首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
Crustaceans and insects share many similarities of brain organization suggesting that their common ancestor possessed some components of those shared features. Stomatopods (mantis shrimps) are basal eumalacostracan crustaceans famous for their elaborate visual system, the most complex of which possesses 12 types of color photoreceptors and the ability to detect both linearly and circularly polarized light. Here, using a palette of histological methods we describe neurons and their neuropils most immediately associated with the stomatopod retina. We first provide a general overview of the major neuropil structures in the eyestalks lateral protocerebrum, with respect to the optical pathways originating from the six rows of specialized ommatidia in the stomatopod's eye, termed the midband. We then focus on the structure and neuronal types of the lamina, the first optic neuropil in the stomatopod visual system. Using Golgi impregnations to resolve single neurons we identify cells in different parts of the lamina corresponding to the three different regions of the stomatopod eye (midband and the upper and lower eye halves). While the optic cartridges relating to the spectral and polarization sensitive midband ommatidia show some specializations not found in the lamina serving the upper and lower eye halves, the general morphology of the midband lamina reflects cell types elsewhere in the lamina and cell types described for other species of Eumalacostraca.  相似文献   

2.
The praying mantis is an insect which relies on vision for capturing prey, avoiding being eaten and for spatial orientation. It is well known for its ability to use stereopsis for estimating the distance of objects. The neuronal substrate mediating visually driven behaviors, however, is not very well investigated. To provide a basis for future functional studies, we analyzed the anatomical organization of visual neuropils in the brain of the praying mantis Hierodula membranacea and provide supporting evidence from a second species, Rhombodera basalis, with particular focus on the lobula complex (LOX). Neuropils were three‐dimensionally reconstructed from synapsin‐immunostained whole mount brains. The neuropil organization and the pattern of γ‐aminobutyric acid immunostaining of the medulla and LOX were compared between the praying mantis and two related polyneopteran species, the Madeira cockroach and the desert locust. The investigated visual neuropils of the praying mantis are highly structured. Unlike in most insects the LOX of the praying mantis consists of five nested neuropils with at least one neuropil not present in the cockroach or locust. Overall, the mantis LOX is more similar to the LOX of the locust than the more closely related cockroach suggesting that the sensory ecology plays a stronger role than the phylogenetic distance of the three species in structuring this center of visual information processing.  相似文献   

3.
Like other araneans, the wandering spider Cupiennius salei is equipped with one pair of principal eyes and three pairs of secondary eyes. Primary and secondary eyes serve two distinct sets of visual neuropils in the brain. This paper describes cellular organization in neuropils supplied by the secondary eyes, which individually send axons into three laminas resembling their namesakes serving insect superposition eyes. Secondary eye photoreceptors send axons to small-field projection neurons (L-cells) which extend from each lamina to supply three separate medullas. Each medulla is a vault of neuropil comprising only a few morphological types of neurons. These can be compared to a subset of retinotopic neurons in the medullas of calliphorid Diptera supplying giant motion-sensitive neurons in the lobula plate. In Cupiennius, neurons from secondary eye medullas converge at a single target neuropil called the “mushroom body.” This region contains giant output neurons which, like their counterparts in the calliphorid lobula plate, lead to descending pathways that supply thoracic motor circuits. It is suggested that the cellular arrangements serving Cupiennius's secondary eyes are color independent pathways specialized for detecting horizontal motion. The present results do not support the classical view that the spider “mushroom body” is phylogenetically homologous or functionally analogous to its namesake in insects. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Migrating desert locusts, Schistocerca gregaria, are able to use the skylight polarization pattern for navigation. They detect polarized light with a specialized dorsal rim area in their compound eye. After multistage processing, polarization signals are transferred to the central complex, a midline‐spanning brain area involved in locomotor control. Polarization‐sensitive tangential neurons (TB‐neurons) of the protocerebral bridge, a part of the central complex, give rise to a topographic arrangement of preferred polarization angles in the bridge, suggesting that the central complex acts as an internal sky compass. TB‐neurons connect the protocerebral bridge with two adjacent brain areas, the posterior optic tubercles. To analyze the polarotopic organization of the central complex further, we investigated the number and morphologies of TB‐neurons and the presence and colocalization of three neuroactive substances in these neurons. Triple immunostaining with antisera against Diploptera punctata allatostatin (Dip‐AST), Manduca sexta allatotropin (Mas‐AT), and serotonin (5HT) raised in the same host species revealed three spatially distinct TB‐neuron clusters, each consisting of 10 neurons per hemisphere: cluster 1 and 3 showed Dip‐AST/5HT immunostaining, whereas cluster 2 showed Dip‐AST/Mas‐AT immunostaining. Five subtypes of TB‐neuron could be distinguished based on ramification patterns. Corresponding to ramification domains in the protocerebral bridge, the neurons invaded distinct but overlapping layers within the posterior optic tubercle. Similarly, neurons interconnecting the tubercles of the two hemispheres also targeted distinct layers of these neuropils. From these data we propose a neuronal circuit that may be suited to stabilize the internal sky compass in the central complex of the locust. J. Comp. Neurol. 523:1589–1607, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
6.
Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c‐Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro‐enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2‐deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2‐deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed.  相似文献   

7.
To test the differentiation of visual interneurons that had their targets removed before axogenesis, we ablated neuronal precursors in brains of first instar fly larvae by using a laser microsurgery unit. We describe ablations that resulted in the elimination of the third neuropil region (the lobula complex) of the optic lobes. Neural differentiation in the more peripheral second and first neuropil regions (the medulla and the lamina) was thus studied in the absence of the lobula complex. It was found that the medulla neuropil differentiated with normal columnar and layered organization. The neuropil, however, folded along its central surface. The only connection between the medulla and more central neuropil (the midbrain) was via a bundle of axons (the Cuccati bundle) present also in the normal optic lobes. Some types of neurons that normally connect the medulla and the lobula complex could be identified. These appeared to end in a disorganized neuropil mass in the center of the folded medulla. The differentiation of the lamina neuropil also appeared normal in flies with the lobula complex eliminated and the medulla folded. Also, in optic lobes where the medulla was severely disorganized and/or reduced due to laser ablations, the lamina neuropil appeared more or less normal. The results suggest that lamina and medulla nerve cells can differentiate and develop normal neuropil patterns in absence of their appropriate targets.  相似文献   

8.
Principal neurons in the ventral cochlear nucleus (VCN) receive powerful ascending excitation and pass on the auditory information with exquisite temporal fidelity. Despite being dominated by ascending inputs, the VCN also receives descending cholinergic connections from olivocochlear neurons and from higher regions in the pontomesencephalic tegmentum. In Mongolian gerbils, acetylcholine acts as an excitatory and modulatory neurotransmitter on VCN neurons, but the anatomical structure of cholinergic innervation of gerbil VCN is not well described. We applied fluorescent immunohistochemical staining to elucidate the development and the cellular localization of presynaptic and postsynaptic components of the cholinergic system in the VCN of the Mongolian gerbil. We found that cholinergic fibers (stained with antibodies against the vesicular acetylcholine transporter) were present before hearing onset at P5, but innervation density increased in animals after P10. Early in development cholinergic fibers invaded the VCN from the medial side, spread along the perimeter and finally innervated all parts of the nucleus only after the onset of hearing. Cholinergic fibers ran in a rostro‐caudal direction within the nucleus and formed en‐passant swellings in the neuropil between principal neurons. Nicotinic and muscarinic receptors were expressed differentially in the VCN, with nicotinic receptors being mostly expressed in dendritic areas while muscarinic receptors were located predominantly in somatic membranes. These anatomical data support physiological indications that cholinergic innervation plays a role in modulating information processing in the cochlear nucleus.  相似文献   

9.
10.
The mammalian visual system is one of the most well-studied brain systems. Visual information from the retina is relayed to the dorsal lateral geniculate nucleus of the thalamus (LGd). The LGd then projects topographically to primary visual cortex (VISp) to mediate visual perception. In this view, the VISp is a critical network hub where visual information must traverse LGd–VISp circuits to reach higher order “extrastriate” visual cortices, which surround the VISp on its medial and lateral borders. However, decades of conflicting reports in a variety of mammals support or refute the existence of extrastriate LGd connections that can bypass the VISp. Here, we provide evidence of bidirectional extrastriate connectivity with the mouse LGd. Using small, discrete coinjections of anterograde and retrograde tracers within the thalamus and cortex, our cross-validated approach identified bidirectional connectivity between LGd and extrastriate visual cortices. We find robust reciprocal connectivity of the medial extrastriate regions with LGd neurons distributed along the “ventral strip” border with the intergeniculate leaflet. In contrast, LGd input to lateral extrastriate regions is sparse, but lateral extrastriate regions return stronger descending projections to localized LGd areas. We show further evidence that axons from lateral extrastriate regions can overlap onto medial extrastriate-projecting LGd neurons in the ventral strip, providing a putative subcortical LGd pathway for communication between medial and lateral extrastriate regions. Overall, our findings support the existence of extrastriate LGd circuits and provide novel understanding of LGd organization in rodent visual system.  相似文献   

11.
Covalent conjugation of small ubiquitin‐like modifiers (SUMOs) or SUMOylation is a reversible post‐translational modification that regulates the stability and function of target proteins. SUMOs are removed from substrate proteins by sentrin/SUMO‐specific proteases (SENPs). Numerous studies have implicated SUMOylation in various physiological and pathological processes in neurons. To understand the functional roles of SUMOylation, it is necessary to determine the distribution of enzymes regulating SUMO conjugation and deconjugation; yet, the localization of SENPs has not been described in detail in intact brain tissue. Here, we report the distribution and subcellular localization of SENP3 and 5 in the adult murine brain. Immunohistochemical analyses revealed the ubiquitous distribution of both SENPs across different brain regions. Within individual cells, SENP3 was confined to the nucleus, consistent with the conventional view that SENPs regulate nuclear events. In contrast, SENP5 was detected in the neuropil but not in cell bodies. Moreover, strong SENP5 immunoreactivity was observed in regions with high numbers of synapses such as the cerebellar glomeruli, suggesting that SENP5 localizes to pre‐ and/or postsynaptic structures. We performed double immunolabeling in cultured neurons and found that SENP5 co‐localized with pre‐ and post‐synaptic markers, as well as a mitochondrial marker. Immunoelectron microscopy confirmed this finding and revealed that SENP5 was localized to presynaptic terminals, postsynaptic spines, and mitochondria in axon terminals. These findings advance the current understanding of the functional roles of SUMOylation in neurons, especially in synaptic regulation, and have implications for future therapeutic strategies in neurodegenerative disorders mediated by mitochondrial dysfunction.  相似文献   

12.
We have used MARCM to reveal the adult morphology of the post embryonically produced neurons in the thoracic neuromeres of the Drosophila VNS. The work builds on previous studies of the origins of the adult VNS neurons to describe the clonal organization of the adult VNS. We present data for 58 of 66 postembryonic thoracic lineages, excluding the motor neuron producing lineages (15 and 24) which have been described elsewhere. MARCM labels entire lineages but where both A and B hemilineages survive (e.g., lineages 19, 12, 13, 6, 1, 3, 8, and 11), the two hemilineages can be discriminated and we have described each hemilineage separately. Hemilineage morphology is described in relation to the known functional domains of the VNS neuropil and based on the anatomy we are able to assign broad functional roles for each hemilineage. The data show that in a thoracic hemineuromere, 16 hemilineages are primarily involved in controlling leg movements and walking, 9 are involved in the control of wing movements, and 10 interface between both leg and wing control. The data provide a baseline of understanding of the functional organization of the adult Drosophila VNS. By understanding the morphological organization of these neurons, we can begin to define and test the rules by which neuronal circuits are assembled during development and understand the functional logic and evolution of neuronal networks.  相似文献   

13.
The cephalopod vertical lobe is the largest learning and memory structure known in invertebrate nervous systems. It is part of the visual learning circuit of the central brain, which also includes the superior frontal and subvertical lobes. Despite the well‐established functional importance of this system, little is known about neuropil organization of these structures and there is to date no evidence that the five longitudinal gyri of the vertical lobe, perhaps the most distinctive morphological feature of the octopus brain, differ in their connections or molecular identities. We studied the histochemical organization of these structures in hatchling and adult Octopus bimaculoides brains with immunostaining for serotonin, octopus gonadotropin‐releasing hormone (oGNRH), and octopressin‐neurophysin (OP‐NP). Our major finding is that the five lobules forming the vertical lobe gyri have distinct neurochemical signatures. This is most prominent in the hatchling brain, where the median and mediolateral lobules are enriched in OP‐NP fibers, the lateral lobule is marked by oGNRH innervation, and serotonin immunostaining heavily labels the median and lateral lobules. A major source of input to the vertical lobe is the superior frontal lobe, which is dominated by a neuropil of interweaving fiber bundles. We have found that this neuropil also has an intrinsic neurochemical organization: it is partitioned into territories alternately enriched or impoverished in oGNRH‐containing fascicles. Our findings establish that the constituent lobes of the octopus superior frontal–vertical system have an intricate internal anatomy, one likely to reflect the presence of functional subsystems within cephalopod learning circuitry. J. Comp. Neurol. 523:1297–1317, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Understanding neuronal function at the local and circuit level requires understanding astrocyte function. We have provided a detailed analysis of astrocyte morphology and territory in the Drosophila third-instar ventral nerve cord where there already exists considerable understanding of the neuronal network. Astrocyte shape varies more than previously reported; many have bilaterally symmetrical partners, many have a high percentage of their arborization in adjacent segments, and many have branches that follow structural features. Taken together, our data are consistent with, but not fully explained by, a model of a developmental growth process dominated by competitive or repulsive interactions between astrocytes. Our data suggest that the model should also include cell-autonomous aspects, as well as the use of structural features for growth. Variation in location of arborization territory for identified astrocytes was great enough that a standardized scheme of neuropil division among the six astrocytes that populate each hemi-segment is not possible at the third instar. The arborizations of the astrocytes can extend across neuronal functional domains. The ventral astrocyte in particular, whose territory can extend well into the proprioceptive region of the neuropil, has no obvious branching pattern that correlates with domains of particular sensory modalities, suggesting that the astrocyte would respond to neuronal activity in any of the sensory modalities, perhaps integrating across them. This study sets the stage for future studies that will generate a robust, functionally oriented connectome that includes both partners in neuronal circuits—the neurons and the glial cells, providing the foundation necessary for studies to elucidate neuron–glia interactions in this neuropil.  相似文献   

15.
In Drosophila, color vision and wavelength‐selective behaviors are mediated by the compound eye's narrow‐spectrum photoreceptors R7 and R8 and their downstream medulla projection (Tm) neurons Tm5a, Tm5b, Tm5c, and Tm20 in the second optic neuropil or medulla. These chromatic Tm neurons project axons to a deeper optic neuropil, the lobula, which in insects has been implicated in processing and relaying color information to the central brain. The synaptic targets of the chromatic Tm neurons in the lobula are not known, however. Using a modified GFP reconstitution across synaptic partners (GRASP) method to probe connections between the chromatic Tm neurons and 28 known and novel types of lobula neurons, we identify anatomically the visual projection neurons LT11 and LC14 and the lobula intrinsic neurons Li3 and Li4 as synaptic targets of the chromatic Tm neurons. Single‐cell GRASP analyses reveal that Li4 receives synaptic contacts from over 90% of all four types of chromatic Tm neurons, whereas LT11 is postsynaptic to the chromatic Tm neurons, with only modest selectivity and at a lower frequency and density. To visualize synaptic contacts at the ultrastructural level, we develop and apply a “two‐tag” double‐labeling method to label LT11's dendrites and the mitochondria in Tm5c's presynaptic terminals. Serial electron microscopic reconstruction confirms that LT11 receives direct contacts from Tm5c. This method would be generally applicable to map the connections of large complex neurons in Drosophila and other animals. J. Comp. Neurol. 524:213–227, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The brainstem (midbrain, pons, and medulla oblongata) and cerebellum (diencephalic prosomere 1 through to rhombomere 11) play central roles in the processing of sensorimotor information, autonomic activity, levels of awareness and the control of functions external to the conscious cognitive world of mammals. As such, comparative analyses of these structures, especially the understanding of specializations or reductions of structures with functions that have been elucidated in commonly studied mammalian species, can provide crucial information for our understanding of the behavior of less commonly studied species, like pangolins. In the broadest sense, the nuclear complexes and subdivisions of nuclear complexes, the topographical arrangement, the neuronal chemistry, and fiber pathways of the tree pangolin conform to that typically observed across more commonly studied mammalian species. Despite this, variations in regions associated with the locus coeruleus complex, auditory system, and motor, neuromodulatory and autonomic systems involved in feeding, were observed in the current study. While we have previously detailed the unusual locus coeruleus complex of the tree pangolin, the superior olivary nuclear complex of the auditory system, while not exhibiting additional nuclei or having an altered organization, this nuclear complex, particularly the lateral superior olivary nucleus and nucleus of the trapezoid body, shows architectonic refinement. The cephalic decussation of the pyramidal tract, an enlarged hypoglossal nucleus, an additional subdivision of the serotonergic raphe obscurus nucleus, and the expansion of the superior salivatory nucleus, all indicate neuronal specializations related to the myrmecophagous diet of the pangolins.  相似文献   

17.
To generate rhythmic motor behaviors, both single neurons and neural circuits require a balance between excitatory inputs that trigger action potentials and inhibitory inputs that promote a stable resting potential (E/I balance). Previous studies have focused on individual neurons and have shown that, over a short spatial scale, excitatory and inhibitory (E/I) synapses tend to form structured territories with inhibitory inputs enriched on cell bodies and proximal dendrites and excitatory inputs on distal dendrites. However, systems‐level E/I patterns, at spatial scales larger than single neurons, are largely uncharted. We used immunostaining for PSD‐95 and gephyrin postsynaptic scaffolding proteins as proxies for excitatory and inhibitory synapses, respectively, to quantify the numbers and map the distributions of E/I synapses in zebrafish spinal cord at both an embryonic stage and a larval stage. At the embryonic stage, we found that PSD‐95 puncta outnumber gephyrin puncta, with the number of gephyrin puncta increasing to match that of PSD‐95 puncta at the larval stage. At both stages, PSD‐95 puncta are enriched in the most lateral neuropil corresponding to distal dendrites while gephyrin puncta are enriched on neuronal somata and in the medial neuropil. Significantly, similar to synaptic puncta, neuronal processes also exhibit medial‐lateral territories at both developmental stages with enrichment of glutamatergic (excitatory) processes laterally and glycinergic (inhibitory) processes medially. This establishment of neuropil excitatory‐inhibitory structure largely precedes dendritic arborization of primary motor neurons, suggesting that the structured neuropil could provide a framework for the development of E/I balance at the cellular level. J. Comp. Neurol. 525:1649–1667, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Mantis shrimps (Stomatopoda) possess in common with other crustaceans, and with Hexapoda, specific neuroanatomical attributes of the protocerebrum, the most anterior part of the arthropod brain. These attributes include assemblages of interconnected centers called the central body complex and in the lateral protocerebra, situated in the eyestalks, paired mushroom bodies. The phenotypic homologues of these centers across Panarthropoda support the view that ancestral integrative circuits crucial to action selection and memory have persisted since the early Cambrian or late Ediacaran. However, the discovery of another prominent integrative neuropil in the stomatopod lateral protocerebrum raises the question whether it is unique to Stomatopoda or at least most developed in this lineage, which may have originated in the upper Ordovician or early Devonian. Here, we describe the neuroanatomical structure of this center, called the reniform body. Using confocal microscopy and classical silver staining, we demonstrate that the reniform body receives inputs from multiple sources, including the optic lobe's lobula. Although the mushroom body also receives projections from the lobula, it is entirely distinct from the reniform body, albeit connected to it by discrete tracts. We discuss the implications of their coexistence in Stomatopoda, the occurrence of the reniform body in another eumalacostracan lineage and what this may mean for our understanding of brain functionality in Pancrustacea.  相似文献   

19.
The compound eye of cockroaches is obligatory for entrainment of the Madeira cockroach's circadian clock, but the cellular nature of its entrainment pathways is enigmatic. Employing multiple-label immunocytochemistry, histochemistry, and backfills, we searched for photic entrainment pathways to the accessory medulla (AME), the circadian clock of the Madeira cockroach. We wanted to know whether photoreceptor terminals could directly contact pigment-dispersing factor-immunoreactive (PDF-ir) circadian pacemaker neurons with somata in the lamina (PDFLAs) or somata next to the AME (PDFMEs). Short green-sensitive photoreceptor neurons of the compound eye terminated in lamina layers LA1 and LA2, adjacent to PDFLAs and PDFMEs that branched in LA3. Long UV-sensitive compound eye photoreceptor neurons terminated in medulla layer ME2 without direct contact to ipsilateral PDFMEs that arborized in ME4. Multiple neuropeptide-ir interneurons branched in ME4, connecting the AME to ME2. Before, extraocular photoreceptors of the lamina organ were suggested to send terminals to accessory laminae. There, they overlapped with PDFLAs that mostly colocalized PDF, FMRFamide, and 5-HT immunoreactivities, and with terminals of ipsi- and contralateral PDFMEs. We hypothesize that during the day cholinergic activation of the largest PDFME via lamina organ photoreceptors maintains PDF release orchestrating phases of sleep–wake cycles. As ipsilateral PDFMEs express excitatory and contralateral PDFMEs inhibitory PDF autoreceptors, diurnal PDF release keeps both PDF-dependent clock circuits in antiphase. Future experiments will test whether ipsilateral PDFMEs are sleep-promoting morning cells, while contralateral PDFMEs are activity-promoting evening cells, maintaining stable antiphase via the largest PDFME entrained by extraocular photoreceptors of the lamina organ.  相似文献   

20.
Recordings from afferent channels from the medulla supplying deep neuropils of the fly's optic lobes reveal different filter properties among the three classes of afferent neurons: transmedullary cells, T2 neurons, and Y cells. Whereas transmedullary cells respond to local flicker stimuli without discriminating these from directional or oriented motion, the T2 afferent neurons show clear motion orientation selectivity, which corresponds closely with a morphological bias in the orientation of their dendrites and could also be influenced by systems of local recurrent neurons in the medulla. A Y cell having a clearly defined terminal in the lobula, but having dendrite-like processes in the medulla and, possibly, the lobula plate, discriminates the direction of motion and its orientation. These results demonstrate unambiguously that the lobula receives information about motion and that the channels carrying it are distinct from those supplying wide-field motion-selective neurons in the lobula plate. Furthermore, recordings from a newly identified recurrent neuron linking the lobula back to the inner medulla demonstrate that the lobula discriminates nondirectional edge motion from flicker, thereby reflecting a property of this neuropil that is comparable with that of primary visual cortex in cats. The present findings support the proposal that elementary motion detecting circuits supply several parallel channels through the medulla, which segregate to, but are not shared by, the lobula and the lobula plate. The results are discussed in the context of other intracellular recordings from retinotopic neurons and with analogous findings from mammalian visual systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号