide useful information for exploring the basic mechanisms of complex structural rearrangements in the human genome.  相似文献   

6.
The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5-30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5-30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28-30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40-29.25 Mb), inherited from his apparently healthy father. Recurrent deletions in this region encompassing the SH2B1 gene were recently reported in early-onset obesity and in individuals with neurodevelopmental disorders associated with phenotypic variability. We discuss the clinical and genetic implications of two different 16p chromosomal rearrangements in this family, and suggest that the 16p11.2 deletion in the father predisposed to the formation of the duplication in his twin children.  相似文献   

7.
Expressive language impairment is one of the most frequently associated clinical features of 16p11.2 copy number variations (CNV). However, our understanding of the language profiles of individuals with 16p11.2 CNVs is still limited. This study builds upon previous work in the Simons Variation in Individuals Project (VIP, now known as Simons Searchlight), to characterize language abilities in 16p11.2 deletion and duplication carriers using comprehensive assessments. Participants included 110 clinically ascertained children and family members (i.e., siblings and cousins) with 16p11.2 BP4‐BP5 deletion and 58 with 16p11.2 BP4‐BP5 duplication between the ages of 2–23 years, most of whom were verbal. Regression analyses were performed to quantify variation in language abilities in the presence of the 16p11.2 deletion and duplication, both with and without autism spectrum disorder (ASD) and cognitive deficit. Difficulties in pragmatic skills were equally prevalent in verbal individuals in both deletion and duplication groups. NVIQ had moderate quantifiable effects on language scores in syntax and semantics/pragmatics (a decrease of less than 1 SD) for both groups. Overall, language impairments persisted even after controlling for ASD diagnosis and cognitive deficit. Language impairment is one of the core clinical features of individuals with 16p11.2 CNVs even in the absence of ASD and cognitive deficit. Results highlight the need for more comprehensive and rigorous assessment of language impairments to maximize outcomes in carriers of 16p11.2 CNVs.  相似文献   

8.

Background

Chromosomal rearrangements, arising from unequal recombination between repeated sequences, are found in a subset of patients with autism. Duplications involving loci associated with behavioural disturbances constitute an especially good candidate mechanism. The Williams–Beuren critical region (WBCR), located at 7q11.23, is commonly deleted in Williams–Beuren microdeletion syndrome (WBS). However, only four patients with a duplication of the WBCR have been reported to date: one with severe language delay and the three others with variable developmental, psychomotor and language delay.

Objective and Methods

In this study, we screened 206 patients with autism spectrum disorders for the WBCR duplication by quantitative microsatellite analysis and multiple ligation‐dependent probe amplification.

Results

We identified one male patient with a de novo interstitial duplication of the entire WBCR of paternal origin. The patient had autistic disorder, severe language delay and mental retardation, with very mild dysmorphic features.

Conclusion

We report the first patient with autistic disorder and a WBCR duplication. This observation indicates that the 7q11.23 duplication could be involved in complex clinical phenotypes, ranging from developmental or language delay to mental retardation and autism, and extends the phenotype initially reported. These findings also support the existence of one or several genes in 7q11.23 sensitive to gene dosage and involved in the development of language and social interaction.  相似文献   

9.
Deletion and duplication of the -3.7-Mb region in 17p11.2 result in two reciprocal syndrome, Smith-Magenis syndrome and Potocki-Lupski syndrome. Smith-Magenis syndrome is a well-known developmental disorder. Potocki-Lupski syndrome has recently been recognized as a microduplication syndrome that is a reciprocal disease of Smith-Magenis syndrome. In this paper, we report on the clinical and cytogenetic features of two Korean patients with Smith-Magenis syndrome and Potocki-Lupski syndrome. Patient 1 (Smith-Magenis syndrome) was a 2.9-yr-old boy who showed mild dysmorphic features, aggressive behavioral problems, and developmental delay. Patient 2 (Potocki-Lupski syndrome), a 17-yr-old boy, had only intellectual disabilities and language developmental delay. We used array comparative genomic hybridization (array CGH) and found a 2.6 Mb-sized deletion and a reciprocal 2.1 Mb-sized duplication involving the 17p11.2. These regions overlapped in a 2.1 Mb size containing 11 common genes, including RAI1 and SREBF.  相似文献   

10.
Potocki-Lupski syndrome (PTLS) is a recently described microduplication syndrome associated with duplication 17p11.2, including the RAI1 gene. Features of PTLS include hypotonia, feeding difficulties, failure to thrive, developmental delay and behavioral abnormalities including autistic spectrum disorder, anxiety, and inattention. Cardiovascular anomalies were not recognized as a feature of duplication 17p11.2 until 2007 when noted in over 50% of a clinically characterized cohort. We report a patient with hypoplastic left heart syndrome whose diagnosis of PTLS was delayed until a genetic evaluation at age 4 years because of severe expressive language impairment. We suggest that array comparative genomic hybridization be performed in infants with severe congenital heart defects.  相似文献   

11.
Microdeletions of PARK2 have been reported previously in seven patients with autism spectrum disorder. There are no reports of PARK2 microduplications in this population. Presented are two patients, one with deletion and the other with duplication, both with autism spectrum disorder, though their syndromic phenotypes vary. The deletion patient is cognitively normal and ectomorphic: the duplication patient is cognitively impaired, underweight and short. Further, the microduplication patient has demonstrated adverse medication reactions to psychotropic medications active in the dopamine metabolic pathway: cyclopentolate, lisdexamfetamine, methylphenidate. These patients support an association between PARK2 mutations and autism spectrum disorder and suggest that duplications may be equally causative. It is hypothesized that the disparate patient phenotypes may represent a deletion/duplication syndrome and that the adverse medication reactions may be a pharmacogenetic phenomenon. © 2011 Wiley‐Liss, Inc.  相似文献   

12.
Recurrent 16p11.2 microdeletions in autism   总被引:6,自引:0,他引:6  
Autism is a childhood neurodevelopmental disorder with a strong genetic component, yet the identification of autism susceptibility loci remains elusive. We investigated 180 autism probands and 372 control subjects by array comparative genomic hybridization (aCGH) using a 19K whole-genome tiling path bacterial artificial chromosome microarray to identify submicroscopic chromosomal rearrangements specific to autism. We discovered a recurrent 16p11.2 microdeletion in two probands with autism and none in controls. The deletion spans approximately 500-kb and is flanked by approximately 147-kb segmental duplications (SDs) that are >99% identical, a common characteristic of genomic disorders. We assessed the frequency of this new autism genomic disorder by screening an additional 532 probands and 465 controls by quantitative PCR and identified two more patients but no controls with the microdeletion, indicating a combined frequency of 0.6% (4/712 autism versus 0/837 controls; Fisher exact test P = 0.044). We confirmed all 16p11.2 deletions using fluorescence in situ hybridization, microsatellite analyses and aCGH, and mapped the approximate deletion breakpoints to the edges of the flanking SDs using a custom-designed high-density oligonucleotide microarray. Bioinformatic analysis localized 12 of the 25 genes within the microdeletion to nodes in one interaction network. We performed phenotype analyses and found no striking features that distinguish patients with the 16p11.2 microdeletion as a distinct autism subtype. Our work reports the first frequency, breakpoint, bioinformatic and phenotypic analyses of a de novo 16p11.2 microdeletion that represents one of the most common recurrent genomic disorders associated with autism to date.  相似文献   

13.
The chromosome 16p13.11 heterozygous deletion is associated with a diverse array of neuropsychiatric disorders including intellectual disabilities, autism, schizophrenia, epilepsy and attention-deficit hyperactivity disorder. However the clinical significance of its reciprocal duplication is not clearly defined yet. We evaluated 1645 consecutive pediatric patients with various developmental disorders by high-resolution microarray-based comparative genomic hybridization and identified four deletions and eight duplications within the 16p13.11 region, representing ~0.73% (12/1645) of the patients analyzed. Recurrent clinical features in these patients include mental retardation/intellectual disability, autism, seizure, dysmorphic feature or multiple congenital anomalies. Our data expand the spectrum of the clinical findings in patients with these genomic abnormalities and provide further support for the pathogenic involvement of this duplication in patients who carry them.  相似文献   

14.
Through several large-scale screening studies for autism spectrum disorders (ASD), a common 593-kb interstitial deletion of 16p11.2 has been identified as one of the most common genomic disorders associated with ASD. In this study, a familial occurrence of the 16p11.2 deletion was identified in association with hemivertebrae. The proband was a 3-year-old boy who showed developmental delay, displayed hyperactive but not autistic behavior, and had hemivertebrae, rib anomalies, and inguinal hernia. Familial investigation revealed that his mother shared the same deletion. Under the hypothesis of the existence of an unmasked mutation in the deletion region, we analyzed the sequence of the T-box 6 gene (TBX6) included in the deletion region, but did not detect any mutation. This suggests that haploinsufficiency of TBX6 can lead to vertebral malformation in low penetrance.  相似文献   

15.
We describe a partial duplication of the chromosome 16 short arm [46,XY,dup(16)(p11.2p13.1)] in an Iranian girl with autism, neurodevelopmental delay, mental retardation, very poor memory, and dysmorphism including sparse hair, upslanting palpebral fissures, long philtrum, micrognathia, hypotonia, small feet and hands, syndactyly of the fingers, and hypoplastic thumbs. The patient now four years old, has a normal twin sister, and the parents are unrelated. The abnormal 16p was originally detected by banding cytogenetic techniques, and was characterized by multicolour banding fluorescence in situ hybridization (MCB). The MCB pattern on the derivative chromosome 16 indicated a direct duplication of the region 16p11.2 to 16p13.1.  相似文献   

16.
The 16p11.2 deletion is a recurrent genomic event and a significant risk factor for autism spectrum disorders (ASD). This genomic disorder also exhibits extensive phenotypic variability and diverse clinical phenotypes. The full extent of phenotypic heterogeneity associated with the 16p11.2 deletion disorder and the factors that modify the clinical phenotypes are currently unknown. Multiplex families with deletion offer unique opportunities for exploring the degree of heterogeneity and implicating modifiers. Here we reported the clinical and genomic characteristics of three 16p11.2 deletion carriers in a Chinese family. The father carries a de novo 16p11.2 deletion, and it was transmitted to the proband and sib. The proband presented with ASD, intellectual disability, learning difficulty, congenital malformations such as atrial septal defect, scoliosis. His dysmorphic features included myopia and strabismus, flat and broad nasal bridge, etc. While the father shared same neurodevelopmental problems as the proband, the younger brother did not show many of the proband's phenotypes. The possible unmasked mutation of TBX6 and MVP gene in this deleted region and the differential distribution of other genomic CNVs were explored to explain the phenotypic heterogeneity in these carriers. This report demonstrated the different developmental trajectory and discordant phenotypes among family members with the same 16p11.2 deletion, thus further illustrated the phenotypic complexity and heterogeneity of the 16p11.2 deletion. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
We report on two patients with duplication of the subterminal region of chromosome 16p (dup16p) recognized by fluorescent in situ hybridization (FISH) telomere analysis, presenting with closely overlapping facial features and neurological impairment. Distinct facial anomalies included high forehead, sparse eyebrows, blepharophimosis, short nose, everted upper lip, high-arched palate, wide-spaced teeth, and cupped anteverted ears. Susceptibility to vascular anomalies, in particular pulmonary hypertension and portal cavernoma, was found in one patient. Subtelomeric analysis by FISH demonstrated a de novo duplication of the subtelomeric region of chromosome 16p and a deletion of the subtelomeric region of chromosome 4q in case 1, and duplication of the subtelomeric region of 16p and a deletion of the subtelomeric region of 21q, resulting from malsegregation of a balanced maternal traslocation t(16pter;21qter) in case 2. The extension of duplicated regions measured by array-comparative genome hybridization was about 12 Mb on 16p13.3p13.13 in case 1, and about 8.5 Mb on 16p13.3p13.2 in case 2. In conclusion, we reported a clinically recognizable disorder in two patients with dup16p. Pulmonary hypertension, vascular ring, and manifestations of vascular disruption, as terminal hypoplasia of hands and aplasia cutis, have been previously described in association with dup16p. Thus, susceptibility to pulmonary vascular disease and other vascular anomalies can be a feature of dup16p, suggesting that this subtelomeric region in some respect could be related to vascular anomalies.  相似文献   

18.
Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self‐injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnoses—particularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD.  相似文献   

19.
Tracheal agenesis (TA) is a rare congenital anomaly of the respiratory tract. Many patients have associated anomalies, suggesting a syndromal phenotype. In a cohort of 12 patients, we aimed to detect copy number variations. In addition to routine cytogenetic analysis, we applied oligonucleotide array comparative genomic hybridization. Our patient cohort showed various copy number variations, of which many were parentally inherited variants. One patient had, in addition to an inherited 16p12.1 deletion, a 3.6 Mb deletion on chromosomal locus 5q11.2. This patient had a syndromic phenotype, including vertebral, anal, cardiovascular and tracheo-oesophageal associated anomalies, and other foregut-related anomalies, such as cartilage rings in the oesophagus and an aberrant right bronchus. No common deletions or duplications are found in our cohort, suggesting that TA is a genetically heterogeneous disorder.  相似文献   

20.
Partial trisomy 16 is rare and most of the reported cases are secondary to chromosome rearrangements resulting in concurrent monosomies or trisomies of a second chromosome. Only a few patients survive the neonatal period and the duplication of the long arm seems to be mainly responsible for the prenatal lethality of the full trisomy 16. The reported patients with a partial 16q trisomy have a wide spectrum of congenital anomalies that include dysmorphic features, central nervous system malformations, failure to thrive, and club feet. The patients with duplications of proximal 16q frequently have short stature, developmental delay, speech delay, learning difficulties, and mild to severe behavioral problems. Here we describe a patient with an inverted de novo tandem duplication of 16q with breakpoints evaluated in detail by molecular-cytogenetic techniques. Main clinical features include postural, motor and speech delay with severe learning difficulties and behavioral problems, obesity, microcephaly, and mild dysmorphic features. In the report we attempt to classify the few reported patients with pure partial duplications of 16q in more narrow and homogeneous groups: proximal, proximal-intermediate, intermediate, and intermediate-distal duplications. Moreover, we emphasize the importance of proper cytogenetic investigation and complete molecular cytogenetic refinement in all cases with a suspected chromosomal anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号