首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the initial bone-patellar tendon-bone graft fixation strength of bioabsorbable as compared with titanium interference screws in anterior cruciate ligament reconstruction using matched pairs of porcine knees. Ten pairs underwent single-cycle failure loading at a rate of 50 mm/min, and 10 pairs underwent cyclic loading at half-hertz frequency. The cyclic loading started with 100 load cycles between 50 and 150 N. We then progressively increased loads in 50-N increments after each set of 100 cycles. After 100 cycles at 850 N, the specimens were loaded to failure at a rate of 50 mm/min. In the single-cycle failure loading test, the mean ultimate failure loads (+/-SD) for the bioabsorbable (837 +/- 260 N) and titanium interference screws (863 +/- 192 N) were not significantly different, nor were the mean yield loads or the stiffness of the fixation. In the cyclic loading test, the yield loads were 605 +/- 142 N and 585 +/- 103 N for the bioabsorbable and titanium interference screws, respectively (no significant difference). Although there was no significant difference in the ultimate failure load, more bone block fractures were found in the grafts fixed with a titanium interference screw. Bioabsorbable interference screw fixation thus seems to provide a reasonable alternative to titanium screws.  相似文献   

2.
BACKGROUND: Initial graft tension influences clinical results of anterior cruciate ligament reconstruction. HYPOTHESIS: Under repetitive loading conditions, the effect of initial graft tension on the biomechanical behavior of the femur-graft-tibia complex may depend on the graft and the fixation. STUDY DESIGN: Ex vivo biomechanical laboratory study. METHODS: After anterior cruciate ligament reconstruction, initial graft tension of 20, 80, or 140 N was applied to the complex for 2 minutes. Then, a cyclic force-relaxation test was performed for 5000 cycles so that the graft was stretched by 2 mm. RESULTS: In a patellar tendon graft with interference screws, the average peak load values at the 5000 th cycle were 105, 157, and 205 N for the complexes with initial tension of 20, 80, and 140 N, respectively. In a flexor tendon graft with interference screws, the values were 27, 41, and 39 N. In a flexor tendon graft with Endobutton fixation, the values were 17, 40, and 77 N. CONCLUSIONS: Considering the tension of the normal anterior cruciate ligament (16 to 87 N), an initial tension of 20 N appears to be high enough for a patellar tendon graft. For a flexor tendon graft with interference screws, an increase in initial tension above 80 N has no biomechanical advantages.  相似文献   

3.
BACKGROUND: The initial tension applied to an anterior cruciate ligament graft at the time of fixation modulates knee motion and the tibiofemoral compressive loads. PURPOSE: To establish the relationships between initial graft tension, tibiofemoral compressive force, and the neutral tibiofemoral position in the cadaveric knee. STUDY DESIGN: Controlled laboratory study. METHODS: The tibiofemoral compressive forces and joint positions were determined in the anterior cruciate ligament-intact knee at 0 degrees , 20 degrees , and 90 degrees of knee flexion. The anterior cruciate ligament was excised and reconstructed with a patellar tendon graft using graft tensions of 1, 15, 30, 60, and 90 N applied at 0 degrees , 20 degrees , and 90 degrees of knee flexion. The compressive forces and neutral positions were compared between initial tension conditions and the anterior cruciate ligament-intact knee. RESULTS: Increasing initial graft tension increased the tibiofemoral compressive forces. The forces in the medial compartment were 1.8 times those in the lateral compartment. The compressive forces were dependent on the knee angle at which the tension was applied. The greatest compressive forces occurred when the graft was tensioned with the knee in extension. An increase in initial graft tension caused the tibia to rotate externally compared with the anterior cruciate ligament-intact knee (1.5 degrees and 7.7 degrees of external rotation when tensioned to 90 N at 0 degrees and 90 degrees of knee flexion, respectively). Increases in initial graft tension also caused a significant posterior translation of the tibia relative to the femur (0.9 and 5.3 mm of posterior translation when tensioned to 90 N at 0 degrees and 90 degrees of knee flexion, respectively). CONCLUSION: Different initial graft tension protocols produced predictable changes in the tibiofemoral compressive forces and joint positions. CLINICAL RELEVANCE: The tibiofemoral compressive force and neutral joint position were best replicated with a low graft tension (1-15 N) when using a patellar tendon graft.  相似文献   

4.
BACKGROUND: Interference screw fixation of the graft in anterior cruciate ligament reconstruction is considered the gold standard, but limited clinical experience suggests that transcondylar fixation is equally effective. PURPOSE: To compare transcondylar and interference screw fixation. STUDY DESIGN: Ex vivo biomechanical study. METHODS: Twenty pairs of unembalmed knees underwent anterior cruciate ligament reconstruction with patellar tendon autografts. In 1 knee of each pair, the bone plug was stabilized in the femoral tunnel with standard interference screws; in the other knee, transcondylar screws were used. Testing to failure occurred immediately or after 1000 cycles of sinusoidal loading (30 to 150 N) (20 paired reconstructions each). Fixation stiffness, strength, graft creep, displacement amplitude, and change in amplitude were measured and compared (repeated measures anaylsis of variance with Tukey test; P <.05). RESULTS: There was no significant difference in acute strength, maximum load within 3 mm, or stiffness between transcondylar fixation (410 +/- 164 N, 183 +/- 93 N, and 49.6 +/- 28 N/mm, respectively) and interference fixation (497 +/- 216 N, 206 +/- 115 N, and 61 +/- 37.8 N/mm, respectively). Similarly, there was no significant difference in cyclic strength, maximum load within 3 mm, or stiffness between transcondylar fixation (496 +/- 214 N, 357 +/- 82.9 N, and 110 +/- 27.4 N/mm, respectively) and interference fixation (552 +/- 233 N, 357 +/- 76.2 N, and 112 +/- 26.8 N/mm, respectively). Predominant modes of failure were bone plug pullout (transcondylar fixation) and tendon failure or bone plug fracture (interference fixation). CONCLUSIONS: Transcondylar screw fixation of the patellar tendon autograft into the femoral tunnel performed mechanically as well as interference screw fixation. CLINICAL RELEVANCE: The results suggest that transcondylar and interference screws provide similar fixation for anterior cruciate ligament reconstruction.  相似文献   

5.
Two femoral fixation techniques for quadruple hamstring tendon grafts were compared under cyclic loading with the patellar tendon: the rectangular inserted pin (TransFix) and biodegradable interference screw fixation of the quadruple tendon and titanium interference screw fixation of the middle third of the patellar tendon. Porcine specimens were mounted onto a tension load machine, and the tendon-fixation-femur-complex was tested for stiffness, displacement during 800 cycles of loading between 50 and 250 N and ultimate tension load. TransFix fixation showed the greatest stiffness at 183.6 N/mm ( P<0.05). The least displacement under cyclic loading was observed for the titanium interference screw followed by the TransFix and biodegradable interference screw ( P<0.01). The ultimate tension load was greatest for the TransFix fixation at 1303+/-282 N, followed by patellar tendon fixation with 763+/-103 N and the biodegradable interference screw fixation with 480+/-133 N ( P<0.001). To reduce initial elongation of the graft and displacement at the fixation site, preconditioning of both the tendon and tendon-fixation complex is especially important when using quadruple tendons. TransFix fixation provides better stability and greater stiffness and pull-out strength than the other techniques. This finding is of clinical relevance to surgeons of the anterior cruciate ligament.  相似文献   

6.
Initial tibial fixation strength is the weak link after anterior cruciate ligament reconstruction with a quadrupled hamstring tendon graft fixed with bioabsorbable interference screws. The purpose of this study was to determine the biomechanical differences between 28-mm and tapered 35-mm interference screws for tibial fixation of a soft tissue graft in 16 young cadaveric tibias. Failure mode, displacement before failure, and ultimate failure load were tested with a testing machine aligned with the tibial tunnel to simulate a worst-case scenario. The mode of failure was graft slippage past the screw in all but one of the specimens. The mean maximum load at failure of the 28-mm screw was 594.9 +/- 141.0 N, with mean displacement at failure of 10.97 +/- 2.20 mm. The mean maximum load at failure of the 35-mm screw was 824.9 +/- 124.3 N, with a mean displacement to failure of 14.38 +/- 2.15 mm. The 38% difference in mean maximal load at failure was significant. Important variables in hamstring tendon graft fixation within a bone tunnel include bone mineral density, dilatation, gap size, screw placement, and screw width and length. Attention to these variables will help to provide secure graft fixation during biologic incorporation throughout the rehabilitation period.  相似文献   

7.
BACKGROUND: The literature provides little biomechanical data about femoral fixation of hamstring grafts in posterior cruciate ligament reconstruction. HYPOTHESIS: A hybrid fixation technique with use of an undersized screw has sufficient strength to provide secure fixation of posterior cruciate ligament grafts. Additional aperture fixation with a biodegradable interference screw can prevent graft damage that might be caused by an acute angle on the edge of the femoral tunnel. STUDY DESIGN: Controlled laboratory study. METHODS: In part 1, extracortical fixation of posterior cruciate ligament reconstructions with quadrupled porcine flexor digitorum grafts to simulate human hamstring grafts was compared with hybrid fixation methods using 6-, 7-, and 8-mm screws. Groups were tested in cycling loading with the load applied in line with the bone tunnel. In part 2, extracortical fixation was compared with hybrid fixation using a 1-mm undersized screw anterior and posterior to the graft. Structural properties and graft abrasion were evaluated after cyclic loading with the load applied at 90 degrees to the tunnel. In each group, 8 porcine knees were tested. RESULTS: In part 1, stiffness, maximum load, and yield load were significantly higher for hybrid fixation than for extracortical fixation. Hybrid fixation with an 8-mm screw resulted in higher yield load than with a 7-mm screw. In part 2, graft laceration was more pronounced in specimens with extracortical fixation than with hybrid fixation. Posterior screw placement was superior to the anterior position. CONCLUSION: For all parameters, hybrid fixation with an interference screw provided superior structural results. No relevant disadvantages of undersized screws could be found. Graft damage due to abrasion at the edge of the femoral bone tunnel was reduced by use of an interference screw. The posterior screw placement seems favorable. CLINICAL RELEVANCE: Hybrid fixation of hamstring grafts in posterior cruciate ligament reconstruction is superior to extracortical fixation alone with no relevant disadvantages of undersized screws. The results raise the suspicion of an acute angle effect of the femoral bone tunnel.  相似文献   

8.
The effect of dilation of the tibial tunnel on the strength of hamstring graft fixation using interference screws was evaluated. In all, 28 RCI screws were tested in male human tibia-hamstring constructs with tibial tunnels reamed or dilated to the respective size of the graft diameter. Dilation of the tibial tunnel failed to significantly enhance hamstring fixation. Grafts secured in dilated tunnels displayed an 11% greater resistance to the initiation of graft slippage (174+/-112 N) compared to their undilated controls (156+/-77 N, P=0.63). Dilation of the tibial tunnel increased the failure load by an average of 4%, independent of screw diameter (dilated specimens: 360+/-120 N, controls: 345+/-88 N, P=0.74). Biomechanical research on the effect of tibial tunnel dilation in hamstring fixation has not provided satisfactory evidence as to the benefits of this additional surgical step during anterior cruciate ligament (ACL) reconstruction.  相似文献   

9.
BACKGROUND: Tibial fixation of soft tissue grafts continues to be problematic in the early postoperative period after anterior cruciate ligament reconstruction. HYPOTHESIS: No differences exist for resistance to slippage of soft tissue grafts fixed with CentraLoc, Intrafix, or 35-mm bioabsorbable interference screws. STUDY DESIGN: Controlled laboratory study. METHODS: Bovine tibia and hoof extensor tendons were divided into 3 matched groups with 12 tibia and 12 extensor tendons in each group. Within each group, 6 specimens underwent monotonic loading to failure (1 mm/s), and 6 underwent cyclic loading (10,000 cycles, 125-325 N, 1 Hz). RESULTS: No statistically significant differences were noted in mean load to failure or stiffness. The mean load to failure (and stiffness) for the 3 types of fixation were as follows: bioabsorbable interference screw, 631.6 +/- 130.1 N (88.17 +/- 6.79 N/mm); Intrafix, 644.3 +/- 195.2 N (81.65 +/- 16.5 N/mm); and CentraLoc, 791.1 +/- 72.7 N (77.89 +/- 7.07 N/mm). The slippage rates under cyclic loading for the 3 types of fixation were bioabsorbable interference screw, 0.336 +/- 0.074 microm/cycle; Intrafix, 27.2 +/- 31.6 microm/cycle; and CentraLoc, 0.0355 +/- 0.0046 microm/cycle. In this model, CentraLoc proved statistically superior in resistance to cyclic loading compared with the bioabsorbable interference screw (P < .05) and Intrafix (P < .0001). The bioabsorbable interference screw proved statistically superior to Intrafix in resistance to cyclic loading (P < .05). CONCLUSIONS: In this bovine model, CentraLoc and bioabsorbable interference screws provided superior resistance to cyclic loading compared with Intrafix. CLINICAL RELEVANCE: CentraLoc and bioabsorbable interference screws showed superior resistance to cyclic loading, which may indicate an increased resistance to clinical failure.  相似文献   

10.
BACKGROUND: Tibial fixation of hamstring tendon grafts has been the weak link in anterior cruciate ligament reconstruction. HYPOTHESIS: Use of a central four-quadrant sleeve and screw provides superior fixation when compared with standard interference screw fixation. STUDY DESIGN: Controlled laboratory study. METHODS: In eight pairs of cadaveric knees each anterior cruciate ligament was reconstructed using either an interference screw or a central sleeve and screw on the tibial side. The specimens were then subjected to cyclic loading followed by a load-to-failure test. RESULTS: The load required to cause 1 and 2 mm of graft laxity, defined as the separation of the femur and the tibia at the points of graft fixation, was significantly greater with the sleeve and screw than with the interference screw (at 2 mm: sleeve and screw, 216.1 +/- 30.1 N; interference screw, 167.0 +/- 33.2 N). The force at initial slippage for each of the graft strands was significantly higher with use of the central sleeve and screw. CONCLUSIONS: The four-quadrant sleeve and screw device may provide greater surface area for healing of hamstring tendon grafts and allow equal tensioning of graft strands before fixation. These factors are associated with increased strength of fixation and reduced laxity of the graft after cyclic loading. Clinical Relevance: Use of the central four-quadrant sleeve and screw system offers increased strength of fixation in anterior cruciate ligament reconstruction with hamstring tendon graft.  相似文献   

11.
BACKGROUND: Tibial tunnel preparation may contribute to improved soft tissue graft fixation. HYPOTHESIS: Step dilation produces greater tunnel wall bone volume than does extraction drilling and increases fixation strength. Bioabsorbable interference screw divergence decreases fixation strength, regardless of tunnel preparation method. STUDY DESIGN: Controlled laboratory study. METHODS: Twenty porcine tibias were divided into 2 groups of 10 with matching mean apparent bone mineral density. One group received 9-mm-diameter extraction-drilled tunnels, and the other group received 7-mm-diameter extraction-drilled tunnels followed by step dilation to 9 mm. High-resolution quantitative computerized tomography scans and voxel analysis techniques determined tunnel wall bone volume fraction. Screws secured 8.5-mm-diameter porcine grafts in the tunnels. Repeat scans were used to determine screw divergence. Cyclic loading was performed in a servohydraulic device before load to failure testing. RESULTS: The step dilation group had greater tunnel wall bone volume/total volume than did the extraction drilled group; however, a significant increase in fixation strength was not detected. Specimens with screw divergence angles less than 15 degrees had superior fixation and insertion torques compared with specimens with angles 15 degrees or more. Screw divergence correlated more strongly with fixation strength than did mean apparent bone mineral density or screw insertion torque. CONCLUSION: Step dilation increased tunnel wall bone volume/total volume, but fixation strength did not improve. Screw divergence >or=15 degrees decreases graft-bone tunnel fixation whether or not step dilation is performed. CLINICAL RELEVANCE: Screw alignment plays a greater role in anterior cruciate ligament graft fixation than does extraction drilling or step dilation tunnel preparation methods in healthy bone.  相似文献   

12.
BACKGROUND: The weakest points in hamstrings anterior cruciate ligament reconstruction are its points of fixation, especially on the tibial side. Methods for graft fixation to bone should be strong enough to avoid failure, stiff enough to restore load-displacement response, and secure enough to resist slippage under cyclic loading. HYPOTHESIS: Biomechanical properties of the interference screw can be improved by reinforcing the walls of the tunnel with a metal spiral (Evolgate fixation). STUDY DESIGN: Controlled laboratory study. METHODS: Three paired tests were performed using common digital extensor bovine tendons fixed to porcine tibias with interference screw, Intrafix, and Evolgate; critical graft fixation conditions were simulated by applying subsequent cycles to the graft before loading the graft until failure. RESULTS: The strength, stiffness, and resistance to slippage of the Evolgate were significantly higher than those of the interference screw; the ultimate failure load of the Evolgate was significantly higher than that of the Intrafix (1058+/-130 N and 832+/-156 N, respectively; P=.02). No statistically significant differences were found between Evolgate and Intrafix regarding the stiffness and slippage under cyclic load. CONCLUSION: Evolgate fixation seems to be stronger, stiffer, and more resistant to slippage than is interference screw fixation of similar length, and it is stronger but not stiffer than Intrafix. CLINICAL RELEVANCE: The Evolgate provides structural properties that seem to be appropriate for an intensive rehabilitation after anterior cruciate ligament reconstruction using a doubled semitendinosus and gracilis graft.  相似文献   

13.
BACKGROUND: Compaction of the bone tunnel walls has been proposed to increase the fixation strength of soft tissue grafts fixed with an interference screw in anterior cruciate ligament reconstructions. HYPOTHESIS: Compaction drilling does not increase the initial fixation strength of the hamstring tendon graft in comparison with conventional extraction drilling. STUDY DESIGN: Randomized experimental study. METHODS: Initial fixation strength of quadrupled hamstring tendon grafts fixed with bioabsorbable interference screws was assessed in 22 pairs of human cadaveric tibiae. Bone tunnels were drilled with either a compaction drill or a conventional extraction drill. Specimens underwent a cyclic-loading test and the surviving specimens were then loaded to failure in a single-cycle load-to-failure test. Trabecular bone mineral density at the site corresponding to the actual site of the tibial bone tunnel was determined by using peripheral quantitative computed tomography. RESULTS: During the cyclic-loading test, no significant stiffness or displacement differences were observed between the two drilling techniques. Three specimens failed in the compaction-drilling group, whereas there were no failures in the extraction-drilling group. In the subsequent single-cycle load-to-failure test, no significant differences between the two drilling techniques were found with regard to displacement at yield load, stiffness, or mode of failure. There was no significant difference in trabecular bone mineral density between the two groups. CONCLUSIONS: Compaction drilling does not increase the initial fixation strength of the hamstring tendon graft compared with conventional extraction drilling.  相似文献   

14.
BACKGROUND: There is sometimes a return of excess knee laxity after anterior cruciate ligament reconstruction. One of the contributing factors might be a loss in graft tension. It is unknown whether the tension imposed on an anterior cruciate ligament graft degrades with time and, if so, the effect of that loss of tension on knee laxity. HYPOTHESES: The pretension in the anterior cruciate ligament graft reduces significantly within the first 500 motion cycles, and this decrease in graft tension causes an increase in knee laxity. STUDY DESIGN: Controlled laboratory study. METHODS: This study measured the remains of bone-patellar tendon-bone graft pretension after cyclical flexion-extension and the effect of any tension loss on knee laxity, using 8 cadaveric knees. A tension transducer was inserted into the graft and calibrated in situ. The reconstruction tension was 40 N at 20 degrees of flexion. In test 1, the graft tension was measured under cyclical flexion-extension in a motorized rig up to 1500 cycles. Test 2, with a new graft, also included anteroposterior and internal-external rotational knee laxity measurements at 0, 500, and 1500 cycles. RESULTS: The graft tension at 0 degrees of flexion dropped from 208 N, by 25% after 50 cycles, 41% by 500, and 46% by 1500 cycles. Anterior laxity increased from +1.4 to +2.8 mm by 500 cycles, and performing these laxity tests also caused significant tension losses. CLINICAL RELEVANCE: These results provide one possible explanation for early slackening of anterior cruciate ligament reconstructions.  相似文献   

15.
An experimental study was performed in 32 adult beagle dogs to clarify the effect of nonphysiologically high initial tension on the mechanical and histologic properties of in situ frozen anterior cruciate ligaments. Both anterior cruciate ligaments in each dog underwent the in situ freeze-thaw treatment. The tibial insertion of the ligament was then made free from the tibia along with a cylindrical bone block. In the right knee, an initial tension of 20 N was applied on the anterior cruciate ligament by translocating the bone block in the distal direction. In the left knee, this bone block was anatomically reduced. Each bone block was firmly fixed with an interference screw. Ten animals were sacrificed at 6 weeks and 10 at 12 weeks. The tensile strength and the tangent modulus in the highly tensioned knee were significantly less than those in the physiologically tensioned knee at 12 weeks. Histologically, cell nuclei appeared to be spindle-shaped in the physiologically tensioned knee, while oval nuclei and focal degenerative changes with a number of vacuoles were occasionally found in the matrix in the highly tensioned knee. This study demonstrated that a nonphysiologically high tension significantly deteriorates the mechanical properties of the in situ frozen anterior cruciate ligament compared with physiologic tension.  相似文献   

16.
BACKGROUND: During the early postoperative period, the fixation of a hamstring graft to the bone tunnel is the primary factor in limiting rehabilitation. HYPOTHESIS: The initial fixation strength of a double cross pin fixation technique is comparable with the biodegradable interference screw fixation technique. STUDY DESIGN: Experimental laboratory study. METHODS: The authors examined the initial fixation strength of two 3.3-mm bioabsorbable pins compared to interference screws for hamstring grafts in bovine knees. RESULTS: Analysis of yield load, maximum load, and stiffness in the single-cycle loading test showed no statistically significant differences for cross pin and interference fixation (P <.05). For cross pins and interference screws, the mean displacement under 1000 cycles to 250 N was 5.07 ( +/- 1.9) mm and 4.81 ( +/- 2.5) mm, stiffness 252 ( +/- 78) N/mm and 289 ( +/- 148) N/mm. Only grafts fixed with cross pins survived 1000 cycles to 450 N. CONCLUSION: The initial fixation strength of the double cross pin technique is comparable to that of interference screw fixation with a stiffness comparable to that of the native ACL. Clinical Relevance: Hamstring graft fixation using two cross pins provides an alternative to bioabsorbable interference screw fixation.  相似文献   

17.
Blunt-threaded interference screws used for fixation of hamstring tendons in anterior cruciate ligament reconstructions provide aperture fixation and may provide a biomechanically more stable graft than a graft fixed further from the articular surface. It is unknown if soft tissue fixation strength using interference screws is affected by screw length. We compared the cyclic and time-zero pull-out forces of 7 x 25 mm and 7 x 40 mm blunt-threaded metal interference screws for hamstring graft tibial fixation in eight paired human cadaveric specimens. A four-stranded autologous hamstring tendon graft was secured by a blunt-threaded interference screw into a proximal tibial tunnel with a diameter corresponding to the graft width. Eight grafts were secured with a 25-mm length screw while the other eight paired grafts were secured with a 40-mm length screw. During cyclic testing, slippage of the graft occurred as the force of pull became greater with each cycle until the graft-screw complex ultimately failed. All grafts failed at the fixation site, with the tendon being pulled past the screw. There were no measurable differences in the mean cyclic failure strength, pull-out strength, or stiffness between the two sizes of screws. Although use of the longer screw would make removal technically easier should revision surgery be necessary, it did not provide stronger fixation strength than the shorter, standard screw as had been postulated.  相似文献   

18.
The objective of this study was to evaluate initial fixation strength of a new interference nail fixation in anterior cruciate ligament reconstruction using bone-patellar tendon-bone graft. Human cadaver knees were used. Fixation strengths ranged from 500 N to 600 N (mean 550 N). This corresponds to loads in the graft during aggressive rehabilitation. No slippage occurred at fixation site of specimens. Most of the failures appeared from the femoral side with tendon ruptures. With respect to primary fixation strength, interference nail fixation is a reasonable alternative for anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft.  相似文献   

19.
Initial strength of quadrupled hamstring tendon grafts fixed with titanium interference screws was assessed in 30 pairs of porcine tibiae. Bone tunnels were drilled with either compaction drilling (stepped routers) or conventional extraction drilling (cannulated drill bits). Fifteen pairs of specimens were subjected to a single-cycle load-to-failure test, while the rest underwent a cyclic-loading test to further assess the quality of the fixation. No significant difference between the two drilling techniques was found with regard to yield load, displacement at yield load, stiffness, or mode of failure. Porcine trabecular bone mineral density was determined using peripheral quantitative computed tomography and compared with that of young women and men at a site corresponding to that of the tibial bone drill hole of an anterior cruciate ligament reconstruction. There was a significant difference between the two species (210 +/- 45 mg/cm(3) in porcine tibial bone versus 129 +/- 30 mg/cm(3) in women and 134 +/- 34 mg/cm(3) in men), suggesting that porcine knee specimens may have limitations in studies of graft fixation in anterior cruciate ligament reconstruction. We found no difference between extraction and compaction drilling in initial fixation strength of a hamstring tendon graft for anterior cruciate ligament reconstruction using a porcine model.  相似文献   

20.
BACKGROUND: It is now well documented that women are more likely to suffer anterior cruciate ligament injuries than are men. A few studies have examined gender differences in the outcome of anterior cruciate ligament reconstruction with patellar tendon graft and hamstring tendon with EndoButton fixation, but no well-controlled studies have specifically compared men and women after anterior cruciate ligament reconstruction with hamstring tendon graft and interference screw fixation. HYPOTHESIS: There is no difference in outcome between men and women after anterior cruciate ligament reconstruction with hamstring tendon autograft and interference screw fixation. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: There were 100 men and 100 women who underwent isolated anterior cruciate ligament reconstruction by a single surgeon. Patients were assessed preoperatively and at 1, 2, and 7 years after surgery. Variables were compared between female and male patients. RESULTS: Laxity on physical evaluation was greater in women than in men on Lachman (P = .04), pivot-shift (P = .05), and mean manual maximum testing (P = .05) at 7 years. However, the magnitude of this difference was small. No patient had a greater than grade 1 Lachman or pivot-shift test result, and the mean difference between men and women was 0.6 mm on instrumented testing. Anterior cruciate ligament graft rupture occurred in 11 men and 10 women. There was no difference between male and female patients for self-reported knee function or symptoms of instability or radiologic examination. CONCLUSION: Anterior cruciate ligament reconstruction using hamstring tendon autograft affords excellent self-reported and objective results in both men and women after 7 years. Although significantly greater laxity on physical examination was present in female patients than in male patients, the magnitude of this difference was small and had no effect on activity level, graft failure, or subjective or functional assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号