首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were performed in the rabbit aortic rings, precontracted with norepinephrine, to determine the subtype(s) of muscarinic receptors involved in endothelium-dependent relaxation and contraction in the absence of endothelium elicited by cholinergic stimuli. Acetylcholine (ACh) and arecaidine propargyl ester (APE), a M2 and M3 agonist, produced a dose-dependent relaxation and contraction in endothelium-intact and endothelium-denuded rabbit aortic rings, respectively. Both of these responses were blocked by the muscarinic receptor antagonist atropine. M1 selective agonist McN-A-343 [4-[N-(3-chlorophenyl)carbamoyloxy]-2-butinyltrimethylammonium+ ++ chloride] did not produce any effect on the tone of precontracted aortic rings. ACh- and APE-induced relaxation in aortic rings with intact endothelium was selectively blocked by M3 receptor antagonists hexahydrosila-difenidol and p-fluoro-hexahydro-sila-difenidol (pA2 of 7.84 and 7.18) but not by M1 antagonist pirenzepine or M2 receptor antagonists AF-DX 116 [11-(2-[(diethylamino)methyl]- 1-piperidinyl]acetyl)-5, 11-dihydro-6H-pyrido-[2,3-b][1,4]-benzo-diazepin-6-one] and methoctramine. ACh- and APE-induced contraction was inhibited by M2 receptor antagonists AF-DX 116 and methoctramine (pA2 of 7.11 and 6.71) but not by pirenzepine, hexahydro-sila-difenidol or p-fluoro-hexahydro-sila-difenidol. ACh- and APE-induced relaxation or contraction were not altered by nicotinic receptor antagonist hexamethonium or cyclooxygenase inhibitor indomethacin. These data suggest that relaxation elicited by cholinergic stimulin in endothelium-intact aortic rings is mediated via release of endothelium-derived relaxing factor consequent to activation of M3 receptors located on endothelial cells, whereas the contraction in aortic rings denuded of their endothelium is mediated via stimulation of M2 receptors located on smooth muscle cells.  相似文献   

2.
A characteristic feature of airway smooth muscle is its relative sensitivity to relaxant effects of beta adrenergic agonists when contracted by inflammatory mediators, such as histamine, vs. resistance to these relaxant effects when contracted by muscarinic agonists. Because contractions presumably depend upon the hydrolysis of membrane phosphoinositides (PI) and the generation of inositol phosphates (IP), our goal was to test for the effects of forskolin, isoproterenol, and dibutyryl cAMP on histamine- vs. methacholine-induced IP accumulation in canine tracheal smooth muscle. Methacholine (10(-3) M) was a more effective stimulant of IP accumulation (9.6 +/- 2.1-fold increase) than equimolar histamine (3.6 +/- 0.5-fold increase) in this tissue. When responses to equieffective methacholine (4 x 10(-6) M) and histamine (10(-3) M) were compared, neither forskolin, isoproterenol, nor dibutyryl cAMP significantly decreased IP accumulation in response to methacholine. In contrast, each of these three agents significantly decreased responses to histamine (by 56 +/- 9, 52 +/- 2, and 61 +/- 2%, respectively). We concluded that, in canine tracheal smooth muscle, increased cAMP is associated with inhibition of PI hydrolysis in response to histamine but not methacholine. The findings suggest a novel mechanism for selective modulation by cAMP of receptor-mediated cellular activation.  相似文献   

3.
Prejunctional muscarinic receptors from the deep muscular plexus of canine ileum were studied, and their properties were compared with those of the postjunctional receptors of the circular smooth muscle. In the purified synaptosomal fraction (a fraction containing primarily the axonal varicosities of deep muscular plexus), the muscarinic ligand N-[3H]methylscopolamine labeled an apparently homogenous population of receptors (nH = 1) with a Kd of 2.7 nM and a Bmax of 195 +/- 44 fmol/mg protein (mean +/- S.D., n = 4). These receptors showed a high affinity for the M3/M1-selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (pKi = 7.41); in contrast, the pKi values of pirenzepine (5.60), methoctramine (5.65) and AF-DX 116 (5.21) implied little selectivity for these subtypes. The binding properties of muscarinic receptors in the synaptosomal fraction were different from the binding properties of muscarinic receptors in the purified circular smooth muscle plasma membranes. Most notably, the circular smooth muscle receptors had significantly lower affinity for N-[3H]methylscopolamine (Kd = 16 nM) with a Bmax value of 2088 +/- 276 fmol/mg. The affinities of the M2 subtype-selective muscarinic antagonists methoctramine and AF-DX 116 were similar in both membrane preparations. The receptor population associated with the deep muscular plexus synaptosomal fraction was linked to the inhibition of adenylate cyclase activity, as demonstrated by a concentration-dependent, atropine-sensitive inhibition of the forskolin-stimulated enzyme in the presence of muscarinic agonists carbachol and oxotremorine. Based on the pharmacological observations presented here, the prejunctional muscarinic receptors in the axonal varicosities of deep muscular plexus are different from the postjunctional receptors present in the circular smooth muscle.  相似文献   

4.
Muscarinic receptors of the rabbit ear artery were characterized by observing the effect of the subtype selective antagonist pirenzepine on functional responses and radioligand binding. Pirenzepine has been shown to bind with high affinity to muscarinic receptors of certain brain regions and peripheral ganglia (M1 subtype) and with low affinity to receptors of the heart and upper gastrointestinal tract (M2 subtype). The affinity (pKB) of pirenzepine for the muscarinic sites of the endothelium was determined by the competitive antagonism of the relaxation response to methacholine. Schild analysis gave a pKB of 6.5 (320 nM) which is consistent with the low affinity, M2, subtype of muscarinic receptor. Removal of the endothelium eliminates any response to muscarinic agonists but does not decrease the density of muscarinic binding sites determined by binding of the specific ligand (-)-[3H]quinuclidinyl benzilate. This indicates a second group of muscarinic receptors most probably located on vascular smooth muscle cells for which there is no known function. The pKi for pirenzepine at these sites, as determined by the inhibition of (-)-[3H]quinuclidinyl benzilate binding, was 6.26 (550 nM) which is also consistent with a low affinity subtype. Thus, both types of vascular muscarinic binding sites, those on the endothelium which mediate relaxation and those on the vascular smooth muscle cells, are of the low affinity, M2, subtype.  相似文献   

5.
The goal of this study was to make functional comparisons between muscarinic receptors mediating endothelial-dependent relaxation responses in the rabbit ear artery and receptors mediating endothelial-independent contractile responses. Ring segments of the bovine coronary artery with the endothelium removed proved to be an excellent model for studying the properties of muscarinic receptors mediating vascular smooth muscle contraction. Although endothelial-dependent relaxation responses could be seen with the calcium ionophore A-23187, no relaxation responses to cholinergic agonists were seen in the bovine coronary artery, whether or not the endothelium was present or in the presence or absence of smooth muscle tone. In ring segments of the bovine coronary artery or the rabbit ear artery, the cholinergic agonists, acetylcholine, methacholine and carbachol, proved to be approximately equipotent in evoking contraction or relaxation, respectively. In contrast, the putative M1 selective agonist McN-A-343 did not produce any effect in either tissue; nor did McN-A-343 have any effect on a perfused rabbit ear artery segment. Measurement of antagonist affinities indicated that the bovine coronary artery muscarinic receptors show low affinity for both pirenzepine (pKB = 6.9) and AF-DX 116 (11-2-[[2-[diethylaminomethyl]-1-piperidinyl]acetyl]-5,11- dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one) (pKB = 6.3). Pirenzepine affinity was also low in the perfused rabbit ear artery preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Muscarinic receptors play a major role in gallbladder function, although the muscarinic receptor(s) mediating smooth muscle contractility is unclear. This study compared smooth muscle contractile responses to carbamylcholine (10(-7)-10(-3) M) in isolated gallbladder from wild-type and M(2), M(3), and M(4) receptor knockout mice. Carbamylcholine-induced contraction in gallbladder was associated with tachyphylaxis and the release of a cyclooxygenase product because indomethacin (10(-6) M) inhibited carbamylcholine-induced contraction. The M(3) receptor was the major muscarinic receptor involved in contraction because carbamylcholine-induced contractility was inhibited in gallbladder from M(3) receptor knockout mice. Furthermore, the muscarinic receptor antagonists 11-[[[2-diethylamino-O-methyl]-1-piperidinyl]acetyl]-5,11-dihydrol-6H-pyridol[2,3-b][1,4]benzodiazepine-6-one (AF-DX 116) and pirenzepine dextrally shifted contraction to carbamylcholine in gallbladder from wild-type, M(2), and M(4) receptor knockout mice, with affinities consistent with M(3) receptor interaction. In addition, maximal contraction to carbamylcholine was reduced in gallbladder from M(2) receptor knockout mice and affinities for AF-DX 116 and pirenzepine in gallbladder from M(3) receptor knockout mice were consistent with their affinities at M(2) receptors. In M(4) receptor knockout mice, contraction to carbamylcholine was dextrally shifted, although the affinities for AF-DX 116 and pirenzepine in gallbladder from M(2) or M(3) knockout mice were not similar to their affinities at M(4) receptors. The M(4) receptor may serve as an accessory protein necessary for optimal potency of M(2) and M(3) receptor-mediated responses. Thus, muscarinic receptor knockout mice provided direct and unambiguous evidence that M(3), and to a lesser extent, M(2) receptors are the predominant muscarinic receptors mediating gallbladder contractility, and M(4) receptors appear necessary for optimal potency of carbamylcholine in gallbladder contraction.  相似文献   

7.
The ability of the M2 muscarinic receptor to mediate an inhibition of the relaxant effects of forskolin and isoproterenol was investigated in guinea pig ileum and trachea. In some experiments, trachea was first treated with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) mustard to inactivate M3 receptors. The contractile response to oxotremorine-M was measured subsequently in the presence of both histamine (10 microM) and isoproterenol (10 nM). Under these conditions, [[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5, 11-dihydro-6H-pyrido[2,3b]-[1,4]benzodiazepine-6-one (AF-DX 116) antagonized the contractile response to oxotremorine-M in a manner consistent with an M3 mechanism. However, when the same experiment was repeated using forskolin (4 microM) instead of isoproterenol, the response to oxotremorine-M exhibited greater potency and was antagonized by AF-DX 116 in a manner consistent with an M2 mechanism. We also measured the effects of pertussis toxin treatment on the ability of isoproterenol to inhibit the contraction elicited by a single concentration of either histamine (0.3 microM) or oxotremorine-M (40 nM) in both the ileum and trachea. Pertussis toxin treatment had no significant effect on the potency of isoproterenol for inhibiting histamine-induced contractions in the ileum and trachea. In contrast, pertussis toxin treatment enhanced the relaxant potency of isoproterenol against oxotremorine-M-induced contractions in the ileum but not in the trachea. Also, pertussis toxin treatment enhanced the relaxant potency of forskolin against oxotremorine-M-induced contractions in the ileum and trachea. We investigated the relaxant potency of isoproterenol when very low, equi-effective (i.e., 20-34% of maximal response) concentrations of either histamine or oxotremorine-M were used to elicit contraction. Under these conditions, isoproterenol exhibited greater relaxant potency against histamine in the ileum but exhibited similar relaxant potencies against histamine and oxotremorine-M in the trachea. Following 4-DAMP mustard treatment, a low concentration of oxotremorine-M (10 nM) had no contractile effect in either the ileum or trachea. Nevertheless, in 4-DAMP mustard-treated tissue, oxotremorine-M (10 nM) reduced the relaxant potency of isoproterenol against histamine-induced contractions in the ileum, but not in the trachea. We conclude that in the trachea the M2 receptor mediates an inhibition of the relaxant effects of forskolin, but not isoproterenol, and the decreased relaxant potency of isoproterenol against contractions elicited by a muscarinic agonist relative to histamine is not due to activation of M2 receptors but rather to the greater contractile stimulus mediated by the M3 receptor compared with the H1 histamine receptor.  相似文献   

8.
AF-DX 116 [11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5, 11-dihydro-6H-pyrido[2,3-b][1,4]benzodiaze pine-6-one], a muscarinic receptor antagonist that divides the M2-type muscarinic receptor into additional functional classes, modified muscarinic responses recorded from the superior cervical ganglion of the rabbit with sucrose or air gap techniques. Incubation of ganglia with AF-DX 116 suppressed the amplitude of the slow-inhibitory postsynaptic potential (s-IPSP) in a concentration-dependent and highly specific manner. At concentrations which reduced the amplitude of the s-IPSP by 80 to 90%, there was no significant reduction of the amplitudes of the muscarinic slow-excitatory postsynaptic potential or the nicotinic fast-excitatory postsynaptic potential. In addition, superfusion of ganglia with AF-DX 116 resulted in the concentration-dependent suppression of ganglionic hyperpolarization induced by methacholine without suppression of methacholine-induced depolarization. Ganglionic hyperpolarization that was produced by norepinephrine was unaffected by AF-DX 116. Increasing the level of acetylcholine available for interaction with muscarinic receptors by increasing the number of stimulus volleys that were applied to the preganglionic nerve resulted in a parallel shift, to the right, of the concentration-response curve for suppression of the s-IPSP by AF-DX 116. Similarly, incubation of ganglia with the specific antiacetylcholinesterase, BW 284 (1-5-bis[4-allyl dimethylammonium phenyl]pentan-3 one dibromide), increased the concentration of AF-DX 116 that was required to produce a comparable suppression of the s-IPSP. These results indicate that the s-IPSP in mammalian superior cervical ganglion involves an action of acetylcholine at the M2 type receptor that is preferentially blocked by AF-DX 116.  相似文献   

9.
Functional antagonism between bronchoconstricting and bronchodilating pathways was examined in canine tracheal smooth muscle. Trachealis strips were contracted with either 0.3 microM (EC55) or 3.0 microM (EC80) methacholine before being relaxed by the cumulative addition of isoproterenol, prostaglandin E2, or forskolin. The EC50 for all three relaxants was increased 10-fold in tissues contracted with 3.0 microM methacholine vs. those contracted with 0.3 microM methacholine. Moreover, contracting tissues with the higher concentration of methacholine reduced the maximum relaxation induced by prostaglandin E2 and isoproterenol. Forskolin produced total relaxation regardless of the concentration of methacholine used and thus was a much more effective bronchodilator than either isoproterenol or prostaglandin E2. The inhibitory effect of methacholine on the relaxant response to these agents was paralleled by a reduction in drug-stimulated cyclic AMP-dependent protein kinase activity. Methacholine reduced the maximum activation of cyclic AMP-dependent protein kinase elicited by isoproterenol, prostaglandin E2 and submaximal concentrations of forskolin, which was a much more powerful enzyme activator than the other two agents. The ability of a maximum concentration of forskolin (30 microM) to activate cyclic AMP-dependent protein kinase was not inhibited by methacholine. Although methacholine also appeared to suppress drug-stimulated cyclic AMP accumulation, the inhibitory effect was only statistically significant in forskolin-treated tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study was performed to determine the subtype of M2 muscarinic receptor that is involved in the action of cholinergic agents on prostaglandin (PG) synthesis as well as on the mechanical function of the isolated rabbit heart perfused at a constant flow rate with Krebs-Henseleit buffer. The increase in PG output elicited by acetylcholine (ACh) or arecaidine propargyl ester (APE), a selective M2 agonist was attenuated by both 11-[2-[(diethylamino)methyl]-1-piperidinyl]acetyl-5,11-dihydro-6H- pyrido-[2,3-b][1,4]-benzodiazepine-6-one (AF-DX 116), an M2 alpha antagonist, and hexahydro-sila-difenidol (HHSiD), an M2 beta antagonist. The coronary vasodilating effect of ACh and APE was inhibited by HHSiD, but not by AF-DX 116, whereas the vasoconstrictor effect was blocked by AF-DX 116, but not by HHSiD. The decrease in heart rate produced by ACh or APE was blocked by AF-DX 116, but not by HHSiD; however, the decrease in developed tension produced by the cholinergic stimuli was abolished by all these muscarinic receptor antagonists. The increase in PG output or changes in the mechanical parameters of the heart produced by ACh or APE were not altered by adrenergic receptor antagonists, phentolamine and propranolol, or by the nicotinic receptor antagonist, hexamethonium. The effect of isoproterenol or exogenous arachidonic acid to enhance PG output was not altered by these M2 receptor antagonists; however, the cyclooxygenase inhibitor indomethacin abolished the output of PG elicited by these agents or by ACh or APE. These data indicate that the effect of cholinergic stimuli to promote cardiac PG synthesis and decrease developed tension is mediated through the activation of both M2 alpha and M2 beta subtypes of muscarinic receptors. The cholinergically induced vasodilating component of the coronary response is mediated through the activation of M2 beta, whereas the coronary vasoconstriction and the decrease in heart rate is mediated through the activation of M2 alpha muscarinic receptors.  相似文献   

11.
To elucidate the role of specific proinflammatory cytokines in regulating airway responsiveness, we examined the effects and mechanisms of action of IL-1beta, TNF-alpha, and IL-2 on the beta-adrenoceptor- and postreceptor-coupled transmembrane signaling mechanisms regulating relaxation in isolated rabbit tracheal smooth muscle (TSM) segments. During half-maximal isometric contraction of the tissues with acetylcholine, relaxation responses to isoproterenol, PGE2, and forskolin were separately compared in control (untreated) TSM and tissues incubated for 18 h with IL-1beta (10 ng/ml), TNF-(alpha (100 ng/ml), or IL-2 (200 ng/ml). Relative to controls, IL-1beta- and TNF-alpha-treated TSM, but not IL-2-treated tissues, depicted significant attenuation of their maximal relaxation and sensitivity (i.e., -log dose producing 50% maximal relaxation) to isoproterenol (P < 0.001) and PGE2 (P < 0.05); whereas the relaxation responses to direct stimulation of adenylate cyclase with forskolin were similar in the control and cytokine-treated tissues. Further, the attenuated relaxation to isoproterenol and PGE2 was ablated in the IL-1beta-treated TSM that were pretreated with either the muscarinic M2-receptor antagonist, methoctramine (10(-6) M), or pertussis toxin (100 ng/ml). Moreover, Western immunoblot analysis demonstrated that: (a) Gi protein expression was significantly enhanced in membrane fractions isolated from IL-1beta-treated TSM; and (b) the latter was largely attributed to induced enhanced expression of the Gi alpha2 and Gi alpha3 subunits. Collectively, these observations provide new evidence demonstrating that IL-lbeta and TNF-alpha induce impaired receptor-coupled airway relaxation in naive TSM, and that the latter effect is associated with increased muscarinic M2-receptor/Gi protein-coupled expression and function.  相似文献   

12.
The ability of forskolin and isoproterenol to inhibit the contractile action of the muscarinic agonist, oxotremorine-M, was investigated in smooth muscle from wild-type and M(2) muscarinic receptor knockout mice. Forskolin (5.0 micro M) caused a significant reduction in the contractile activity of oxotremorine-M in ileum, trachea, and urinary bladder from both wild-type and M(2) muscarinic receptor knockout mice. This reduction in contractile activity was characterized by decreases in potency or maximal response, but not always both. Similar results were obtained with isoproterenol (1.0 micro M). The relaxant effects of forskolin in ileum, trachea, and urinary bladder from M(2) receptor knockout mice were approximately 3- to 9-fold greater than those observed in the same tissues from wild-type mice. Similar results were obtained with isoproterenol in ileum and urinary bladder, although the differences between wild-type and M(2) receptor knockout tissues were less than those observed with forskolin. In contrast, there was no significant difference between the relaxant effect of isoproterenol in trachea from wild-type and M(2) receptor knockout mice. In contrast to the results observed with oxotremorine-M as the contractile agent, forskolin and isoproterenol did not exhibit greater relaxant activity against KCl-induced contractions in M(2) receptor knockout mice compared with wild-type mice. These results suggest that a component of the contractile response to muscarinic agonists in smooth muscle involves an M(2) muscarinic receptor-mediated inhibition of the relaxant effects of agents that increase cAMP levels.  相似文献   

13.
The binding properties of a series of muscarinic antagonists were compared with their ability to antagonize muscarinic receptor mediated inhibition of adenylate cyclase activity in homogenates of the corpus striatum and heart of rats. When measured by the competitive inhibition of the binding of the muscarinic antagonist N-[3H]methylscopolamine, the binding properties of selective muscarinic antagonists in the corpus stratum and cerebral cortex were consistent with a model incorporating a minimum of three populations of muscarinic receptors, a high affinity site for pirenzepine (M1), a high affinity site for AF-DX 116 [11] [2-[ (diethylamino)methyl]-1-piperidinyl] acetyl] -5, 11-dihydro-6H-pyrido [2,3-b] 1,4] benzodiazepine-6-one (M2) and a third population (non-Ml, non-M2 sites) displaying low affinity for the latter antagonists. The results of similar experiments on the heart showed that this tissue contained a uniform population of M2 muscarinic receptors. The binding properties of the M2 receptor in cerebral cortex and corpus stratum were also investigated directly in antagonist [3H] AF-DX 116 competition experiments and, although the high affinity AF-DX 116 site in brain (M2) exhibited selectivity for the cardioselective antagonists AF-DX 116 and gallamine, some differences were noted between M2 sites in brain and heart. The muscarinic adenylate cyclase response in the corpus striatum was relatively insensitive to the M2 selective antagonists AF-DX 116 and gallamine as well as the M1 selective antagonist pirenzepine, suggesting that non-M1, non-M2 sites inhibit adenylate cyclase activity in the corpus striatum. In contrast, the effects of muscarinic antagonists on the muscarinic adenylate cyclase response in the heart were consistent with the postulate that M2 receptors inhibit adenylate cyclase activity in this tissue.  相似文献   

14.
Atropine, pirenzepine (PZ) and the novel antimuscarinic drug [11- [[2-(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H- pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX 116) were used to subclassify the pancreatic muscarinic receptor by correlating their effects on carbachol-mediated amylase release with their actions on the binding of [3H]N-methylscopolamine in rat pancreatic acini. Maximal stimulation of amylase release occurred at 3 microM carbachol. Atropine, PZ and AF-DX 116 inhibited carbachol-mediated amylase release with the following pA2 values: atropine = 9.1, PZ = 6.5 and AF-DX 116 = 5.7. There was parallel inhibition of [3H]N-methylscopolamine binding, with the following inhibition constants: atropine = 2.38 nM, PZ = 426 nM and AF-DX 116 = 3660 nM. Using the same animals, these compounds inhibited [3H]N-methylscopolamine binding in homogenates from both cerebral cortex and heart. The order of potency was the same in the cerebral cortex as in the pancreas: atropine = 0.67 nM, PZ = 85 nM and AF-DX 116 = 440 nM. However, in the cortex, the binding data with PZ also exhibited a high-affinity site with a KH value of 11 nM. In the heart, the order of potency was shifted to atropine greater than AF-DX 116 greater than PZ, with inhibition constants of 1.55, 12 and 110 nM, respectively. Thus, the muscarinic receptors in the pancreas and the heart exhibited the characteristics of the putative M2 receptor subtype, having lower affinities for PZ than the muscarinic receptors in the cerebral cortex. However, the heart had a significantly higher affinity for AF-DX 116.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pharmacological profiles of the striatal and brainstem M2 receptors were developed with a group of selective muscarinic antagonists. The striatal M2 muscarinic receptor was identified by its inhibition of [3H]cyclic AMP levels, whereas the brainstem M2 receptor was characterized using competition with [3H]quinuclidinyl benzilate binding. The potency of pirenzepine does not differentiate clearly between the striatal M2 receptor (Ki approximately 300 nM) and the brainstem M2 receptor (Ki = 219 nM) or peripheral M2 receptors. In the present study, we used 4-diphenylacetoxy-N-methylpiperidine methbromide, hexahydrosiladifenidol, AF-DX 116 and methoctramine to characterize the striatal and brainstem M2 receptors in more pharmacological detail. For comparison, the potencies of these antagonists were also measured at cortical M2 receptors (using competition with [3H]pirenzepine binding). The potencies of 4-diphenylacetoxy-N-methylpiperidine methbromide (KB = 0.19 nM) and hexahydrosiladifenidol (KB = 14 nM) in blocking the striatal M2 receptor suggested similarity to those M2 receptors localized in certain smooth muscles or in glands. However, AF-DX 116 (KB = 155 nM) and methoctramine (KB = 47 nM) were considerably more potent in blocking the striatal M2 receptor than as reported in functional studies in smooth muscle or glands. Thus, the profile of the striatal M2 receptor obtained with these antagonists did not match in all respects with either glandular (probable M4 gene product) or cardiac (probable M2 gene product) muscarinic receptors. In contrast, our data with the brainstem M2 receptor was highly correlated (r = 0.93) with literature data regarding the cardiac muscarinic system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Stimulation of calcium-activated potassium (KCa) channels in airway smooth muscle cells by phosphorylation-dependent and membrane-delimited, G protein actions has been reported (Kume, H. A. Takai, H. Tokuno, and T. Tomita. 1989. Nature [Lond.]. 341:152-154; Kume, H., M. P. Graziano, and M. I. Kotlikoff. 1992. Proc. Natl. Acad. Sci. USA. 89:11051-11055). We show that beta-adrenergic receptor/channel coupling is not affected by inhibition of endogenous ATP, and that activation of KCa channels is stimulated by both alpha S and cAMP-dependent protein kinase (PKA). PKA stimulated channel activity in a dose-dependent fashion with an EC50 of 0.12 U/ml and maximum stimulation of 7.38 +/- 2.04-fold. Application of alpha S to patches near maximally stimulated by PKA significantly increased channel activity to 15.1 +/- 3.65-fold above baseline, providing further evidence for dual regulatory mechanisms and suggesting that the stimulatory actions are independent. Analysis of channel open-time kinetics indicated that isoproterenol and alpha S stimulation of channel activity primarily increased the proportion of longer duration events, whereas PKA stimulation had little effect on the proportion of short and long duration events, but resulted in a significant increase in the duration of the long open-state. cAMP formation during equivalent relaxation of precontracted muscle strips by isoproterenol and forskolin resulted in significantly less cAMP formation by isoproterenol than by forskolin, suggesting that the degree of activation of PKA is not the only determinant of tissue relaxation. We conclude that beta-adrenergic stimulation of KCa channel activity and relaxation of tone in airway smooth muscle occurs, in part, by means independent of cyclic AMP formation.  相似文献   

17.
Adrenoceptors mediating relaxant responses to exogenously added or endogenously released catecholamines in isolated canine bronchi (3rd-6th order) were characterized using selective beta receptor agonists and antagonists. Norepinephrine (3 x 10(7) to 3 x 10(-5) M) or isoproterenol (3 x 10(-8) to 10(-6) M) fully relaxed tissues precontracted with 3 x 10(-7) M carbachol (Cch). Salbutamol (Sal) also relaxed Cch-precontracted tissues, but this relaxant effect was extremely sensitive to the concentration of precontracting agent used: the maximal effect of Sal was 100, 79 and 28% reversal of tone in tissues precontracted with 2 x 10(-8), 10(-7) and 3 x 10(-7) M Cch. The effects of isoproterenol were antagonized by propranolol. Norepinephrine relaxations were antagonized by the beta-1-selective antagonist ICI 89,406 (pA2 = 7.70) and the beta-2-selective antagonist ICI 118,551 (pA2 = 6.33). Sal-relaxations were antagonized by ICI 118,551 (pA2 = 8.91). Field stimulation in tissues precontracted with McNeil A343 (M1-selective muscarinic agonist) produced transient relaxations which were antagonized by ICI 89,406 but not ICI 118,551 (both 10(-9) to 10(-7) M). Thus, exogenous and endogenous catecholamines relax canine bronchial smooth muscle by activating both beta-1 and beta-2 adrenoceptors, although the latter seen to play a significant role only when low concentrations of Cch were used.  相似文献   

18.
The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 [11-2-[[2-[diethylaminomethyl]- 1-piperidinyl]acetyl]-5,11-dihydro-6H- pyrido[2,3-b][1,4]benzodiazepine-6-one], hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of [3H]quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of [3H]-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated.  相似文献   

19.
Peripheral muscarinic receptors play key roles in the control of heart rate and smooth muscle activity. In this study, bradycardic and smooth muscle contractile responses to the muscarinic agonist carbamylcholine were compared in isolated tissues from M(2) and M(4) muscarinic receptor knockout mice and their wild-type littermates. Carbamylcholine (1 x 10(-8)-3 x 10(-5) M) produced similar concentration-dependent bradycardia in spontaneously beating atria from M(4) receptor knockout and wild-type control mice. In contrast, carbamylcholine did not produce bradycardia in atria derived from M(2) receptor knockout mice, whereas such atria were responsive to adenosine-induced bradycardia. Carbamylcholine-induced contractile responses were similar in stomach fundus, urinary bladder, and tracheal preparations from M(4) receptor knockout mice and their wild-type littermates for each tissue (-logEC(50) values ranging from 6.20 +/- 0.10 to 6.76 +/- 0.08), suggesting that M(4) receptors do not participate in smooth muscle contraction in these tissues. In contrast, approximately 2-fold higher carbamylcholine concentration was required for contraction of stomach fundus, urinary bladder, and trachea from M(2) receptor knockout mice (-logEC(50) = 6.39 +/- 0.05, 6.07 +/- 0.06, and 6.27 +/- 0.12, respectively) than from wild-type littermates (-logEC(50) = 6.68 +/- 0.07, 6.27 +/- 0.07, and 6.56 +/- 0.06, respectively). Furthermore, the affinity of the M(2) "selective" receptor antagonist AF-DX116 in inhibiting carbamylcholine-induced smooth muscle contraction was significantly reduced in M(2) receptor knockout mice compared with tissues from wild-type littermates. Collectively, these results provide direct and unambiguous evidence that M(2) receptors mediate muscarinic receptor-induced bradycardia and play a role in smooth muscle contractility, whereas M(4) receptors are not involved in stomach fundus, urinary bladder, or tracheal contractility.  相似文献   

20.
The relationships between occupancy of muscarinic acetylcholine receptors on iris sphincter muscle, measured by [3H]quinuclidinylbenzylate (QNB) binding, carbachol (CCh)-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis, measured as myo-inositol trisphosphate (IP3) accumulation, myosin light chain (MLC) phosphorylation and contraction were analyzed by examination of the dose-response relationships and the effects of the muscarinic antagonists, atropine and pirenzepine (PZ). CCh caused a concentration-dependent accumulation of IP3 (EC50 = 2.3 X 10(-6) M), MLC phosphorylation (EC50 = 3.8 X 10(-6) M), contraction (EC50 = 0.55 X 10(-6) M) and [3H]QNB displacement [KH (high affinity dissociation constant) = 2.9 X 10(-6) M]. The time course of atropine reversal of CCh-induced IP3 accumulation and muscle contraction revealed that the continued presence of activated muscarinic acetylcholine receptors was required to maintain IP3 production and contraction. Atropine was about 2 orders of magnitude more potent than PZ in inhibiting the CCh-induced biochemical and pharmacological responses and [3H] QNB binding, indicating the preponderance of M2 receptors in this smooth muscle. Thus, the PA2 values for atropine antagonism of CCh-stimulated IP3 accumulation, MLC phosphorylation and contraction were 9.1, 9.05 and 9.39, respectively, and for PZ antagonism were 7.12, 7.10 and 7.29, respectively. Furthermore, the KD values for atropine and PZ antagonism of [3H]QNB binding were 6.9 X 10(-10) and 1.5 X 10(-7) M, respectively. In addition, AF-DX116 (11-[(2-[(diethylamino)methyl]-1-piperidinyl) acetyl]-5,11-dihydro-6 H-pyrido[2,3-b][1,4]benzodiazepine-6-one), a M2 cardioselective antagonist, significantly inhibited the CCh-induced IP3 accumulation and muscle contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号