首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Summary Although extensive evidence indicates that free fatty acids can decrease glucose utilization in vitro, it is still controversial how an increase in lipolysis affects glucose metabolism in man. To test the hypothesis that an increase in lipolysis is related to insulin resistance, we examined the effect of lipid-heparin infusion on glucose metabolism in ten normal subjects by the euglycaemic glucose clamp technique and isotopic determination of glucose turnover. In the control euglycaemic clamp studies with insulin infusion at 0.2 and 1.0 mU·kg–1·min–1, endogenous glucose production was suppressed from the basal rate of 2.0±0.3 mg· kg–1min–1 to 1.1±0.7 mg·kg–1·min–1 and -0.4±0.7mg· kg–1min–1 respectively. Glucose utilization increased from the basal rate of 2.0±0.3 mg·kg–1min–1 to 2.3±0.5mg· kg–1min–1 and 5.9±1.8 mg·kg–1min–1 respectively. When the euglycaemic clamp studies were coupled with lipid-heparin infusion at comparable low and high rates of insulin infusion, endogenous glucose production increased (1.8± 0.7 mg·kg–1·min–1, p<0.001, and 0.3±0.6 mg·kg–1· min–1, p<0.05, respectively), and glucose utilization decreased (2.1±0.3 mg·kg–1·min–1, not significant, and 3.2±0.7 mg·kg–1·min–1, p<0.001 respectively). These data suggest that the artificial induction of intravascular lipolysis by lipid-heparin infusion leads to a state of insulin resistance in man.  相似文献   

2.
Summary Non-insulin-dependent diabetic (NIDDM) patients were studied during a modified euglycaemic state when fasting hyperglycaemia was normalized by a prior (–210 to –150 min) — and later withdrawn (–150–0 min) — intravenous insulin infusion. Glucose metabolism was assessed in NIDDM patients (n=10) and matched control subjects (n=10) using tritiated glucose turnover rates, indirect calorimetry and skeletal muscle glycogen synthase activity determinations. Total and non-oxidative exogenous glycolytic flux rates were measured using appearance rates of tritiated water. A+180 min euglycaemic hyperinsulinaemic (40 mU·m–2·min–1) clamp was performed to determine the insulin responsiveness of the various metabolic pathways. Plasma glucose concentration increased spontaneously during baseline measurements in the NIDDM patients (–120 to 0 min: 4.8±0.3 to 7.0±0.3 mmol/l; p<0.01), and was primarily due to an elevated rate of hepatic glucose production (3.16±0.13 vs 2.51±0.16 mg·kg FFM–1·min–1; p<0.01). In the NIDDM subjects baseline glucose oxidation was decreased (0.92±0.17 vs 1.33±0.14 mg·kg FFM–1·min–1; p<0.01) in the presence of a normal rate of total exogenous glycolytic flux and skeletal muscle glycogen synthase activity. The simultaneous finding of an increased lipid oxidation rate (1.95±0.13 vs 1.61±0.07 mg·kg FFM–1·min–1; p=0.05) and increased plasma lactate concentrations (0.86±0.05 vs 0.66±0.03 mmol/l; p=0.01) are consistent with a role for both the glucose-fatty acid cycle and the Cori cycle in the maintenance and development of fasting hyperglycaemia in NIDDM during decompensation. Insulin resistance was demonstrated during the hyperinsulinaemic clamp in the NIDDM patients with a decrease in the major peripheral pathways of intracellular glucose metabolism (oxidation, storage and muscle glycogen synthase activity), but not in the pathway of non-oxidative glycolytic flux which was not completely suppressed during insulin infusion in the NIDDM patients (0.55±0.15 mg·kg FFM–1·min–1; p<0.05 vs 0; control subjects: 0.17±0.29; NS vs 0). Thus, these data also indicate that the defect(s) of peripheral (skeletal muscle) glucose processing in NIDDM goes beyond the site of glucose transport across the cell membrane.Abbreviations NIDDM Non-insulin-dependent diabetes mellitus - FFM fat free mass - HGP hepatic glucose production - Rd peripheral glucose disposal (uptake) rate - G6P glucose 6-phosphate - UDPG uridine diphosphate glucose - FV fractional velocity  相似文献   

3.
Summary The effect of glucagon infusion on hepatic glucose production during euglycaemia was evaluated in seven Type 1 (insulin-dependent) diabetic patients and in ten control subjects. In the diabetic subjects normoglycaemia was maintained during the night preceding the study by a variable intravenous insulin and glucose infusion. During the study endogenous insulin secretion was suppressed by somatostatin (450 g/h) and replaced by insulin infusion (0.15 mU·kg–1·min–1). 3H-glucose was infused for isotopic determination of glucose turnover. Plasma glucose was clamped at 5 mmol/1 for 2 h 30 min and glucagon (1.5 ng· kg–1·min–1) was then infused for the following 3 h. Hepatic glucose production and glucose utilisation were measured during the first, second and third hour of the glucagon infusion. Basal hepatic glucose production (just prior to glucagon infusion) was similar in diabetic (1.2±0.3 mg·kg–1·min–1) and control (1.6±0.1 mg·kg–1·min–1) subjects. In diabetic patients hepatic glucose production rose slowly to 2.1±0.5 mg·kg–1·min–1 during the first hours of glucagon infusion and stabilized at this level (2.4±0.5 mg·kg–1·min–1) in the third hour. In control subjects hepatic glucose production increased sharply to higher levels than in the diabetic subjects (3.4±0.3 mg·kg–1·min–1) during the first and second hour of glucagon infusion (p<0.05) and then gradually fell (2.9±0.4 mg·kg–1·min–1) during the third hour. In conclusion, when stimulated with glucagon at a physiologic plasma concentration diabetic patients had 1) an overall reduced hepatic glucose production response and 2) an abnormal sluggish response pattern. These abnormalities may imply inappropriate counter-regulation following a hypoglycaemic episode.  相似文献   

4.
Summary Recent evidence suggests that the post-prandial hyperglycaemia in impaired glucose tolerance is primarily due to impaired suppression of basal hepatic glucose output. This in turn appears to be secondary to decreased first phase insulin secretion, although decreased hepatic insulin sensitivity, which is a feature of non-insulin-dependent diabetes mellitus, might also play a role. Eight mildly overweight subjects with impaired glucose tolerance and eight closely matched control subjects with normal glucose tolerance underwent an intravenous glucose tolerance test to assess first phase insulin secretion. Insulin sensitivity was examined by a 150-min hyperinsulinaemic-euglycaemic clamp. Somatostatin was infused from 150 min to suppress endogenous insulin secretion, and glucagon and insulin were replaced by constant infusion. Glucose with added dideuterated glucose (labelled infusion technique) was infused to maintain euglycaemia. First phase insulin secretion ( 0–10 min insulin area ÷ 0–10 min glucose area) was significantly decreased in the subjects with impaired glucose tolerance (median [range]: 1.2 [0.2–19.4] vs 9.1 [2.6–14.5] mU·mmol–1; p<0.01). During the clamp, circulating insulin (93±8 [mean±SEM] and 81±10 mU·l–1) and glucagon (54±4 and 44±6 ng·l–1) levels were comparable. Total glucose disposal was decreased in subjects with impaired glucose tolerance (2.78±0.27 vs 4.47±0.53 mg·kg–1·min–1; p<0.02), and was primarily due to decreased non-oxidative glucose disposal. However, hepatic glucose output rates were comparable during the clamp (0.38±0.10 and 0.30±0.18 mg·kg–1·min–1). Therefore, the main defects in subjects with impaired glucose tolerance are decreased first phase insulin secretion and peripheral non-oxidative glucose disposal, but hepatic glucose output shows normal responsiveness to insulin.Abbreviations FPIS First phase insulin secretion - PG plasma glucose - NIDDM non-insulin-dependent diabetes mellitus - IGT impaired glucose tolerance - HGO hepatic glucose output - IVGTT intravenous glucose tolerance test - OGTT oral glucose tolerance test  相似文献   

5.
Summary The effect of acetyl-salicylic acid (ASA, 3 g per day for 3 days) on glucose utilization and insulin secretion was studied in healthy volunteers and Type 2 diabetic patients using the hyperglycaemic and euglycaemic insulin clamp technique. When in healthy subjects arterial plasma glucose was acutely raised and maintained at +7 mmol/l above fasting level, the plasma insulin response was enhanced by ASA (70±7 vs. 52±7mU/l), whereas the plasma C-peptide response was identical. Despite higher insulin concentrations, glucose utilization was not significantly altered (control, 61±7; ASA, 65±6mol·kg–1·min–1) indicating impairment of tissue sensitivity to insulin by ASA. Inhibition of prostaglandin synthesis was not likely to be involved in the effect of ASA, since insulin response and glucose utilization were unchanged following treatment with indomethacin. In the euglycaemic insulin (1 mU·kg–1·min–1) clamp studies, glucose utilization was unaltered by ASA despite higher insulin concentrations achieved during constant insulin infusion (103±4vs. 89±4mU/l). In Type 2 diabetic patients, fasting hyperglycaemia (10.6 ±1.1 mmol/l) and hepatic glucose production (15±2 mol·kg–1·min–1) fell upon ASA treatment (8.6±0.7 mmol/l; 13±1 mol·kg–1· min–1). During the hyperglycaemic clamp study, the plasma response of insulin, but not of C-peptide, was enhanced by ASA, whereas tissue sensitivity to insulin was reduced by 30 percent. It is concluded that in healthy and Type 2 diabetic man, ASA impairs tissue sensitivity to the action of insulin. This effect is counterbalanced by an augmented plasma insulin response to glucose, which results from a reduced insulin clearance rate. In Type 2 diabetic patients, the reduction in hepatic glucose production may be responsible for the amelioration of hyperglycaemia following ASA treatment.  相似文献   

6.
Summary In diabetes-prone BB rats, 30 to 50% of animals undergo autoimmune destruction of the pancreatic B-cells leading to a short period of glucose intolerance, followed by an abrupt onset of diabetes. We have examined whether the glucose intolerance period and the onset of diabetes are associated with changes in insulin sensitivity, using the euglycaemic hyperinsulinaemic clamp coupled with [3-3H] glucose infusion. Glucose intolerant rats were detected by a transient glycosuria one hour after an oral glucose load performed every four days. Insulin sensitivity studied in these rats the day following their detection was normal. Other diabetes-prone BB rats were tested daily and studied on the first day of glycosuria. In the basal state, glucose production was increased in diabetic rats (11.3±1.1 vs 7.1±0.8mg·min–1·kg–1, p<0.05). Tissue glucose utilization was similar in diabetic and control rats (8.3±0.5 vs 7.1±0.8mg·min–1·kg–1) despite a three fold higher glycaemia in the diabetic rats. During the hyperinsulinaemic clamps, glycaemia was clamped at 6.1–6.6 mmol/l in diabetic and control rats. A decreased insulin sensitivity was observed in diabetic rats at submaximal (200 U/ml) and maximal (1500 U/ml) insulin concentrations for both inhibition of hepatic glucose production and stimulation of glucose utilization. No autoantibodies against insulin could be detected in the plasma of diabetic rats. Plasma concentrations of glucagon, catecholamines, ketone bodies and fatty acids were similar in control and diabetic rats during the clamp studies. Our results suggest that the decrease of basal insulin concentration is responsible for the insulin resistance in the diabetic BB rat at onset of diabetes, either directly or through the increased glycaemia.  相似文献   

7.
Summary Insulin resistant glucose metabolism is a key element in the pathogenesis of Type 2 (non-insulin-dependent) diabetes mellitus. Insulin resistance may be of both primary (genetic) and secondary (metabolic) origin. Before and after diet-induced improvement of glycaemic control seven obese patients with newly-diagnosed Type 2 diabetes were studied with the euglycaemic clamp technique in combination with indirect calorimetry and forearm glucose balance. Muscle biopsies were obtained in the basal state and again after 3 h of hyperinsulinaemia (200 mU/l) for studies of insulin receptor and glycogen synthase activities. Similar studies were performed in seven matched control subjects. Insulin-stimulated glucose utilization improved from 110±11 to 183±23 mg·m–2·min–1 (p<0.03); control subjects: 219+23 mg·m–2·min–1 (p=NS, vs post-diet Type 2 diabetes). Nonoxidative glucose disposal increased from 74±17 to 138+19 mg·m–2·min–1 (p<0.03), control subjects: 159±22 mg· m–2·m–1 (p=NS, vs post-diet Type 2 diabetic patients). Forearm blood glucose uptake during hyperinsulinaemia increased from 1.58±0.54 to 3.35±0.23 mol·l–1·min–1 (p<0.05), control subjects: 2.99±0.86 mol·l–1·min–1 (p=NS, vs post-diet Type 2 diabetes). After diet therapy the increase in insulin sensitivity correlated with reductions in fasting plasma glucose levels (r=0.97, p<0.001), reductions in serum fructosamine (r=0.77, p<0.05), and weight loss (r=0.78, p<0.05). Values of muscle glycogen synthase sensitivity to glucose 6-phosphate (A0.5 for glucose 6-phosphate) were similar in the basal state. However, insulin stimulation of glycogen synthase was more pronounced after diet treatment (A0.5: 0.43±0.06 (before) vs 0.30±0.04 mmol/l (after); p<0.03; control subjects: 0.22±0.03 mmol/l). Muscle insulin receptor binding and kinase activity were similar before and after diet treatment and comparable to values in the control group. The data suggest that impaired insulin stimulation of in vivo glucose turn-over and muscle glycogen synthase activity tend to be restored during successful diet treatment of patients with Type 2 diabetes.  相似文献   

8.
Aims/hypothesis Fat-rich diets can acutely induce insulin resistance. Data from adiponectin knock-out mice suggest that this effect might be increased in the absence of adiponectin. In the present study we tested whether plasma adiponectin concentrations influence changes in insulin sensitivity induced by a short-term dietary intervention in humans.Methods We analysed data from 27 healthy, non-obese men with normal glucose tolerance. These men ate a diet high in fat and a diet high in carbohydrates for three days each.Results The high-fat diet induced a significant drop in insulin sensitivity (determined by euglycaemic–hyperinsulinaemic clamp) compared to baseline (0.100±0.009 vs 0.083±0.007 µmol·kg–1·min–1·(pmol·l–1), p=0.01). The drop in insulin sensitivity was more pronounced in subjects with low serum adiponectin (0.094±0.011 vs 0.077±0.010 µmol·kg–1·min–1·(pmol·l–1), p=0.02) than in subjects with high serum adiponectin (0.103±0.011 vs 0.090±0.040 µmol·kg–1·min–1·(pmol·l–1), p=0.16). In the whole group the high-carbohydrate, low-fat diet did not cause an increase in insulin sensitivity (0.095±0.007 vs 0.102±0.009 µmol·kg–1·min–1·(pmol·l–1), p=0.06). However, insulin sensitivity was significantly increased in the subgroup with low serum adiponectin levels (0.084±0.013 vs 0.099±0.018 µmol·kg–1·min–1·(pmol·l–1), p=0.01). In an additional multivariate analysis post-intervention insulin sensitivity was predicted by pre-intervention insulin sensitivity (p<0.001) and adiponectin concentrations (p=0.001).Conclusions/interpretation These data indicate that the reduction in insulin sensitivity achieved by a short-term high-fat diet is more pronounced in non-obese subjects with low serum adiponectin. Thus it is possible that the restriction of dietary fat and a diet high in carbohydrates might be particularly effective in subjects with low adiponectin such as obese or Type 2 diabetic individuals.  相似文献   

9.
Summary The insulin effect, evaluated with the euglycaemic clamp technique, was studied before and after hypoglycaemia in 7 patients with Type 1 (insulin-dependent) diabetes. Following an initial 2 h clamp (clamp I) hypoglycaemia was induced and 2 h later a second clamp (clamp II), identical to the former, was performed. Each subject was studied twice; during infusion with saline (placebo) or propranolol. Glucose production and disposal were studied with the 3(3H)glucose technique. During placebo infusion, hypoglycaemia elicited an insulin resistance leading to approx. 50% reduction in the steady state glucose infusion rate during clamp II as compared to clamp I (clamp I 2.58±0.32, clamp II 1.26±0.08 mg·kg–1·min–1, p<0.02). The insulin resistance was prevented by infusing propranolol (clamp I 2.29±0.29, clamp II 2.85±0.56 mg·kg–1·min–1). The posthypoglycaemic insulin resistance was due to a less pronounced insulin effect on both glucose production (clamp I 0.29±0.21, clamp II 0.86±0.19 mg·kg–1·min–1, p<0.05) and glucose utilisation (clamp I 2.84±0.26, clamp II 2.13±0.23 mg·kg–1·min–1, p<0.05). The insulin resistance on both glucose production and utilisation was prevented by propranolol. Thus, the present study demonstrates that hypoglycaemia elicits a prolonged insulin resistance which is due to a less pronounced effect of insulin to both inhibit splanchnic glucose production and to stimulate peripheral glucose utilisation. The insulin resistance is due to -adrenergic stimulation and can be prevented by propranolol.  相似文献   

10.
Summary To assess the effects of ACE-inhibition on insulin action in Type 2 (non-insulin-dependent) diabetes mellitus associated with essential hypertension, 12 patients with Type 2 diabetes (on diet and oral hypoglycaemic agents) and arterial hypertension were examined on two occasions, in a single blind, cross-over study, after two days of treatment with either captopril or a placebo. The study consisted of a euglycaemic-hyperinsulinaemic clamp (two sequential steps of insulin infusion at the rates of 0.25 mU·kg–1·min–1 and 1 mU·kg–1·min–1, 2 h each step), combined with an infusion of 3-3H-glucose to measure the rate of hepatic glucose production and that of peripheral glucose utilization. The results show that blood pressure was lower after captopril (sitting, systolic 148±5 mmHg, diastolic 89±2 mm Hg) compared to placebo (155±6 and 94±2 mm Hg) (p<0.05). Captopril treatment resulted in a more suppressed hepatic glucose production (2.7±0.4 vs 4.94±0.55 mol·kg–1·min–1), and a lower plasma non-esterified fatty acid concentration (0.143±0.05 vs 0.200±0.05 mmol/l) (captopril vs placebo, p<0.05) at the end of the first step of insulin infusion (estimated portal plasma insulin concentration 305±28 pmol/l); and in a greater glucose utilization (36.5±5.1 vs 28±3.6mol·kg–1·min–1, p<0.001) at the end of the second step of insulin infusion (arterial plasma insulin concentration of 604±33 pmol/l). We conclude that captopril improved insulin sensitivity in Type 2 diabetes associated with hypertension at the level of the liver and extrahepatic tissues, primarily muscle and adipose tissue. Thus, in contrast to other antihypertensive drugs such as diuretics and beta-blockers which may have a detrimental effect on insulin action, ACE-inhibitors appear to improve insulin action in Type 2 diabetes and essential hypertension, at least on a short-term basis.  相似文献   

11.
Summary It has been suggested that increased glucose/glucose 6-phosphate substrate cycling impairs net hepatic glucose uptake in Type 2 (non-insulin-dependent) diabetes mellitus and contributes to hyperglycaemia. To investigate glucose/glucose 6-phosphate cycle activity and insulin action in Type 2 diabetes we studied eight patients and eight healthy control subjects, using the euglycaemic glucose clamp and isotope dilution techniques with purified [2-3H]- and [6-3H] glucose tracers, in the post-absorptive state and eight patients and five healthy control subjects during consecutive insulin infusions at rates of 0.4 and 2.0 mU·kg–1·min–1. [2-3H]glucose and [6-3H]glucose radioactivity in plasma samples were determined using selective enzymatic detritiation, allowing calculation of glucose turnover rates for each isotope, the difference being glucose/glucose 6-phosphate cycling. Endogenous glucose production ([6-3H]glucose) was greater in diabetic than control subjects in the post-absorptive state (15.6±1.5 vs 11.3±0.4 mol·kg–1·min–1, p<0.05) and during the 0.4 mU insulin infusion (10.1±1.3 vs 5.2±0.3 mol·kg–1·min–1, p<0.01) indicating hepatic insulin resistance. Glucose/glucose 6-phosphate cycling was significantly greater in diabetic than in control subjects in the post-absorptive state (2.6±0.4 vs 1.6±0.2 mol·kg–1·min–1, p<0.05) but not during the 0.4 mU insulin infusion (2.0±0.4 vs 2.0±0.3 mol·kg–1·min–1). During the 2.0 mU insulin infusion endogenous glucose production was suppressed to a similar degree in both groups (2.6±0.5 vs 3.4±0.7 mol · kg–1·min–1) but glucose disappearance was lower in the diabetic subjects (30.8±2.0 vs 52.4±4.6 mol·kg–1·min–1, p<0.01). During the 2.0 mU insulin infusion glucose/glucose 6-phosphate cycling was greater in the diabetic subjects (3.8±0.7 vs 0.8±0.6 mol·kg–1·min–1, p<0.05). In conclusion, both hepatic and peripheral insulin action are impaired in Type 2 diabetes. Increased glucose/glucose 6-phosphate cycling is seen in the post-absorptive state and also during marked hyperinsulinaemia, when insulin resistance is predominantly due to reduced peripheral tissue glucose uptake.  相似文献   

12.
Summary Under non-steady-state conditions, glucose turnover rates determined with tritiated glucose tracers are often underestimated. To examine whether isotope discrimination or a tracer contaminant can contribute to this, we compared the turnover rates of unlabelled and tritiated glucose under isotopic steady-state conditions. The turnover rates were measured in 20 healthy subjects at two insulin concentrations (79±3 mU·l–1 and 704±62 mU·l–1). Euglycaemia was maintained by infusing unlabelled glucose mixed with (33H)-or (63H)-glucose. In both studies, the isotopically determined glucose disposal rate was virtually identical to the exogenous glucose infusion rate (low insulin 7.66±0.48 vs 7.58±0.44 mg·kg–1·min–1, high insulin 13.36±0.74 vs 13.55±0.98 mg·kg–1·min–1). The individual values were correlated in both the low (r = 0.85, p<0.001) and high dose insulin (r=0.81, p<0.001) studies. Tritiated glucose specific activities were also compared in arterialized and deep venous blood across forearm tissues during the high-dose insulin infusion. Glucose specific activities were similar in arterilized and deep venous blood when analysed with HPLC and conventional methods. In summary: (1) Under isotopic steady-state conditions the turnover rates of unlabelled and labelled glucoses are similar. (2) Unlabelled and labelled glucose are handled identically across forearm tissues. (3) We found no tracer impurity in our tritiated glucose preparations. We conclude that (33H)- and (63H)-glucose tracers can be used to reliably measure glucose turnover rates in man.  相似文献   

13.
Summary The effect of hyperglycaemia on renal function in diabetic nephropathy remains poorly understood. We investigated the renal haemodynamic response to an acute plasma glucose rise from sustained euglycaemia to sustained hyperglycaemia in eight persistently proteinuric Type 1 (insulin-dependent) diabetic patients. Studies were performed in a double-blind cross-over manner after i.v. injection of 450 mg lysine acetylsalicilate (equivalent to 250 mg acetylsalicilic acid) or equal volume of 0.9% NaCl (isotonic saline). In the isotonic saline experiments hyperglycaemia produced a significant rise, by approximately 35%, in glomerular filtration rate in all patients from 41.5±5.2 to 55±6 ml·min–1·1.73 m–2 (p<0.005) and an increase in sodium paraminohippurate clearance from 178±22.7 to 220±20.0 ml·min–1·1.73 m–2 (p<0.05). These changes took place within the first 30 min of glucose infusion and were maintained for a 90 min hyperglycaemic period. Filtration fraction did not change significantly. Infusion of lysine acetylsalicilate lowered baseline glomerular filtration rate (isotonic saline vs lysine acetylsalicilate 41.5±5.2 vs 30.0±5.7 ml·min–1·1.73 m–2; p<0.05) and significantly blunted the rise in glomerular filtration rate during hyperglycaemia (glomerular filtration rate increment: saline vs lysine acetylsalicilate: 13.6±2.8 vs 5.3±1.8 ml·min–1 ·1.73 m–2; p<0.005). The effects on renal plasma flow were similarly blunted. In five additional patients, time- and volume-controlled isotonic saline experiments during sustained euglycaemia showed no significant changes in glomerular filtration rate and sodium paraminohippurate clearance. In Type 1 diabetic patients with advanced renal failure, acute hyperglycaemia induces a significant elevation in glomerular filtration rate and renal plasma flow which is likely to be mediated by renal prostaglandin production.  相似文献   

14.
Aims/hypothesis Leptin-deficient ob/ob mice are hyperinsulinaemic and hyperglycaemic; however, the cause of hyperglycaemia remains largely unknown.Methods Glucose metabolism in vivo in 9-h fasted ob/ob mice and lean littermates was studied by infusing [U-13C]-glucose, [2-13C]-glycerol, [1-2H]-galactose and paracetamol for 6 h, applying mass isotopomer distribution analysis on blood glucose and urinary paracetamol-glucuronide.Results When expressed on the basis of body weight, endogenous glucose production (109±23 vs 152±27 µmol·kg–1·min–1, obese versus lean mice, p<0.01) and de novo synthesis of glucose-6-phosphate (122±13 vs 160±6 µmol·kg–1·min–1, obese versus lean mice, p<0.001) were lower in ob/ob mice than in lean littermates. In contrast, glucose cycling was greatly increased in obese mice (56±13 vs 26±4 µmol·kg–1·min–1, obese versus lean mice, p<0.001). As a result, total hepatic glucose output remained unaffected (165±31 vs 178±28 µmol·kg–1·min–1, obese vs lean mice, NS). The metabolic clearance rate of glucose was significantly lower in obese mice (8±2 vs 18±2 ml·kg–1·min–1, obese versus lean mice, p<0.001). Hepatic mRNA levels of genes encoding for glucokinase and pyruvate kinase were markedly increased in ob/ob mice.Conclusions/interpretation Unaffected total hepatic glucose output in the presence of hyperinsulinaemia reflects hepatic insulin resistance in ob/ob mice, which is associated with markedly increased rates of glucose cycling. Hyperglycaemia in ob/ob mice primarily results from a decreased metabolic clearance rate of glucose.  相似文献   

15.
Summary We have examined hormonal and metabolic responses to insulin-induced hypoglycaemia in 10 Type 2 (non-insulin-dependent) diabetic patients treated with tablets and 10 age, sex and weight matched control subjects. Diabetic patients were under 110% ideal body weight, had no autonomie neuropathy and were well controlled (HbA1, 7.1±0.2%). After the diabetic patients were kept euglycaemic by an overnight insulin infusion, hypoglycaemia was induced in both groups by intravenous insulin at 30 mU·m–2·min–1 for 60 min and counterregulatory responses measured for 150 min. There were no significant differences between diabetic patients and control subjects in the rate of fall (3.3±0.3 vs 4.0±0.3 mmol·1–1·h–1), nadir (2.4±0.2 vs 2.3±0.1 mmol/l) and rate of recovery (0.027±0.002 vs 0.030±0.003 mmol·1–1·min–1) of blood glucose. Increments of glucagon (60.5±5.7 vs 70±9.2 ng/l) and adrenaline (1.22±0.31 vs 1.45±0.31 nmol/l) were similar in both groups. When tested using this model, patients with Type 2 diabetes, without microvascular complications and taking oral hypoglycaemic agents show no impairment of the endocrine response and blood glucose recovery following hypoglycaemia.  相似文献   

16.
Summary Eight obese patients and 12 normal individuals underwent a euglycaemic insulin clamp (20 and 40 mU · m2–1 · min–1) along with continuous infusion of 3-3H-glucose and 1-14C-palmitate and indirect calorimetry. Basal plasma glucose concentration (4.7±0.3 vs 4.4±0.2 mmol/l) was similar in the two groups, whereas hepatic glucose production was slightly higher in obese individuals (1.11±0.06 vs 0.84±0.05 mmol/min) in spite of higher plasma insulin levels (17±2 vs 6±1 mU/l; p<0.01). Insulin inhibition of hepatic glucose production was impaired in obese subjects. Glucose disposal by lean body mass was markedly reduced both at baseline (11.7±1.1 vs 15.6±0.6 mol · kg–1 · min–1; p<0.05) and during clamp (15.0±1.1 vs 34.4±2.8 and 26.7±3.9 vs 62.2±2.8 mol · kg–1 · min–1; p<0.01) Oxidative (12.2±1.1 vs 17.8±1 and 16.1±1.1 vs 51.1±1.7 mol · kg–1 · min–1; p<0.05–0.002) and non-oxidative glucose metabolism (3.9±1.1 vs 15.0±2.8 and 12.8±3.3 vs 38.3±2.2 mol · kg–1 · min–1; p<0.01–0.001) were impaired. Basal plasma concentrations of non-esterified fatty acids (635±75 vs 510±71 mol/l) and blood glycerol (129±17 vs 56±5 mol/l; p<0.01) were increased in obese patients. Following hyperinsulinaemia, plasma non-esterified fatty acids (244±79 vs 69±16 and 140±2 vs 36±10 mol/l; p<0.01) and blood glycerol levels (79±20 vs 34±6 and 73±22 vs 29±5 mol/l; p<0.01) remained higher in obese subjects. Baseline non-esterified fatty acid production rate per kg of fat body mass was significantly larger in normal weight subjects (37.7±6.7 vs 14.0±1.8 mol/l; p<0.01) and insulin inhibition was reduced in obese patients (–41±9 vs –74±3 and –53±11 vs –82±3%; p<0.05). Basal plasma non-esterified fatty acid utilization by lean body mass was similar in the two groups (9.8±0.9 vs 8.8±2.0 mol · kg–1 · min–1), whereas during clamp it remained higher in obese patients (6.0±1.2 vs 2.8±2.5 and 4.9±1.3 vs 1.5±0.6 mol · kg–1 · min–1; p<0.1–0.05). Lipid oxidation was higher in obese individuals in spite of hyperinsulinaemia (3.7±0.3 vs 2.4±0.4 and 2.3±0.4 vs 0.9±0.3 mol · kg–1 · min–1; p<0.05– 0.02). An inverse correlation was found between lipid oxidation and glucose oxidation (r=0.82 and 0.93; p<0.001) and glucose utilization (r=0.54 and 0.83; p<0.05–0.001) both in obese and control subjects. A correlation between lipid oxidation and non-oxidative glucose metabolism was present only in normal weight individuals (r=0.75; p<0.01). We conclude that in obesity all tissues (muscles, liver, and adipose tissue) are resistant to insulin action. Insulin resistance involves glucose as well as lipid metabolism.  相似文献   

17.
Summary The chronic hyperglycaemia of glucokinase-deficient diabetes results from a glucose-sensing defect in pancreatic beta cells and abnormal hepatic glucose phosphorylation. We have evaluated the contribution of insulin resistance to this form of chronic hyperglycaemia. Insulin sensitivity, assessed by the homeostasis model assessment (HOMA) method in 35 kindreds with glucokinase mutations, was found to be significantly decreased in 125 glucokinase-deficient subjects as compared to 141 unaffected first-degree relatives. Logistic regression analysis showed that in glucokinase-deficient subjects a decrease in insulin sensitivity was associated with deterioration of the glucose tolerance status. A euglycaemic hyperin-sulinaemic clamp was performed in 14 glucokinase-deficient subjects and 12 unrelated control subjects. In six patients and six control subjects the clamp was coupled to dideutero-glucose infusion to measure glucose turnover. Average glucose infusion rates (GIR) at 1 and 5 mU · kg body weight · min–1 insulin infusion rates were significantly lower in (the glucokinase-deficient) patients than in control subjects. Although heterogeneous results were observed, in 8 out of the 14 patients GIRs throughout the experiment were lower than 1 SD below the mean of the control subjects. Hepatic glucose production at 1 mU · kg body weight–1 · min–1 insulin-infusion rate was significantly higher in patients than in control subjects. In conclusion, insulin resistance correlates with the deterioration of glucose tolerance and contributes to the hyperglycaemia of glucokinase-deficient diabetes. Taken together, our results are most consistent with insulin resistance being considered secondary to the chronic hyperglycaemia and/or hypoinsulinaemia of glucokinase-deficiency. Insulin resistance might also result from interactions between the unbalanced glucose metabolism and susceptibility gene(s) to low insulin sensitivity likely to be present in this population.Abbreviations NIDDM Non-insulin-dependent diabetes mellitus - HGP hepatic glucose production - GCK glucokinase - IIR insulin infusion rate - GIR glucose infusion rate - MFH mild fasting hyperglycaemia - NGT normal glucose tolerance - IGT impaired glucose tolerance - HOMA homeostasis model assessment - ANOVA analysis of variance - MODY maturity-onset diabetes of the young  相似文献   

18.
Summary Hepatic and peripheral insulin sensitivity were investigated in five newly diagnosed Type 1 (insulin-dependent) diabetic subjects before and after 1 week of twice daily insulin therapy. Eight weight-matched control subjects were also studied. Hepatic glucose production and glucose utilization were measured basally and during two sequential 2-h insulin (25 and 40 mU· kg–1· h–1)/glucose infusion periods. In the untreated hyperglycaemic diabetic patients hepatic glucose production was 16.3±2.6, 8.1±1.1 and 3.6±2.8|mol· kg–1· min–1 respectively for each of the three periods (mean±SEM), and fell with treatment to 12.5±1.4, 0.5±0.5 and 0.5±0.5 mol· kg–1· min–1. Hepatic glucose production for normal subjects was 13.4±0.7, 2.3±0.8 and <0.1 mol-kg–1· min–1. Glucose utilization was 12.7±1.4,18.2±0.7 and 22.1±3.4mol· kg–1· min–1 before treatment in the diabetic subjects, and 11.8±1.7, 20.9±3.3 and 30.1±3.6 after treatment. These values compare with those in the euglycaemic control subjects (13.4±0.7, 18.7±1.6 and 36.3±2.7 mol · kg–1· min–1). The pre-treatment metabolic clearance rate of glucose in all diabetic studies with insulin levels >30mU/l was 2.6 ±0.4 and rose to 3.9 ±0.5 ml· kg–1· min–1 following insulin therapy. This was significantly lower than in the control subjects (6.7±0.8 ml· kg–1 · min–1; p<0.005). Basal nonesterified fatty acid levels were high in the untreated, but normal in the treated diabetic subjects, and fell in response to insulin infusion. Basal -hydroxybutyrate levels were high in both diabetic groups, but also fell in response to insulin infusion. Erythrocyte insulin receptor binding was normal in the untreated diabetic subjects, and was not changed by treatment. Therefore, treatment of newly diagnosed Type 1 diabetic subjects with insulin reverses the hepatic insensitivity to insulin. In contrast, treatment only partially improves peripheral glucose disposal. Since erythrocyte insulin receptor binding is normal, it is likely that a post-receptor defect in peripheral glucose metabolism exists in Type 1 diabetic patients despite insulin therapy and good diabetic control for a period of 1 week.  相似文献   

19.
Summary Insulin resistance was assessed after an intravenous infusion of adrenaline (50 ng·kg–1·min–1) or saline (control study) given between 08.00 and 08.30 hours in nine patients with Type 1 (insulin-dependent) diabetes mellitus. The blood glucose level during a somatostatin (100g/h)-insulin (0.4mU·kg–1·min–1)-glucose (4.5 mg·kg–1·-min–1)-infusion-test performed between 1030 and 14.30 hours served as an indicator of the total body insulin resistance. Blood glucose was maintained around 7 mmol/l between 08.00 and 10.30 hours by a constant infusion of regular insulin (0.57 mU·kg–1· min–1) and a variable infusion of a 20% glucose solution. The infusion of adrenaline raised plasma adrenaline to 2.7±0.3 nmol/l (mean±SEM) at the end of the infusion; thereafter it returned to its basal level within 30 min. The plasma levels of free insulin, glucagon, cortisol and growth hormone were similar in the adrenaline and the control studies from 08.00 to 14.30 hours. In comparison with the control study the infusion of adrenaline decreased the need for intravenous glucose significantly over the initial 2 h. Furthermore, during the somatostatin-insulin-glucose infusion test the blood glucose rose significantly (p<0.05) over the initial 2h; thereafter no significant differences between the two studies were seen. It is concluded that a short term infusion of adrenaline, resembling the adrenergic hormone response to hypoglycaemia, induces a diabetogenic effect which subsides within 6 h after omission of the adrenaline infusion.  相似文献   

20.
Summary Six Type 1 (insulin-dependent) diabetic subjects were studied in order to determine the contribution of recycling of glucose carbon to the overproduction of glucose which is characteristic of the fasting hyperglycaemia produced by insulin withdrawal. The subjects were studied on two occasions, once after an overnight insulin infusion and once following 24 h of insulin withdrawal. The difference in turnover rates of 1-14C-glucose and 3-3H-glucose was used as a measure of glucose recycling. Insulin withdrawal caused a marked metabolic derangement with a rise in non-esterified fatty acids from 0.69±0.23 to 1.11±0.21 mmol/l (mean±SEM, p<0.05), total ketones from 0.27±0.06 to 2.06±0.51 mmol/l (p<0.01), cortisol from 341±43 to 479±31 nmol/l (p<0.05) and growth hormone from 1.1±0.3 to 19+5-mu/l (p<0.05). Glucose turnover rose from 13.8±2.3 mol·kg–1·min–1 at a glucose of 6.9±0.7 mmol/l in the insulin infused study to 25.8±4.4 mol·kg–1·min–1 (p<0.05) at a glucose of 16.4±0.7 mmol/l in the insulin withdrawn study. Recycling also rose from 3.0±0.4 mol· kg–1·min–1 to 9.4±2.2 mol·kg–1·min–1 (p<0.05) when insulin withdrawn, accounting for 23±3% and 36±3% of glucose turnover, respectively. We conclude that in the severely insulin deficient Type 1 diabetic subject recycling of glucose carbon is a major contributor to the excess glucose production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号