首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Retinal ganglion cells were labeled with HRP after injecting layers of GL or single strata within the stratum griseum superficiale (SGS). Only small cells were labeled after injecting small cell C layers and upper SGS. Only large cells were labeled after injecting lower SGS. Small and large cells were labeled after injecting medial interlaminar nucleus (MIN) and layers A and A1.  相似文献   

2.
3.
A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau-lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme beta-galactosidase. Their axons were visualized by X-gal histochemistry or anti-beta-galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri-supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co-staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical.  相似文献   

4.
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN) and the olivary pretectal nucleus (OPN), providing irradiance information for entrainment of circadian rhythms and for stimulating the pupillary light reflex. In this study, mice were used in which the melanopsin gene was replaced with the tau-lacZ gene. Heterozygous ( tau-lacZ +/– ) mice express both melanopsin and β-galactosidase. In tau-lacZ +/– mice, only ∼50% of melanopsin ipRGCs contain β-galactosidase, and these cells are specifically labeled with a C-terminus melanopsin antibody. Retrograde tracer injection into the SCN labels β-galactosidase-expressing ipRGCs (termed M1) that comprise ∼80% of the SCN-projecting ipRGCs. M1 ipRGCs and an additional set of ipRGCs (termed M2) are labeled with a melanopsin antiserum targeted against the N-terminus of the melanopsin protein; M2 ipRGCs do not contain detectable β-galactosidase, and these cells make up the remainder of the SCN-projecting RGCs. Tracer injection into the OPN labeled non-melanopsin RGCs and both types of melanopsin ipRGC: 45% M1 and 55% M2. Infection of the iris with pseudorabies virus (PRV) results in retrograde transneuronal label of OPN projection neurons that innervate preganglionic parasympathetic neurons of the Edinger-Westphal nucleus; PRV-labeled cells were located almost exclusively within the terminal field of M1 ipRGCs in the periphery (shell) of the OPN. The OPN core receives retinal input, and we hypothesize that the OPN core receives input from the M2 ipRGCs. Two subtypes of melanopsin ipRGCs project differentially to the SCN and OPN; the functional significance of ipRGCs subtypes is currently unknown.  相似文献   

5.
6.
In the cat retina, bipolar and amacrine cell inputs were analyzed electron microscopically in 5 ganglion cells (two Y-cells, two X-cells and one W-cell) that were well-isolated and had clear morphological features. For Y- and X-cells, subtypes of a and b were further identified according to the sublamina of the inner plexiform layer in which their dendrites extended. Y-a and Y-b ganglion cells had large somas, thick axons, and several thick dendrites that branched extensively with a large dendritic field. X-a and X-b cells had medium-sized somas, medium-sized axons and extremely narrow dendritic fields. The W-cell studied had a medium-sized soma, a medium-sized axon, and extremely thin dendrites that extended widely. For each of the 5 ganglion cells, ultrathin serial sections were made to study relative occurrence of amacrine and bipolar synapses in whole length of dendrites. About 50% of the terminals were bipolar in the Y-a and Y-b cell dendrites, 36-38% in the X-a and X-b cell dendrites, whereas only 19.7% were bipolar in the W cell dendrites. Bipolar terminals tended to make synaptic contacts with the distal dendrites of Y- and W-cells.  相似文献   

7.
We have analyzed at high resolution the neuroanatomical connections of the juxtaparaventricular region of the lateral hypothalamic area (LHAjp); as a control and in comparison to this, we also performed a preliminary analysis of a nearby LHA region that is dorsal to the fornix, namely the LHA suprafornical region (LHAs). The connections of these LHA regions were revealed with a coinjection tract-tracing technique involving a retrograde (cholera toxin B subunit) and anterograde (Phaseolus vulgaris leucoagglutinin) tracer. The LHAjp and LHAs together connect with almost every major division of the cerebrum and cerebrospinal trunk, but their connection profiles are markedly different and distinct. In simple terms, the connections of the LHAjp indicate a possible primary role in the modulation of defensive behavior; for the LHAs, a role in the modulation of ingestive behavior is suggested. However, the relation of the LHAjp and LHAs to potential modulation of these behaviors, as indicated by their neuroanatomical connections, appears to be highly integrative as it includes each of the major functional divisions of the nervous system that together determine behavior, i.e., cognitive, state, sensory, and motor. Furthermore, although a primary role is indicated for each region with respect to a particular mode of behavior, intermode modulation of behavior is also indicated. In summary, the extrinsic connections of the LHAjp and LHAs (so far as we have described them) suggest that these regions have a profoundly integrative role in which they may participate in the orchestrated modulation of elaborate behavioral repertoires.  相似文献   

8.
9.
The retinohypothalamic tract is one component of the optic nerve that transmits information about environmental luminance levels through medial and lateral branches to four major terminal fields in the hypothalamus. The spatial distribution and organization of axonal projections from each of these four terminal fields were analyzed and compared systematically with the anterograde pathway tracer PHAL in rats where the terminal fields had been labeled with intravitreal injections of a different anterograde pathway tracer, CTb. First, the well-known projections of two medial retinohypothalamic tract targets (the ventrolateral suprachiasmatic nucleus and perisuprachiasmatic region) were confirmed and extended. They share qualitatively similar projections to a well-known set of brain regions thought to control circadian rhythms. Second, the projections of a third medial tract target, the ventromedial part of the anterior hypothalamic nucleus, were analyzed for the first time and shown to resemble qualitatively those from the suprachiasmatic nucleus and perisuprachiasmatic region. And third, projections from the major lateral retinohypothalamic tract target were analyzed for the first time and shown to be quite different from those associated with medial tract targets. This target is a distinct core part of the ventral zone of the anterior group of the lateral hypothalamic area that lies just dorsal to the caudal two-thirds of the supraoptic nucleus. Its axonal projections are to neural networks that control a range of specific goal-oriented behaviors (especially drinking, reproductive, and defensive) along with adaptively appropriate and complementary visceral responses and adjustments to behavioral state.  相似文献   

10.
The medial division of the central nucleus of the amygdala (CeAM) and the lateral division of the bed nucleus of the stria terminalis (BNSTL) are closely related. Both receive projections from the basolateral amygdala (BLA) and both project to brain areas that mediate fear-influenced behaviors. In contrast to CeAM however, initial attempts to implicate the BNST in conditioned fear responses were largely unsuccessful. More recent studies have shown that the BNST does participate in some types of anxiety and stress responses. Here, we review evidence suggesting that the CeAM and BNSTL are functionally complementary, with CeAM mediating short- but not long-duration threat responses (i.e., phasic fear) and BNSTL mediating long- but not short-duration responses (sustained fear or ‘anxiety’). We also review findings implicating the stress-related peptide corticotropin-releasing factor (CRF) in sustained but not phasic threat responses, and attempt to integrate these findings into a neural circuit model which accounts for these and related observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号