首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Twelve trained males, in a fed state, were studied to examine the effect of pre-exercise fructose ingestion on endurance capacity during prolonged cycling exercise. Sixty minutes prior to exercise, subjects ingested either 60 or 85 g fructose or a sweet placebo. Mean exercise intensity initially required 62% of the maximal aerobic power and thereafter increased to elicit 72 and 81% of maximal aerobic power at 90 and 120 min of exercise, respectively. Exercise time (mean +/- SE) to exhaustion was significantly increased after fructose ingestion, as compared to placebo ingestion (145 +/- 4 vs 132 +/- 3 min, P less than 0.01). During the exercise, no differences were observed between both trials for oxygen uptake, heart rate, or perceived exertion. Serum glucose and insulin levels between both trials were not significantly different throughout the experiment. There were also no significant differences in serum-free fatty acids and glycerol levels as well as respiratory exchange ratio between fructose and placebo trials during the exercise. The results suggest that fructose ingestion is of benefit before prolonged exercise, because it provides a carbohydrate source to contracting muscles without transient hypoglycemia and a depression of fat utilization, and thereby delays the fatigue.  相似文献   

2.
The physiological responses to glucose supplementation during arm crank exercise were investigated. Ten subjects of mean age 28 +/- 8 years; stature 180.8 +/- 6.5 cm; mass 82.7 +/- 11.5 kg, .VO(2) peak 3.10 +/- 0.50 l x min(-1) were tested on two occasions separated by a week. A 7.6% glucose drink or placebo was administered in a blind crossover design 20 min prior to exercise. Subject's arm cranked for 60 min at an exercise intensity of 65% .VO(2)peak followed by a 20 min performance test. Rate of ventilation, oxygen uptake, RER, heart rate and blood lactate demonstrated similar responses between trials throughout the course of the hour. The blood glucose concentrations at rest were similar between trials increasing after glucose ingestion to show a significant difference (p < 0.05) to the placebo trial at the onset of exercise, then returning to resting values after 20 min. The 20 min performance tests revealed that after glucose ingestion athletes achieved a greater mean distance of 12.55 +/- 1.29 km than in the placebo trial of 11.50 +/- 1.68 km (p < 0.05). In conclusion, the results showed that after one-hour of arm crank exercise, performance over a further twenty minutes was improved when glucose was ingested twenty minutes prior to exercise.  相似文献   

3.
This study compared the effects of ingesting water (WATER), an 8.6% glucose solution (GLU) and an 8.6% glucose+fructose solution (2:1 ratio, GLU+FRU) on gastric emptying (GE), fluid delivery, and markers of hydration status during moderate intensity exercise. Eight male subjects (age=24 ± 2 years, weight=74.5 ± 1.2 kg, VO2max=62.6 ± 2.5 mL/kg/min) performed three 120 min cycling bouts at 61% VO2max). Subjects ingested GLU, GLU+FRU (both delivering 1.5 g/min carbohydrate), or WATER throughout exercise, ingesting 2.1 L. Serial dye dilution measurements of GE were made throughout exercise and subjects ingested 5.00 g of D2O and 150 mg of 13C-acetate at 60 min to obtain measures of fluid uptake and GE, respectively. GLU+FRU resulted in faster rates of deuterium accumulation, an earlier time to peak in the 13C enrichment of expired air and a faster rate of GE compared with GLU. GLU+FRU also attenuated the rise in heart rate that occurred in GLU and WATER and resulted in lower ratings of perceived exertion. There was a greater loss in body weight with GLU corrected for fluid intake. These data suggest that ingestion of a combined GLU+FRU solution increases GE and "fluid delivery" compared with a glucose only solution.  相似文献   

4.
To elucidate the effects of sucrose or caffeine ingestion on metabolic responses to prolonged exercise and on performance of a finishing spurt after the prolonged exercise, seven male physical education students performed four sets of 30 min running (62%-67% VO2 max) followed by progressive exhaustive running on a treadmill. Before each set, they took 350 ml solution containing either sucrose 23.8 g (97.5 kcal), caffeine 200 mg, or a placebo. The duration of the exhaustive running after sucrose, caffeine, or placebo ingestion was not significantly different. Exhaustion would possibly be attained not by depletion of muscle glycogen but by a decrease in the capacity of muscle cells to produce high tension for anaerobic metabolism. Total energy and energy from carbohydrate combusted during four sets of running were estimated at 1255 kcal and 810 kcal in the sucrose trial, 1271 kcal and 624 kcal in the caffeine trial, and 1248 kcal and 649 kcal in the placebo trial. Judging from the figures above, glycogen sparing during prolonged running seemed to be attained by sucrose ingestion but not by caffeine ingestion. The latter finding would be caused by lower intensity and a larger amount of ingested caffeine. In conclusion, performance of progressive exhaustive running following endurance running for 2 h could not be improved either by sucrose or caffeine ingestion. Glycogen sparing in the muscle, however, was suggested by sucrose ingestion but not by caffeine ingestion.  相似文献   

5.
OBJECTIVE: To test the hypothesis that sodium citrate administered two hours before exercise improves performance in a 5 km running time trial. METHODS: A total of 17 male well trained college runners (mean (SD) O(2)MAX 61.3 (4.9) ml/kg/min) performed a 5 km treadmill run with and without sodium citrate ingestion in a random, double blind, crossover design. In the citrate trial, subjects consumed 1 litre of solution containing 0.5 g of sodium citrate/kg body mass two hours before the run. In the placebo trial, the same amount of flavoured mineral water was consumed. RESULTS: The time required to complete the run was faster in the citrate trial than the placebo trial (1153.2 (74.1) and 1183.8 (91.4) seconds respectively; p = 0.01). Lower packed cell volume and haemoglobin levels were found in venous blood samples taken before and after the run in the citrate compared with the placebo trial. Lactate concentration in the blood sample taken after the run was higher in the citrate than the placebo trial (11.9 (3.0) v 9.8 (2.8) mmol/l; p<0.001), and glucose concentration was lower (8.3 (1.9) v 8.8 (1.7) mmol/l; p = 0.02). CONCLUSION: The ingestion of 0.5 g of sodium citrate/kg body mass shortly before a 5 km running time trial improves performance in well trained college runners.  相似文献   

6.
7.
ObjectivesMental fatigue impairs endurance exercise. Brain endurance training (BET) – engaging in cognitively fatiguing tasks during exercise - can develop resilience to mental fatigue and improve physical performance over physical training alone. The mechanism for this effect is unknown.This experiment examines if BET enhances performance over physical training and investigates potential underlying physiological mechanisms.DesignA mixed design randomised control trial.MethodsPre- and post-testing: 36 participants completed dynamic rhythmic muscular endurance handgrip tasks requiring generation of as much force as possible once a second for 300 s, performed under 3 counterbalanced conditions: following 600 s of a 2-back memory/attention task (subsequent); while performing a 2-back task (concurrent); and on its own (solo). Cardiac activity, electromyographic forearm activity, pre-frontal cerebral haemodynamics (near infrared spectroscopy), and force were recorded. Training: Participants (randomised to a Control or BET group) completed 24 (6 weeks) submaximal hand contractions sessions. The BET group also completed concurrent cognitive tasks (2-back, Stroop). Measures of motivation, physical and mental exertion and mental fatigue were collected throughout.ResultsEndurance performance, across the 3 tasks, improved more following BET (32%) than Control (12%) (p < 0.05). The better performance following BET occurred with a higher pre-frontal oxygenation during the post-training physical tasks over time relative to Control (p < 0.05).ConclusionsConcurrent BET improved endurance performance over physical training alone. This was accompanied by a training-induced maintenance of pre-frontal oxygenation, suggestive of reduced mental effort during physical activity.  相似文献   

8.
The belief among athletes that caffeine is an ergogenic aid is common, and several governing bodies of sport have barred use of the drug during competition. At the cellular level, caffeine has been implicated to affect the translocation of calcium in muscle, promote an increase in cellular levels of cyclic AMP and cause a blockade of adenosine receptors in the central nervous system. The general systemic effect of caffeine is to cause central nervous system arousal, mobilisation of free fatty acids and other metabolites, and possibly enhance the contractile status of muscle. At present, the scientific community remains divided as to whether caffeine ingestion will indeed produce an ergogenic effect upon sport performance. Some evidence suggests that caffeine may improve performance in events relying upon strength and power; however, the lack of in vivo research in humans makes it difficult to form firm conclusions. In addition, reports concerning caffeine's effect on VO2max and performance during incremental exercise are not in agreement. On the other hand, recent studies suggest that caffeine might indeed have ergogenic potential in endurance events (e.g. marathon running). It is hypothesised that the mechanism behind these findings is related to the increased availability of free fatty acids for muscle metabolism which has a glycogen-sparing effect.  相似文献   

9.
PURPOSE: The purpose of this study was to examine the effect of repeated doses of caffeine on repeated exercise endurance.METHODS Nine male caffeine users performed exercise rides (ER) to exhaustion at 80% VO(2max) after ingesting a placebo, 5 mg x kg-1 of caffeine, or 2.5 mg x kg-1 of caffeine 1 h before the ER. Two ER were performed weekly on the same day once in the morning (AM) and 5 h later in the afternoon (PM). There were four treatments containing either caffeine or placebo, i.e., trial A representing 5-mg x kg-1 caffeine in the AM and 2.5-mg x kg-1 caffeine in the PM; trial B, which was placebo in both AM and PM; trial C representing 5-mg x kg-1 caffeine in the AM and placebo in the PM; and trial D representing a placebo in the AM and 5-mg x kg-1 caffeine in the PM. The order of the treatment trials was double blind and randomized. RESULTS: Caffeine ingestion significantly increased exercise time to exhaustion in the AM (trial A 24.9 +/- 10.2 min and trial C 21.8 +/- 4.9 vs trial B 18.0 +/- 6.4 min and D 17.7 +/- 4.3 min). This effect was maintained in the PM and greater than placebo (B 18.3 +/- 4.8 min) regardless of whether redosing (trial A 21.5 +/- 8.6 min) or placebo (trial C 21.0 +/- 6.8) followed the initial morning dose. Caffeine dosing in the PM (trial D 22.4 +/- 7.2 min) also increased ER after placebo trial D in the AM. CONCLUSIONS: It was concluded that redosing with caffeine after exhaustive exercise in the AM was not necessary to maintain the ergogenic effect of the drug during subsequent exercise 6 h later.  相似文献   

10.
11.
Drinking a concentrated glucose solution less than 1 h before the start of prolonged submaximal exercise has been reported to reduce endurance capacity during cycling. The purpose of this study was to re-examine the influence of pre-exercise ingestion of a concentrated glucose solution on endurance running capacity. Nine recreational runners (five men and four women) ran to exhaustion on a level treadmill, at speeds equivalent to 70% VO2max, on two occasions separated by at least 1 week. The runners ingested either a solution containing 75 g of glucose in 300 ml of water (G trial), or 300 ml of sweetened water (P trial) 30 min before each trial. As a consequence, the blood glucose concentrations were 55% higher at the beginning of the G trial compared with those recorded for the P trial (G trial, mean(s.e.) blood glucose = 6.3(0.7) mmol l-1 versus P trial, mean(s.e.) blood glucose = 4.1(0.3) mmol l-1; P < 0.01). Nevertheless, there were no differences in the running times to exhaustion between the two trials (G trial, mean(s.e.) 133.79(11.0) min versus P trial, mean(s.e.) 121.16(8.1) min). The results of this study show that ingesting a 25% glucose solution 30 min before exercise does not reduce the endurance capacity of recreational runners when the exercise intensity is equivalent to 70% VO2max.  相似文献   

12.
PURPOSE: To examine the relationship between competitive 800-m and 1500-m performance times and a number of physiological variables in a group of endurance-trained, adolescent runners. METHODS: Twenty-three boys and 17 girls volunteered to participate in the study. Track-based, running performance times were available for 18 boys and 14 girls for the 800 m, and 16 boys and 13 girls for the 1500 m. The relationships between these times and the following physiological variables were determined: peak VO(2) running economy (RE), estimated running speed at peak vV0(2peak), peak and mean anaerobic power, and fixed [BLa ] at 2.0, 2.5, and 4.0 mmol.L. RESULTS: RE and vV0(2peak) were significant independent variables for the boys' 800 m (r = 0.62 and -0.62, < 0.01). For the girls, once chronological age was partialled out, none of the measured variables were significantly related to 800-m performance. For the 1500-m event, peak V0(2), vV0(2peak), and the running speed at 2.5 mmol.L (v2.5) were significant independent variables in the boys (r = -0.43, -0.39, and -0.53, < 0.05) and girls (r = -0.50, -0.61, and -0.54, < 0.05). In addition, the V0(2) at 2.5 mmol.L V0(2) (2.5) was related to the 1500-m time in the girls (r = -0.54, < 0.05). CONCLUSION: The physiological variables that were most strongly correlated with middle-distance running performance were v2.5 and the vV0(2peak). To a lesser extent peak V02 may also play a role although it is understood that its contribution may be accounted by vV0(2 peak).  相似文献   

13.
Physiological determinants of endurance exercise performance   总被引:4,自引:0,他引:4  
Performance in endurance events is typically evaluated by the power or velocity that can be maintained for durations of 30 min. to four hours. The two main by-products of intense and prolonged oxidative metabolism that can limit performance are the accumulation of hydrogen ion (i.e. lactic acidosis) and heat (i.e. hyperthermia). A model for endurance performance is presented that revolves around identification of the lactate threshold velocity which is presented as a function of numerous morphological components as well as gross mechanical efficiency. When cycling at 80 RPM, gross mechanical efficiency is positively related to Type I muscle fiber composition, which has great potential to improve endurance performance. Endurance performance can also be influenced by altering the availability of oxygen and blood glucose during exercise. The latter need forms the basis for ingesting carbohydrate at 30-60 grams per hour during exercise. In laboratory simulations of performance, athletes fatigue due to hyperthermia when esophageal is approximately 40 degrees C, in association with near maximal heart rate and perceived exertion. It is likely that the central nervous system is involved in the aetiology of fatigue from hyperthermia. Dehydration during exercise promotes hyperthermia by reducing skin blood flow, sweating rate and thus heat dissipation. The combination of dehydration and hyperthermia during exercise causes large reductions in cardiac output and blood flow to the exercising musculature, and thus has a large potential to impair endurance performance. Endurance performance is optimized when training is aimed specifically at developing individual components of the model presented and nutritional supplementation prevents hypoglycemia and attenuates dehydration and hyperthermia. Indeed, the challenge at the transition to a new millennium is to synergistically integrate these physiological factors in training and competition.  相似文献   

14.
A man in his forties was found dead in his friend’s home, with moderate putrefaction. Quantitative toxicological analysis showed that concentrations of caffeine, chlorpheniramine, dihydrocodeine, and methylephedrine were 183.3 µg/mL, 0.533 µg/mL, 2.469 µg/mL and 8.336 µg/mL, respectively. Ephedrine, amitriptyline, nortriptyline, etizolam, fluvoxamine and 7-aminoflunitrazepam were detected in an aortic blood sample. Caffeine, chlorpheniramine, dihydrocodeine and methylephedrine are the main components of BRONTM, an over-the-counter antitussive sold in Japan. Those concentrations in blood were within fatal ranges. Caffeine is classified as a methylxanthine and is mainly metabolized by cytochrome P450 (CYP)1A2. Fluvoxamine is a potent CYP1A2 inhibitor. Blood fluvoxamine concentration was within the therapeutic range, but would have increased blood caffeine level by the inhibition of caffeine metabolism. The conclusion was that his death was caused by BRONTM overdose. Inhibition of caffeine metabolism may increase blood caffeine concentrations. This suggests that more attention should be paid to potential interactions between multiple drugs.  相似文献   

15.
Twelve subjects (three females, nine male, age 32 +/- 1.3 yr) performed tests of isokinetic muscle strength and endurance under each of three treatment conditions. The three conditions, administered in double-blind, randomized order, were single oral administrations of placebo, diphenhydramine (50 mg), and terfenadine (60 mg). Tests, separated by 1 wk, began 2 h after ingestion of the drug or a placebo. Subjects performed a velocity spectrum test (VST) consisting of peak torque measurements at five velocities (90, 150, 210, 270, and 330 degrees.s-1) and a 45 s muscle endurance test (MET) at a velocity of 180 degrees.s-1. Five serial, reciprocal contractions of the knee extensors and flexors were performed at maximal effort over the subjects' full range of motion for the VST, and as many contractions as possible within 45 s for the MET. No differences in performance measures were detected across treatment conditions. This study demonstrates that a one-time administration of either terfenadine or diphenhydramine in the dosages described does not significantly affect muscle endurance or maximal peak torque at a variety of velocities.  相似文献   

16.
17.
18.
Dehydration alters cardiovascular, thermoregulatory, central nervous system, and metabolic functions. One or more of these alterations will degrade endurance exercise performance when dehydration exceeds 2% of body weight. These performance decrements are accentuated by heat stress. To minimize the adverse consequences of body water deficits on endurance exercise performance, it is recommended that fluid intake be sufficient to minimize dehydration to less than 2% of body weight loss. This can usually be achieved with fluid intakes of under 1 L x h-1.  相似文献   

19.
Effects of preexercise feedings on endurance performance   总被引:1,自引:0,他引:1  
Eight male and female students were studied during exercise to exhaustion on a bicycle ergometer at 80 and 100% of Vo2max following the ingestion of water (W), 75 g of glucose (G) or a liquid meal (M) (10 g protein, 12.5 g fat, 15 g CHO). When compared to the endurance ride (80% Vo2max) in the W treatment, endurance performance time was reduced by 19%, (p less than .05) (53.2 to 43.2 min) as a result of the preexercise glucose feeding (Trial G). No difference in performance at 80% Vo2max was found between the W and M trials. The preexercise feedings had no effect on exercise time to exhaustion at 100% Vo2max. During the G and M trials at 80% Vo2max, most of the subjects demonstrated a transient decline in serum glucose (less than 3.5 mM). After 30-40 min. of exercise, however, serum glucose returned to normal and was seldom low at the time of exhaustion. Serum free fatty acids (FFA) were depressed throughout the G trial. The results of these experiments indicate impaired lipid mobilization following CHO ingestion. The present data support our earlier findings (11) which demonstrate that glucose feedings 30-45 minutes before endurance exercise increase the rate of CHO oxidation and impede the mobilization of FFA, thereby reducing exercise time to exhaustion.  相似文献   

20.
In this study we evaluated the physiological and biomechanical responses of "elite-national class" (i.e., group 1; N = 9) and "good-state class" (i.e., group 2; N = 6) cyclists while they simulated a 40 km time-trial in the laboratory by cycling on an ergometer for 1 h at their highest power output. Actual road racing 40 km time-trial performance was highly correlated with average absolute power during the 1 h laboratory performance test (r = -0.88; P less than 0.001). In turn, 1 h power output was related to each cyclists' VO2 at the blood lactate threshold (r = 0.93; P less than 0.001). Group 1 was not different from group 2 regarding VO2max (approximately 70 ml.kg-1.min-1 and 5.01 l.min-1) or lean body weight. However, group 1 bicycled 40 km on the road 10% faster than group 2 (P less than 0.05; 54 vs 60 min). Additionally, group 1 was able to generate 11% more power during the 1 h performance test than group 2 (P less than 0.05), and they averaged 90 +/- 1% VO2max compared with 86 +/- 2% VO2max in group 2 (P = 0.06). The higher performance power output of group 1 was produced primarily by generating higher peak torques about the center of the crank by applying larger vertical forces to the crank arm during the cycling downstroke. Compared with group 2, group 1 also produced higher peak torques and vertical forces during the downstroke even when cycling at the same absolute work rate as group 2. Factors possibly contributing to the ability of group 1 to produce higher "downstroke power" are a greater percentage of Type I muscle fibers (P less than 0.05) and a 23% greater (P less than 0.05) muscle capillary density compared with group 2. We have also observed a strong relationship between years of endurance training and percent Type I muscle fibers (r = 0.75; P less than 0.001). It appears that "elite-national class" cyclists have the ability to generate higher "downstroke power", possibly as a result of muscular adaptations stimulated by more years of endurance training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号