首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Ammonia intoxication decreases the hyperpolarizing action of postsynaptic inhibition. This study examines the metabolic state of the spinal cord during this effect of ammonia intoxication on spinal motoneurons. ATP, ADP, AMP, the adenylate energy charge, glucose, PCr, pyruvate, alpha-ketoglutarate and glutamate were unchanged during the effect of ammonia on the hyperpolarizing action of postsynaptic inhibition. NH4+, glutamine and lactate were increased. Ammonia intoxication affected postsynaptic inhibition without changes of the resting membrane potential, the neuron input resistance, the action potential and EPSPs. The encephalopathy caused by ammonia intoxication is known to occur without an alteration of the tissue energy state. The effect of ammonia intoxication on postsynaptic inhibition can be considered as a cause of the encephalopathy because postsynaptic inhibition is altered without a change of the tissue energy state, the resting membrane potential, the whole neuron resistance, the action potential and EPSPs.  相似文献   

2.
In 19 rats two different retrograde tracers (Fast Blue, Diamidino Yellow, Rhodamine-labeled latex microspheres, or wheat germ agglutinin conjugated with HRP) were injected into the solitary nucleus (NTS) and either the olfactory bulb (OB), periaqueductal gray (PAG) or superior colliculus (SC). The pattern of retrogradely labeled neurons in the medial frontal, insular and olfactory cortices was examined to determine the topographical organization of the cell populations projecting to these subcortical targets and the extent to which they overlapped. In the medial frontal cortex (MFC) SC projections originated most dorsally, while NTS and OB projections originated most ventrally and exhibited slight overlap. PAG projections originated from virtually the entire MFC and overlapped with cells projecting to the OB, NTS and SC. These results are consistent with the role of dorsal MFC as the rat's frontal eye field and the ventral MFC as a visceral motor area. Laterally, in the insular cortex there was virtually complete overlap between cells projecting to the NTS and PAG. The extensive overlap of PAG projections with NTS projections medially and laterally and with SC projections medially suggests the PAG is involved in a variety of brain visceral and somatic functions. In the piriform cortex there was overlap between cells projecting to the OB and cells projecting to the SC; the cells projecting to the SC were located in the endopiriform nucleus, and may provide a substrate for orienting responses to odors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号