首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work characterized airborne particles generated from the weighing of bulk, multiwall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratio ~1). The particles generated during sanding were predominantly micron sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator's breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m(3) compared with those with no LEV (GM = 2.68 μg/m(3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m(3); p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec).  相似文献   

2.
This study describes workers’ exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers’ personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI).

Workers’ personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m?3 in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 103 to 662 × 103 cm?3 in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 103 to 243 × 103 cm?3 and 5.1 × 103 to 97 × 103 cm?3, respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied.

Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping operations. Particle number concentration and size distribution measurements provide important information regarding exposure to ultrafine particles, which cannot be seen in particle mass measurements.  相似文献   

3.
The National Institute for Occupational Safety and Health (NIOSH) developed a standard for respirator certification under 42 CFR Part 84, using a TSI 8130 automated filter tester with photometers. A recent study showed that photometric detection methods may not be sensitive for measuring engineered nanoparticles. Present NIOSH standards for penetration measurement are mass-based; however, the threshold limit value/permissible exposure limit for an engineered nanoparticle worker exposure is not yet clear. There is lack of standardized filter test development for engineered nanoparticles, and development of a simple nanoparticle filter test is indicated. To better understand the filter performance against engineered nanoparticles and correlations among different tests, initial penetration levels of one fiberglass and two electret filter media were measured using a series of polydisperse and monodisperse aerosol test methods at two different laboratories (University of Minnesota Particle Technology Laboratory and 3M Company). Monodisperse aerosol penetrations were measured by a TSI 8160 using NaCl particles from 20 to 300 nm. Particle penetration curves and overall penetrations were measured by scanning mobility particle sizer (SMPS), condensation particle counter (CPC), nanoparticle surface area monitor (NSAM), and TSI 8130 at two face velocities and three layer thicknesses. Results showed that reproducible, comparable filtration data were achieved between two laboratories, with proper control of test conditions and calibration procedures. For particle penetration curves, the experimental results of monodisperse testing agreed well with polydisperse SMPS measurements. The most penetrating particle sizes (MPPSs) of electret and fiberglass filter media were ~50 and 160 nm, respectively. For overall penetrations, the CPC and NSAM results of polydisperse aerosols were close to the penetration at the corresponding median particle sizes. For each filter type, power-law correlations between the penetrations measured by different instruments show that the NIOSH TSI 8130 test may be used to predict penetrations at the MPPS as well as the CPC and NSAM results with polydisperse aerosols. It is recommended to use dry air (<20% RH) as makeup air in the test system to prevent sodium chloride particle deliquescing and minimizing the challenge particle dielectric constant and to use an adequate neutralizer to fully neutralize the polydisperse challenge aerosol. For a simple nanoparticle penetration test, it is recommended to use a polydisperse aerosol challenge with a geometric mean of ~50 nm with the CPC or the NSAM as detectors.  相似文献   

4.
As cellulose nanocrystals (CNCs) are increasing in production, establishing safe workplace practices in industry will be paramount to their continued use and growth. Particles other than CNCs with similar high aspect ratios have exhibited toxicity on inhalation. Safeguards are needed to monitor concentrations of CNCs in air in industrial and laboratory settings to protect workers. However, because of their size, morphology, and chemical makeup, CNCs are difficult to characterize and differentiate from other dust and cellulose products. This work is focused on developing an effective method of characterizing the concentration of airborne ultrafine CNCs that may deposit in the respiratory tract. CNCs were tagged with rhodamine b (RhB-CNCs) for improved visualization and characterized using UV-vis spectroscopy (UV-vis), transmission electron microscopy (TEM), and dynamic light scattering (DLS), then aerosolized and collected via a novel method using plastic impingers. Concentration of RhB-CNCs was measured using UV-vis and scanning mobility particle sizer (SMPS). The plastic impinger with 3D-printed nozzle collected airborne CNCs at an efficiency that improves upon commercially available impingers for relevant particle sizes.  相似文献   

5.
Exposure to diesel particulate matter (DPM) is frequently assessed by measuring indicators of carbon speciation, but these measurements may be affected by organic carbon (OC) interference. Furthermore, there are still questions regarding the reliability of direct-reading instruments (DRI) for measuring DPM, since these instruments are not specific and may be interfered by other aerosol sources. This study aimed to assess DPM exposure in 2 underground mines by filter-based methods and DRI and to assess the relationship between the measures of elemental carbon (EC) and the DRI to verify the association of these instruments to DPM. Filter-based methods of respirable combustible dust (RCD), EC, and total carbon (TC) were used to measure levels of personal and ambient DPM. For ambient measurements, DRI were used to monitor particle number concentration (PNC; PTrak), particle mass concentration (DustTrak DRX and DustTrak 8520), and the submicron fraction of EC (EC1;Airtec). The association between ambient EC and the DRI was assessed by Spearman correlation. Geometric mean concentrations of RCD, respirable TC (TCR) and respirable elemental EC (ECR) were 170 µg/m3, 148 µg/m3, and 83 µg/m3 for personal samples, and 197 µg/m3, 151 µg/m3, and 100 µg/m3 for ambient samples. Personal measurements had higher TCR:ECR ratios compared to ambient samples (1.8 vs. 1.50) and weaker association between ECR and TCR. Among the DRI, the measures of EC1 by the Airtec (ρ = 0.86; P < 0.001) and the respirable particles by the DustTrak 8520 (ρ = 0.74; P < 0.001) showed the strongest association with EC, while PNC showed a weak and non-significant association with EC. In conclusion, this study provided important information about the concentrations of DPM in underground mines by measuring several indicators using filter-based methods and DRI. Among the DRI, the Airtec proved to be a good tool for estimating EC concentrations and, although the DustTrak showed good association with EC, interferences from other aerosol sources should be considered when using this instrument to assess DPM.  相似文献   

6.
Nanomaterial particles exhibit a wide range of sizes through the formation of agglomerates/aggregates. To assess nanomaterial exposure in the workplace, accurate measurements of particle concentration and size distribution are needed. In this study, we evaluated the performance of two recently commercialized instruments: a portable scanning mobility particle sizer (SMPS) (NanoScan, TSI Inc.), which measures particle size distribution between 10 and 420 nm and an optical particle sizer (OPS, TSI Inc.), which measures particle size distribution between 300 and 10,000 nm. We compared the data measured by these instruments to conventional instruments (i.e., a widely used laboratory SMPS and an optical particle counter (OPC)) using nano-TiO2 powder as test aerosol particles. The results showed obvious differences in the size distributions between the new and old SMPSs. A possible reason for the differences is that the cyclone inlet of the new SMPS (NanoScan) acted as a disperser of the weakly agglomerated particles and consequently the concentration increased through the breakup of the agglomerates. On the other hand, the particle concentration and size distributions measured by the OPS were similar to the OPC. When indoor aerosol particles were measured, the size distribution measured by the NanoScan was similar to the laboratory SMPS.  相似文献   

7.
Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1–S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.  相似文献   

8.
Recently, toxicological and epidemiological studies on health effects related to particle exposure suggest that 'ultrafine particles' (particles with an aerodynamic diameter of <100 nm) may cause severe health effects after inhalation. Although the toxicological mechanisms for these effects have not yet been explained, it is apparent that measuring exposures against mass alone is not sufficient. It is also necessary to consider exposures against surface area and number concentration. From earlier research it was hypothesized that results on number concentration and particle distributions may vary with distance to the source, limiting the reliability of estimates of personal exposure from results which were obtained using static measurement equipment. Therefore, a workplace study was conducted to explore the performance of measurement methods in a multi-source emission scenario as part of a sampling strategy to estimate personal exposure. In addition, a laboratory study was conducted to determine possible influences of both distance to source and time course on particle number concentration and particle size distribution. In both studies different measurement equipment and techniques were used to characterize (total) particle number concentration. These included a condensation particle counter (CPC), a scanning mobility particle sizer (SMPS) and an electrical low pressure impactor (ELPI). For the present studies CPC devices seemed to perform well for the identification of particle emission sources. The range of ultrafine particle number concentration can be detected by both SMPS and ELPI. An important advantage of the ELPI is that aerosols with ultrafine sizes can be collected for further analysis. Specific surface area of the aerosols can be estimated using gas adsorption analysis; however, with this technique ultrafine particles cannot be distinguished from particles with non-ultrafine sizes. Consequently, estimates based on samples collected from the breathing zone and scanning electron microscopic analysis may give a more reliable estimate of the specific surface area of the ultrafine particles responsible for personal exposure. The results of both the experimental and the workplace study suggest both spatial and temporal variation in total number concentration and aerosol size distribution. Therefore, the results obtained from static measurements and grab sampling should be interpreted with care as estimates of personal exposure. For evaluation of workplace exposure to ultrafine particles it is recommended that all relevant characteristics of such exposure are measured as part of a well-designed sampling strategy.  相似文献   

9.
3-D printing is an additive manufacturing process involving the injection of melted thermoplastic polymers, which are then laid down in layers to achieve a pre-designed shape. The heated deposition process raises concerns of potential aerosol and volatile organic compounds (VOC) emission and exposure. The decreasing cost of desktop 3-D printers has made the use of 3-D printers more acceptable in non-industrial workplaces lacking sufficient ventilation. Meanwhile, little is known about the characteristics of 3-D printing fume emission. The objective of this study was to characterize aerosols and VOC emissions generated from various filaments used with a low-cost 3-D printer in an environmental testing chamber. A pre-designed object was printed in 1.25 hours using eight types of filaments. A scanning mobility particle sizer and an aerodynamic particle sizer were employed to measure the particle size distribution in sub-half-micron fraction (<0.5 µm) and super-half-micron fraction (0.5–20 µm), respectively. VOC concentration was monitored real-time by a photoionization detector and sampled with a tri-sorbent thermal desorption tube, and analyzed by thermal desorption gas chromatography mass spectrometry (TD-GC/MS). Results showed high levels of fume particles emission rate (1.0 × 107 to 1.2 × 1010 #/min) in the sub-half-micron range with mode sizes of 41–83 nm. Particle concentrations peaked during the heat-up and solid layer printing periods. Total VOC concentration in the chamber followed a first-order buildup, with predominant VOC species in the chamber were breakdown and reaction products of the filaments, such as styrene from ABS filaments. These findings and exposure scenario estimation suggest that although the VOC concentrations were much lower than occupational exposure limits, particles with size less than micron might be a concern for users of low-cost 3-D printers due to high respirablity, especially if used in settings without proper guidance and engineering control.  相似文献   

10.
Exposure of ice resurfacer operators to indoor air contaminants was measured in six indoor ice arenas. A standardized questionnaire on technical and operational features was employed and indoor airborne concentrations of carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and total volatile organic compounds (VOCs) were measured. Air samples were collected using a range of direct reading instruments attached to the driver’s seat of the resurfacer. The range of mean exposure concentrations via positional sampling (i.e. as close as able to the operator’s breathing zone) were 5.7–7.4 ppm, 694–2171 ppm, <0.5 to 0.5 ppm, and < 0.1 to 0.2 ppm, for CO, CO2, NO, and NO2, respectively. Exposure levels for SO2 and VOC were below detection. Overall, each of the measured indoor air contaminants was found to be below its respective occupational exposure limits (OEL), suggesting that the risk of hazardous exposure is low. The use of natural gas as a fuel source is believed to contribute to low contaminant concentrations.  相似文献   

11.
This study compared the response of two optical particle counters with that of an aerodynamic particle sizer. The optical particle counters rely on the amount of incident light scattered at 90 degrees by a particle to measure particle number concentration by optical particle size. Two models of optical particle counters from Grimm Technologies were used: the portable aerosol spectrometer (PAS) 1.108 (0.3-20 microm in 15 channels); and the PAS 1.109 (0.2-20 microm in 30 size channels). With a substantially different operating principle from that employed by the optical particle counters, the aerodynamic particle sizer (APS) model 3321 (TSI, Inc., St Paul, MN, USA) sizes particles according to their behavior in an accelerating flow to provide particle number concentration by aerodynamic size over a slightly narrower size range (0.5-20 microm) in 52 channels. The responses of these instruments were compared for three sizes of monodisperse solid aerosols composed of polystyrene latex spheres and a polydisperse aerosol composed of Arizona test dust. The PASs provided similar results to those from the APS. However, there were systematic differences among instruments in number and mass concentration measurement that depended upon particle size.  相似文献   

12.
Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the “gold standard” for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing “monodisperse” aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test aerosols might cause artifacts by counting “phantom particles.” Overall, the information obtained from this study will help understand the limitations of the SMPS in measuring nanoparticles so that one can adequately interpret the results for risk assessments and exposure prevention in an occupational or ambient environment.  相似文献   

13.
Conventional wisdom has been that hard, resilient surfaces resuspend fewer particles than carpeted surfaces, however, exceptions to this have been demonstrated and uncertainty remains about the factors that lead to this resuspension, notably, the effect of vacuum cleaning on either increasing or reducing resuspension from flooring. The purpose of this study was to determine how resuspension of house dust by aerodynamic size or particle type, including cat allergen and bacterial endotoxin, is affected by flooring, dust loading, embedding dust, and walking/cleaning activities. House dust was blown in and allowed to settle in a walk-in chamber after overnight deposition followed by walking or a vacuum cleaning procedure. Using an aerosol particle sizer and large-volume air samplers at different heights in the chamber, concentrations of airborne particles, resuspension rates, and fractions were computed for four types of flooring conditions during six walking activities. Carpeting resulted in significantly more airborne cat allergen and airborne endotoxin than a laminate floor. Height does have an effect on measured allergen over carpet and this is apparent with concentrations at the infant and adult air samplers. Walking on laminate flooring resuspends less house dust than walking on an equally dusty carpeted floor, where dust is entirely on the surface of the carpet. However, vacuum cleaning a laminate floor resuspended more dust than vacuum cleaning carpets, at large particle sizes of 5 µm and 10 µm. Activities following a deep cleaning of hard resilient or a carpeted surface is likely to leave no differences in resuspended particles between them.  相似文献   

14.
Respirable dustiness represents the tendency of a powder to generate respirable airborne dust during handling and therefore indicates the propensity for a powder to become an inhalation hazard. The dustiness of 14 powders, including 10 different nanopowders, was evaluated with the use of a novel low-mass dustiness tester designed to minimize the use of the test powder. The aerosol created from 15-mg powder samples falling down a tube were measured with an aerodynamic particle sizer (APS). Particle counts integrated throughout the pulse of aerosol created by the falling powder were used to calculate a respirable dustiness mass fraction (D, mg/kg). An amorphous silicon dioxide nanopowder produced a respirable D of 121.4 mg/kg, which was significantly higher than all other powders (p < 0.001). Many nanopowders produced D values that were not significantly different from large-particle powders, such as Arizona Road Dust and bentonite clay. In general, fibrous nanopowders and powders with primary particles >100 nm are not as dusty as those containing granular, nano-sized primary particles. The method used here, incorporating an APS, represents a deviation from a standard method but resulted in dustiness values comparable to other standard methods.  相似文献   

15.
An aerodynamic particle sizer (APS) can be used to make real-time measurements of the aerodynamic particle size distribution over the range of 0.5 to 32 microns. This instrument is very useful in conducting health-related aerosol measurements involving aerosol generation, respirator efficiency, and particulate sampling efficiency. One of the two signal processors within the APS can create spurious or phantom particle counts that can significantly affect relative measurements and calculated mass distributions. In the APS, particle size measurement is based upon a particle's transit time between two laser beams that are perpendicular to an accelerating airflow. The signal processors measure each particle's transit from the time between the two pulses of scattered light that are generated as the particle passes through the two laser beams. When only a single pulse from a particle is detected, another pulse can cause the recording of a randomly sized phantom particle. The small particle processor (SPP), which measures particle transit from the times in digital increments of 4 nanoseconds, can create phantom particles; the large particle processor (LPP), which measures particle transit times in digital increments of 66.67 nanoseconds, is designed to prevent the creation of phantom particles. These two processors overlap in the range of 5.2 to 15.4 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study uses two real-time dust monitors, the TSI Model 8520 DustTrak and Grimm Series 1.108 Aerosol Spectrometer, to determine PM(10) and PM(2.5) levels simultaneously in an iron foundry. The SA Model 241 Dichotomous Sampler was used as a reference gravimetric method for comparing the measurement results obtained by these direct-reading instruments. The response to PM levels from DustTrak is higher than that of the Aerosol Spectrometer. The DustTrak provides an overestimation PM levels, and PM levels measured by an Aerosol Spectrometer are lower than actual concentrations. Calibration factors of the DustTrak and Aerosol Spectrometer are 0.74 and 1.33, respectively, when used to measure particulate matter at an iron foundry. Based on measurement results, the DustTrak provides a lower overestimation of PM(10) levels than PM(2.5) levels; that is, the response of the DustTrak increases as particle size decreases. In addition, measurement results suggest that the Aerosol Spectrometer provides precise measurements of PM(10) and PM(2.5), and measurement accuracy compared with the reference gravimetric method can be improved through a calibration factor.  相似文献   

17.
Measurements of 15 nonsmokers and 3 smokers breathing environmental tobacco smoke (ETS), were conducted to study particle deposition within the human respiratory tract. The subjects inhaled ETS of count median diameter (CMD) of about 0.2 micron and geometric standard deviation (GSD) of 1.7 The particle size distribution in the submicrometer range in the inhaled and exhaled air from the subjects was measured using a scanning mobility particle sizer (SMPS). A deposition of 56.0 +/- 15.9% was observed for nonsmokers while breathing ETS through the nose and 48.7 +/- 11.6% while breathing ETS through the mouth. One individual tested four times gave an average deposition of 57.4 +/- 11.5%, providing an indication of intraindividual variation. Such a variation is expected since the breathing rate was not controlled in order that an indication of the deposition experienced on a day-to-day basis could be obtained. For nonsmokers the deposition while breathing through the mouth was lower than through the nose and the variability within the measurements was also lower for mouth breathing. The latter could be due to the variation in individual size and shape of the nasal passage. Smokers had, on average, a higher rate of deposition but also a higher interindividual variability making it difficult to draw conclusions with respect to the affect of smoking on ETS particle deposition. The average deposition of the three smokers was 65.3 +/- 24.1% for nasal breathing and 66.1 +/- 17.6% for mouth breathing.  相似文献   

18.
High speed grinding of gray iron castings long has been associated with excessive exposure to crystalline silica. Not all workers engaged in these operations are protected by conventional ventilation techniques. Dust in the air that has been entrained by the spinning grinding wheel and not captured in the grinder hood has been postulated to be a major exposure source. A pilot grinding operation was constructed, and the size distribution and concentration of airborne particles were measured with the aerodynamic particle sizer (APS). Various control measures proved effective in reducing the respirable dust concentration: increased exhaust ventilation, and installation of baffles and/or the use of an air jet to deflect the entrained air stream. The concentration of respirable dust is the breathing zone was reduced approximately 20-fold through the combined use of increased ventilation, interior baffles, and an air jet. The air jet and baffle utilized at the base ventilation rate reduced the respirable dust concentration by a factor of three to four, whereas the baffle alone halved the concentration.  相似文献   

19.
Bacillus anthracis Sterne spores were aerosolized within a chamber at concentrations ranging from 1 x 103 to 1.7 x 10? spores per cubic meter of air (particles (p)/m3) to compare three different sampling methods: Andersen samplers, gelatin filters, and polytetrafluoroethylene (PTFE) membrane filters. Three samples of each type were collected during each of 19 chamber runs. Chamber concentration was determined by an aerodynamic particle sizer (APS) for the size range of 1.114-1.596 μm. Runs were categorized (low, medium, and high) based on tertiles of the APS estimated air concentrations. Measured air concentrations and recovery efficiency [ratio of the measured (colony forming units (CFU)/m3) to the APS estimated (particles/m3) air concentrations] for the sampling methods were compared using mixed-effects regression models. Limits of detection for each method were estimated based on estimated recovery efficiencies. Mean APS estimated air concentrations were 1600 particles/m3, 4100 particles/m3, and 9100 particles/m3 at the low, medium, and high tertiles, respectively; coefficient of variation (CV) ranged from 25 to 40%. Statistically significant differences were not observed among the three sampling methods. At the high and medium tertiles, estimated correlations of measured air concentration (CFU/m3) among samples collected from the same run of the same type were high (0.73 to 0.93). Among samples collected from the same run but of different types, correlations were moderate to high (0.45 to 0.85); however, correlations were somewhat lower at the low tertile (-0.31 to 0.75). Estimated mean recovery efficiencies ranged from 0.22 to 0.25 CFU/particle with total CVs of approximately 84 to 97%. Estimated detection limits ranged from 35 to 39 particles/m3. These results will enable investigators to conduct environmental sampling, quantify contamination levels, and conduct risk assessments of B. anthracis.  相似文献   

20.
High-ozone concentrations currently represent the main air pollution problem in the city of São Paulo, Brazil. To elucidate the main volatile organic compounds (VOCs), which act as ozone precursors, samples from air quality monitoring stations were evaluated. Thirty-five samples were collected in August–September of 2006 and 43 in July–August of 2008, when the consumption of ethanol was about 50 % of the total fuel used in the São Paulo Metropolitan Area. Samples were collected using electropolished stainless canisters. Chemical analyses were performed on pre-concentrated samples followed by gas chromatograph with flame ionization and mass spectrometry detection. The incremental reactivity scale was used to rank the ozone precursors using the Ozone Isopleth Package for Research (OZIPR) trajectory model coupled with chemical mechanism Statewide Air Pollution Research Center (SAPRC). Sixty-nine species of VOCs were quantified, and the ten main ozone precursors identified in 2008 were as follows: formaldehyde (42.8 %), acetaldehyde (13.9 %), ethene (12.2 %), propene (5.1 %), 1-methylcyclopentene (3.0 %), p-xylene (2.4 %), 1-butene (2.1 %), trans-2-pentene (1.9 %), 2-methyl 2-butene (1.7 %) and trans-2-butene (1.6 %). Volatile organic compound mass distribution showed that in 2008 alkanes represented 46 % of the total VOCs, alkenes 27 %, aromatics 14 %, alkadienes 1 % and aldehydes 12 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号