首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE To study whether an adriamycin-resistant cell line(HL-60/ADR) can be sensitized by adriamycin(ADR) to TRAIL-mediated apoptosis.METHODS The mRNA levels of the TRAIL receptor and apoptosis-related signaling molecules involved in the TRAIL-mediated apoptotic pathway were measured by RT-PCR.The protein levels of apoptotic-related signaling molecules involved in the TRAIL-mediated apoptotic pathway and processed caspase-3,caspase-9,and caspase-8 were measured by Western blots.Apoptosis was assessed by flow cytometry.Mitochondrial membrane potential was analyzed by DiOC6(3) staining.Cytotoxicity was determined by the colorimetric MTT viability/ proliferation assay.RESULTS Treatment with a combination of TRAIL and subtoxic concentrations of ADR resulted in synergistic cytotoxicity and apoptosis for both the parental HL-60 and the HL-60/ADR cells.For HL-60,there was a 5-fold potentiation and synergy in cytotoxicity for TRAIL and for HL-60/ADR,cytotoxicity to TRAIL was potentiated 6-fold with ADR.Adriamycin treatment modestly up-regulated TRAIL-R2(DR5),but had no effect on the expression of Fas-associated death domain,c-FLIP,Bcl-2,Bcl-xL,Bax,and IAP family members(cIAP-1,cIAP-2,XIAP,and survivin).The protein levels of pro-caspase-8 and pro-caspase-3 were not affected by ADR,whereas pro-caspase-9 and Apaf-1 were up-regulated.Combined treatment with TRAIL and ADR resulted in activation of caspase-9 and caspase-3,but there was no detectable processing of caspase-8 beyond the background levels.There was signif icant depolarization of the mitochondrial membrane by the combined treatment of both cell lines and it was more pronounced in the parental HL-60 cell line.The combined treatment with TRAIL and ADR resulted in 42.6% of the HL-60/ADR cells undergoing DNA fragmentation,whereas treatment with either ADR or TRAIL alone resulted in 5.46% and 21.3% DNA fragmented cells,respectively.Similar results were obtained with the HL-60 cells.CONCLUSION These fi ndings demonstrate that ADR can still signal ADR-resistant tumor cells,resulting in the modifi cation of the TRAIL-mediated signaling pathway and apoptosis.  相似文献   

2.
Oral squamous cell carcinoma (OSCC) cells are relatively resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis during culture. We investigated the role of a proteaosome inhibitor in the survival and apoptosis of these cells. We found that the proteasome inhibitor MG132 markedly accelerated TRAIL-mediated apoptosis in OSCC cell lines HSC-2 and HSC-3. Addition of TRAIL to MG132-treated cells resulted in Bid cleavage. Furthermore, the inhibitors of caspase-3, caspase-8 and caspase-9 reduced the accelerative effect of MG132 on TRAIL-mediated apoptosis. These results suggest that the pro-apoptotic effect of a proteasome inhibitor on TRAIL-mediated apoptosis may contribute to both extrinsic and intrinsic pathways. MG132 enhanced the expression of the TRAIL receptors DR4 and DR5, and neutralization of DR5 receptors showed a marked reduction of TRAIL-mediated apoptosis, whereas that of DR4 was a partial reduction. MG132 also markedly reduced cellular FLICE-inhibitory protein (c-FLIP), cellular inhibitor of apoptosis protein-1 (cIAP-1), X-linked IAP (XIAP) and survivin. Therefore, MG132 provides partial regulation of TRAIL-mediated apoptosis in OSCC cells via modulation of DR5, c-FLIP, cIAP-1, XIAP and survivin. The proteasome inhibitor MG132 may therefore represent a novel strategy for overcoming resistance to TRAIL-mediated apoptosis in OSCC cells.  相似文献   

3.
4.
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer for which there is no effective treatment. Previously, we and others demonstrated that CXCR4 surface expression is an independent prognostic factor for disease relapse and survival in breast cancer. In this study, we investigated the effects of CXCR4 gene silencing on cisplatin chemosensitivity in human triple-negative breast cancer cell lines. We found that CXCR4 silencing significantly inhibited cell growth, decreased colony formation, and enhanced cisplatin sensitivity while overexpression of CXCR4 rendered cells more resistant to cisplatin. Moreover, the percentage of apoptosis and cell cycle arrest at the G2/M phase of cisplatin-treated CXCR4 knockdown cells was significantly higher than control cells. Furthermore, we demonstrated CXCR4 knockdown cells showed lower levels of mutant p53 and Bcl-2 protein than the control group, while also having higher levels of caspase-3 and Bax. However overexpression of CXCR4 had the reverse effect. In vivo experiments confirmed that downregulation of CXCR4 enhanced cisplatin anticancer activity in tumor-bearing mice, and that this enhanced anticancer activity is attributable to tumor cell apoptosis. Thus, this study indicates that CXCR4 can modulate cisplatin sensitivity in TNBC cells and suggests that CXCR4 may be a therapeutic target for TNBC.  相似文献   

5.
PURPOSE: The current therapeutic approach is not so effective in breast cancer patients. Alternative treatment protocols aimed at different targets need to be explored. We recently reported a novel phosphatidylethanolamine-binding protein, human phosphatidylethanolamine-binding protein 4 (hPEBP4), as an antiapoptotic molecule. The finding led us to explore a promising approach for breast cancer therapy via silencing the expression of hPEBP4. EXPERIMENTAL DESIGN: hPEBP4 expression in clinical breast specimens was examined by Tissue Microarrays. RNA interference was used to silence hPEBP4 expression in MCF-7 breast carcinoma cells and the effects on cell proliferation, cell cycle progression, apoptosis, as well as underlying mechanisms, were investigated. RESULTS: hPEBP4 was found to be expressed in up to 50% of breast cancers but in only <4% of normal breast tissues. Silencing of hPEBP4 potentiated tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis and cell cycle arrest in MCF-7 cells, which was due to the increased mitogen-activated protein kinase activation and the enhanced phosphatidylethanolamine externalization. Further investigation showed that silencing of hPEBP4 in MCF-7 cells promoted TNF-alpha-induced stability of p53, up-regulation of phospho-p53ser15, p21waf/cip, and Bax, and down-regulation of Bcl-2 and Bcl-xL, which were shown to depend on extracellular signal-regulated kinase 1/2 and c-jun NH2-terminal kinase activation by hPEBP4 silencing. Moreover, the increased proportion of cells in the G0-G1 phase of cell cycle was observed in hPEBP4-silenced MCF-7 cells on TNF-alpha treatment and the expression of cyclin A and cyclin E was down-regulated more significantly. CONCLUSIONS: The antiapoptotic effect and the preferential expression pattern in breast cancer tissues make hPEBP4 a new target for breast cancer therapy. Silencing of hPEBP4 expression may be a promising approach for the treatment of breast carcinoma.  相似文献   

6.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytotoxic agent that preferentially induces apoptosis in a variety of human cancer cells. Unfortunately, some tumor cells remain resistant to TRAIL. Therefore, agents that sensitize malignant cells to TRAIL-mediated cell death might be of particular importance for the development of novel antitumor therapeutic regimens. Recent studies establish a critical role of selenium in prostate cancer prevention in vitro and in vivo. Here, we demonstrate that concomitant administration of TRAIL and methylseleninic acid (MSA) produces synergistic effects on the induction of apoptosis in androgen-dependent LNCaP and androgen-independent DU-145 prostate cancer cells. MSA rapidly and specifically downregulates expression of the cellular FLICE inhibitory protein, a negative regulator of death receptor signaling. In addition, we demonstrate that the synergistic effects of MSA and TRAIL result from the activation of the mitochondrial pathway-mediated amplification loop. Addition of MSA effectively blocked TRAIL-mediated BAD phosphorylation at Ser112 and Ser136 in DU-145 cells and was accompanied by induction of the mitochondrial permeability transition and release of apoptogenic cytochrome c and Smac/DIABLO proteins from the mitochondria and into the cytosol. These results suggest that selenium-based dietary compounds may help to overcome resistance to TRAIL-mediated apoptosis in prostate cancer cells.  相似文献   

7.
Maspin sensitizes breast carcinoma cells to induced apoptosis   总被引:9,自引:0,他引:9  
Jiang N  Meng Y  Zhang S  Mensah-Osman E  Sheng S 《Oncogene》2002,21(26):4089-4098
Maspin, a novel serine protease inhibitor (serpin), suppresses the growth and metastasis of breast tumor in vivo. However, the underlying molecular mechanism is unclear. In the current study, we report the first evidence that endogenous maspin expression in mammary carcinoma cells MDA-MB-435 enhanced staurosporine (STS)-induced apoptosis as judged by the increased fragmentation of DNA, increased proteolytic inactivation of poly-[ADP-ribose]-polymerase (PARP), as well as the increased activation of caspase-8 and caspase-3. In parallel, recombinant maspin did not directly regulate the proteolytic activities of either caspase-3 or caspase-8 in vitro. Consistent with this result, maspin expressing normal mammary epithelial cells underwent more rapid STS-induced apoptosis as compared to breast carcinoma cells. Interestingly, maspin transfectant cells did not undergo spontaneous apoptosis in the absence of STS. Moreover, neither purified maspin protein added from outside nor endogenous maspin secreted to the cell culture media sensitized cells to STS-induced apoptosis. To investigate the structural determinants of maspin in its apoptosis-sensitizing effect, MDA-MB-435 cells were also transfected with maspin/PAI-1 and PAI-1/maspin chimeric constructs resulting from swapping the N-terminal and the C-terminal domains between maspin and PAI-1 (plasminogen activator inhibitor type 1). The resulting stable transfectant clones expressing maspin/PAI-1 and PAI-1/maspin, respectively, did not undergo spontaneous apoptosis, and were similarly inhibited as maspin transfectant cells in motility assay. Interestingly, however, expression of both maspin/PAI-1 and PAI-1/maspin in MDA-MB-435 cells failed to sensitize these cells to STS-induced apoptosis. Taken together, our evidence provides new insights into the complex molecular mechanisms of maspin that may suppress breast tumor progression not only at the step of invasion and motility, but also by regulating tumor cell apoptosis. The sensitizing effect of maspin on apoptosis is to be contrasted by the pro-survival effect of several other serpins.  相似文献   

8.
Lifeguard (LFG), an anti-apoptotic protein with high expression rates in breast cancer cells, has been identified as a molecule that inhibits death mediated by Fas. The molecular function of LFG and its regulation in the carcinogenesis of human breast and sarcoma cells, however, remains to be elucidated. In the present study, we investigated the ability of LFG expression to inhibit apoptosis induced by the alkyl-phospholipid perifosine. Results showed that LFG was able to be downregulated in selected sarcoma and breast cancer cell lines characterized by high endogenous LFG expression. A decreased LFG expression led to enhanced sensitivity to treatment with an agonistic Fas antibody or treatment with perifosine. Taken together, our findings indicate the role of LFG as an anti-apoptotic protein and provide further evidence of the potential of LFG as a target for the development of novel therapeutic strategies.  相似文献   

9.

Introduction

Estrogen deprivation using aromatase inhibitors (AIs) is currently the standard of care for postmenopausal women with hormone receptor-positive breast cancer. Unfortunately, the majority of patients treated with AIs eventually develop resistance, inevitably resulting in patient relapse and, ultimately, death. The mechanism by which resistance occurs is still not completely known, however, recent studies suggest that impaired/defective interferon signaling might play a role. In the present study, we assessed the functional role of IFITM1 and PLSCR1; two well-known interferon response genes in AI resistance.

Methods

Real-time PCR and Western blot analyses were used to assess mRNA and protein levels of IFITM1, PLSCR1, STAT1, STAT2, and IRF-7 in AI-resistant MCF-7:5C breast cancer cells and AI-sensitive MCF-7 and T47D cells. Immunohistochemistry (IHC) staining was performed on tissue microarrays consisting of normal breast tissues, primary breast tumors, and AI-resistant recurrence tumors. Enzyme-linked immunosorbent assay was used to quantitate intracellular IFNα level. Neutralizing antibody was used to block type 1 interferon receptor IFNAR1 signaling. Small interference RNA (siRNA) was used to knockdown IFITM1, PLSCR1, STAT1, STAT2, IRF-7, and IFNα expression.

Results

We found that IFITM1 and PLSCR1 were constitutively overexpressed in AI-resistant MCF-7:5C breast cancer cells and AI-resistant tumors and that siRNA knockdown of IFITM1 significantly inhibited the ability of the resistant cells to proliferate, migrate, and invade. Interestingly, suppression of IFITM1 significantly enhanced estradiol-induced cell death in AI-resistant MCF-7:5C cells and markedly increased expression of p21, Bax, and Noxa in these cells. Significantly elevated level of IFNα was detected in AI-resistant MCF-7:5C cells compared to parental MCF-7 cells and suppression of IFNα dramatically reduced IFITM1, PLSCR1, p-STAT1, and p-STAT2 expression in the resistant cells. Lastly, neutralizing antibody against IFNAR1/2 and knockdown of STAT1/STAT2 completely suppressed IFITM1, PLSCR1, p-STAT1, and p-STAT2 expression in the resistant cells, thus confirming the involvement of the canonical IFNα signaling pathway in driving the overexpression of IFITM1 and other interferon-stimulated genes (ISGs) in the resistant cells.

Conclusion

Overall, these results demonstrate that constitutive overexpression of ISGs enhances the progression of AI-resistant breast cancer and that suppression of IFITM1 and other ISGs sensitizes AI-resistant cells to estrogen-induced cell death.

Electronic supplementary material

The online version of this article (doi:10.1186/s13058-014-0506-7) contains supplementary material, which is available to authorized users.  相似文献   

10.
Kao SY  Lemoine FJ  Mariott SJ 《Oncogene》2000,19(18):2240-2248
Transient HTLV-1 Tax expression suppresses cellular nucleotide excision repair, and this effect correlates with Tax transactivation of the proliferating cell nuclear antigen promoter. The inability to repair DNA damage typically induces apoptotic cell death. Therefore, we investigated the effect of Tax-mediated suppression of DNA repair on apoptosis in stable Tax-expressing cells. Constitutive Tax expression reduced cellular nucleotide excision repair activity compared with parental and control cells. Tax-expressing cells were also more sensitive to apoptosis induced by DNA damaging agents than control cells. Even though Tax-expressing cells displayed reduced DNA repair, they showed increased DNA replication following UV damage. These results suggest that Tax suppresses the cell's ability to repair DNA damage and stimulates DNA replication even in the presence of damage. The inability to repair DNA damage is likely to stimulate apoptotic cell death in the majority of Tax-expressing cells while the ability to promote DNA replication may also allow the survival of a small population of cells. We propose that together these effects contribute to the monoclonal nature and low efficiency of HTLV-1 transformation.  相似文献   

11.
Kim EH  Kim SU  Shin DY  Choi KS 《Oncogene》2004,23(2):446-456
The cytotoxic effect of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is limited in many glioma cell lines. However, treatment with TRAIL in combination with subtoxic doses of roscovitine, a specific inhibitor of Cdc2 and Cdk2, induced rapid apoptosis in TRAIL-resistant glioma cells. Roscovitine could sensitize Bcl-2- or Bcl-xL-overexpressing glioma cells, but not human astrocytes, to TRAIL-induced apoptosis, offering an attractive strategy for safely treating resistant gliomas. Treatment with roscovitine significantly inhibited Cdc2 activity, and expression of a dominant-negative Cdc2 mutant sensitized glioma cells to TRAIL-induced apoptosis. While the proteolytic processing of procaspase-3 by TRAIL was partially blocked in U87MG and T98 glioma cells, treatment with roscovitine recovered TRAIL-induced activation of caspases very efficiently in these cells. We found that treatment with roscovitine or expression of a dominant-negative Cdc2 mutant downregulated the protein levels of survivin and XIAP, two major caspase inhibitors. Overexpression of survivin or XIAP attenuated the apoptosis induced by roscovitine and TRAIL. Taken together, these results suggest that downregulation of survivin and XIAP by subtoxic doses of roscovitine contributes to the amplification of caspase cascades, thereby overcoming glioma cell resistance to TRAIL-mediated apoptosis.  相似文献   

12.
13.
Cholangiocarcinoma is a particularly devastating carcinoma with limited treatment options. Tousled-like kinase 1 (TLK1) is a serine/threonine protein kinase that regulates DNA replication and DNA repair pathways. Here, we show that TLK1 is abundantly expressed in cholangiocarcinoma as well as in cell lines derived from cholangiocarcinoma. Although siRNA knockdown of TLK1 did not affect the viability of cholangiocarcinoma cells, it sensitized cholangiocarcinoma cells to cisplatin-induced apoptosis. Immunofluorescence analysis of γH2AX foci showed that silencing of TLK1 enhanced DNA damage induced by cisplatin treatment. Our results suggest that TLK1 plays a pivotal role for the repair of cisplatin-induced DNA damage.  相似文献   

14.
Human granulosa tumor cell (GCT) lines (KGN and COV434) were utilized to establish the combinatorial effects of TRAIL treatment and a proteasome inhibitor on cell viability, in vitro. TRAIL induced a slight, but consistent, decrease in viability for both cell lines, and pharmacologic inhibition of proteasome activity, using Z-LLF-CHO (Z-LLF), synergistically enhanced TRAIL-induced loss of viability. This enhanced sensitization was associated with the up-regulation of a TRAIL receptor, DR5, and pro-apoptotic Bax. Targeted reduction of p53 expression revealed that the ability of Z-LLF to enhance DR5 and Bax expression occurs independent of p53 activity. These studies underscore the potential to develop targeted treatments for GCTs using established cell lines.  相似文献   

15.
Carboplatin (CBDCA) has been widely used for the treatment of oral squamous cell carcinoma (SCC). The Bcl-2 family member Bcl-xL has been demonstrated to provide resistance to chemotherapeutic agents including CBDCA. Morpholino Bcl-xL antisense oligonucleotides (oligos) were employed to down-regulate Bcl-xL in CBDCA-resistant (MIT8, MIT16) as well as CBDCA-sensitive (MIT7) SCC cell lines. The oligos were delivered to adherent cells using a scrape-load procedure. The Bcl-xL antisense reduced Bcl-xL levels without altering the level of control actin, suggesting the specificity of this agent. The addition of Bcl-xL antisense oligos substantially prevented the cell growth of both CBDCA-sensitive and-resistant cells. The CBDCA-induced partial prevention of cell growth was further augmented by the addition of the Bcl-xL, but not the control, antisense oligos. The morpholino type Bcl-xL antisense oligos may be useful for the treatment of SCC, especially multidrug-resistant tumors with enhanced Bcl-xL levels.  相似文献   

16.
Despite the common expression of death receptors, many types of cancer including gliomas are resistant to the death receptor ligand (TRAIL). Melatonin antitumoral actions have been extensively described, including oncostatic properties on several tumor types and improvement of chemotherapeutic regimens. Here, we found that melatonin effectively increase cell sensitivity to TRAIL-induced cell apoptosis in A172 and U87 human glioma cells. The effect seems to be related to a modulation of PKC activity which in turns decreases Akt activation leading to an increase in death receptor 5 (DR5) levels and a decrease in the antiapoptotic proteins survivin and bcl-2 levels.  相似文献   

17.
We showed previously that inactivation of TSC2 induces death in cancer cells lacking the Retinoblastoma (Rb) tumor suppressor under stress conditions, suggesting that inactivation of TSC2 can potentially be used as an approach to specifically kill cancers that have lost WT Rb. As Rb is often inactivated in cancers by overexpression of cyclin D1, loss of p16ink4a cdk inhibitor, or expression of viral oncoproteins, it will be interesting to determine if such functional inactivation of Rb would similarly sensitize cancer cells to TSC2 inactivation induced cell death. In addition, many cancers lack functional Pten, resulting in increased PI3K/Akt signaling that has been shown to modulate E2F-induced cell death. Therefore it will be interesting to test whether loss of Pten will affect TSC2 inactivation induced killing of Rb mutant cancer cells. Here, we show that overexpression of Cyclin D1 or the viral oncogene E1a sensitizes cancer cells to TSC2 knockdown induced cell death and growth inhibition. On the other hand, knockdown of p16ink4a sensitizes cancer cells to TSC2 knockdown induced cell death in a manner that is likely dependant on serum induction of Cyclin D1 to inactivate the Rb function. Additionally, we demonstrate that loss of Pten does not interfere with TSC2 knockdown induced cell death in Rb mutant cancer cells. Together, these results suggest that TSC2 is potentially a useful target for a large spectrum of cancer types with an inactivated Rb pathway.  相似文献   

18.
19.
Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), an essential component of the inflammasome complex, is frequently silenced by epigenetic methylation in many tumor cells. Here, we demonstrate that restoration of ASC expression in human colorectal cancer DLD-1 cells, in which ASC is silenced by aberrant methylation, potentiated cell death mediated by DNA damaging agent. Contrarily, ASC knockdown in HT-29 cells rendered cells less susceptible to etoposide toxicity. The increased susceptibility of ASC-expressing DLD-1 cells to genotoxic stress was independent of inflammasome or caspase activation, but partially dependent on mitochondrial ROS production and JNK activation. Thus, our data suggest that ASC expression in cancer cells is an important factor in determining their susceptibility to chemotherapy.  相似文献   

20.

Background and purpose

There is a great need to improve the outcome of locoregionally advanced squamous cell carcinomas of the head and neck (HNSCC). Standard treatment includes a combination of surgery, radio- and chemotherapy. The addition of molecular targeting agents to conventional treatment may improve outcomes. In this study the Raf inhibitor sorafenib was used to increase the radiosensitivity of HNSCC cell lines.

Material and methods

In a panel of six cell lines (A549, FaDu, UTSCC 60A, UTSCC 42A, UTSCC 42B, UTSCC 29) radiosensitivity was measured by colony formation assay and apoptosis and cell cycle analysis were performed by flow cytometry. DNA repair was analyzed by 53BP1 immunohistochemistry.

Results

Sorafenib added prior to irradiation resulted in an increased cellular radiosensitivity (DEF0.5 = 1.11–1.84). Radiosensitization was not caused by an enhanced rate of apoptosis or cell cycle effects. In contrast, sorafenib was shown for the first time to block the repair of DNA double-strand breaks (DSB).

Conclusion

Our data suggest that sorafenib may be used to overcome the radioresistance of HNSCC through the inhibition of DSB repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号