首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sawada J  Itakura A  Tanaka A  Furusaka T  Matsuda H 《Blood》2000,95(6):2052-2058
Despite being a well-characterized neurotrophic factor, nerve growth factor (NGF) influences survival, differentiation, and functions of mast cells. We investigated whether NGF was able to induce directional migration of rat peritoneal mast cells (PMCs). NGF clearly induced chemotactic movement of PMCs in a dose-dependent manner with the drastic morphological change and distribution of F-actin, which was completely blocked by pretreatment with Clostridium botulinum C(2) toxin, an actin-polymerization inhibitor. Because PMCs constitutively express the NGF high-affinity receptor (TrkA) with a tyrosine kinase domain, we focused on downstream effectors in signaling cascades following the TrkA. NGF rapidly activated both mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K), and the addition of inhibitors specific for MAPK kinase and PI3K suppressed cell migration and these signals. In the coculture system with PMCs and fibroblasts, which produce biologically active NGF, directional migration of PMCs to fibroblasts was observed, and the addition of anti-NGF polyclonal antibodies significantly suppressed the migration of PMCs. These findings suggested that NGF initiated chemotactic movement of PMCs through both MAPK and PI3K signaling pathways following TrkA activation. Thus, locally produced NGF may play an important role in mast cell accumulation in allergic and nonallergic inflammatory conditions. (Blood. 2000;95:2052-2058)  相似文献   

2.
The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation.  相似文献   

3.
4.
5.
Functional and structural differences between arteries and veins lie at the core of the circulatory system, both in health and disease. Therefore, understanding how artery and vein cell identities are established is a fundamental biological challenge with significant clinical implications. Molecular genetic studies in zebrafish and other vertebrates in the past decade have begun to reveal in detail the complex network of molecular pathways that specify artery and vein cell fates during embryonic development. Recently, a chemical genetic approach has revealed evidence that artery-vein specification is governed by cross talk between phosphoinositide 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in artery-vein specification. We discuss recent findings on the signaling pathways involved in artery-vein specification during zebrafish development and compare and contrast these results to those from mammalian systems. It is anticipated that the complementary approaches of genetics and chemical biology, involving a variety of model organisms and systems, will lead to a better understanding of artery-vein specification and possibly to novel therapeutic approaches to treat vascular diseases.  相似文献   

6.
OBJECTIVE: To investigate the molecular mechanisms of the anti-apoptotic action of hepatocyte growth factor (HGF), a novel angiogenic growth factor that may have a pivotal role in the regulation of endothelial cells, on human aortic endothelial cells. METHODS: An index of cell number and death was determined using a water-soluble tetrazolium salt dye assay, DNA fragmentation enzyme-linked immunosorbent assay, and non-confocal fluorescence microscopy of nuclear staining with Hoechst 33258 and propidium iodide. Extracellular-signal-regulated protein kinase (ERK) and the p38 mitogen-activated protein kinase (p38MAPK) were analysed by Western blotting using a phospho-specific antibody. RESULTS: Treatment of quiescent endothelial cells with HGF resulted in significant dose-dependent increases in cell numbers and decreases in lactate dehydrogenase (LDH) release. Moreover, HGF significantly attenuated endothelial cell death induced by culture in serum-free conditions. We therefore focused on the signal transduction system, and in particular on ERK and p38MAPK. ERK was markedly phosphorylated by HGF. The contribution of ERK to cell growth was supported by the observation that addition of PD98059, a specific inhibitor of MAPK kinase, significantly attenuated the increase in endothelial cell numbers induced by HGF, in a dose-dependent manner. Similarly, PD98059 also attenuated the decrease in LDH release and DNA fragmentation by HGF under serum-free conditions. Interestingly, ERK was re-phosphorylated at 12 h after stimulation. Re-phosphorylation of ERK was the result of induction of endogenous HGF by exogenously added HGF, as addition of neutralizing anti-HGF antibody to the conditioned medium attenuated re-phosphorylation of ERK at 12 h. In contrast, although p38MAPK was also phosphorylated by HGF, SB203580, a specific inhibitor of p38MAPK, failed to change the endothelial cell growth induced by HGF. CONCLUSION: We have demonstrated that the anti-apoptotic action of HGF against endothelial cell death was mainly through phosphorylation of ERK on human endothelial cells.  相似文献   

7.
In this study, we investigated the effects of migration inhibitory factor (rhMIF) on angiogenesis-related signaling cascades and apoptosis in human endothelial cells (ECs). We show that in vitro rhMIF induces migration and tube formation in Matrigel of human dermal microvascular endothelial cells (HMVECs), with potency comparable to that of basic fibroblast growth factor. In vivo, rhMIF induces angiogenesis in Matrigel plugs and in the corneal bioassay. Using panels of relatively specific kinase inhibitors, antisense oligonucleotides, and dominant-negative mutants, we show that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) are critical for MIF-dependent HMVEC migration, whereas Src and p38 kinases are nonessential. Moreover, we demonstrate that rhMIF induces time-dependent increases in phosphorylation levels of MEK1/2, Erk1/2, and Elk-1, as well as PI3K, and its effector kinase, Akt, in HMVECs. Studies with dominant-negative mutants and antisense oligonucleotides corroborate these effects in HMVECs. Furthermore, we demonstrate that rhMIF-induced angiogenesis in the rat cornea in vivo and in the ex vivo endothelial cell morphogenesis assay is also MAPK- and PI3K-dependent. Our findings support a role for MIF as an angiogenic factor and provide a rationale for the use of MIF as a therapeutic inducer of neovascularization in the development of collateral circulation in coronary artery disease.  相似文献   

8.
Protein kinase C (PKC), a major cellular receptor for tumor-promoting phorbol esters and diacylglycerols (DGs), appears to be involved in a variety of cellular functions, although its activation mechanism in vivo is not yet fully understood. To evaluate the signaling pathways involved in the activation of PKC epsilon upon stimulation by platelet-derived growth factor (PDGF) receptor (PDGFR), we used a series of PDGFR "add-back" mutants. Activation of a PDGFR mutant (Y40/51) that binds and activates phosphatidylinositol 3-kinase (PI 3-kinase) caused translocation of PKC epsilon from the cytosol to the membrane in response to PDGF. A PDGFR mutant (Y1021) that binds and activates phospholipase C gamma (PLC gamma), but not PI 3-kinase, also caused the PDGF-dependent translocation of PKC epsilon. The translocation of PKC epsilon upon stimulation of PDGFR (Y40/51) was inhibited by wortmannin, an inhibitor of PI 3-kinase. Activation of PKC epsilon was further confirmed in terms of PKC epsilon-dependent expression of a phorbol 12-tetradecanoate 13-acetate response element (TRE)-luciferase reporter. Further, purified PKC epsilon was activated in vitro by either DG or synthetic phosphatidylinositol 3,4,5-trisphosphate. These results clearly demonstrate that PKC epsilon is activated through redundant and independent signaling pathways which most likely involve PLC gamma or PI 3-kinase in vivo and that PKC epsilon is one of the downstream mediators of PI 3-kinase whose downstream targets remain to be identified.  相似文献   

9.
Pyruvate kinase L (PK-L) is a key regulatory enzyme of the hepatic glycolytic/gluconeogenic pathway that can be dephosphorylated and activated in response to insulin. However, the signaling cascades involved in this insulin effect have not been established. In this work we have investigated the potential involvement of phosphatidylinositol 3-kinase (PI 3-K) and p44/p42 mitogen-activated protein kinase (MAPK) pathways in the short-term modulation of PK-L by insulin in primary cultures of rat hepatocytes. Wortmannin, at a concentration of 100 nM, caused a marked inhibition of the PI 3-K/protein kinase B pathway, which became complete at 500 nM wortmannin. Likewise, wortmannin at 100 and 500 nM, elicited partial and total inhibitions of insulin-mediated activation of PK-L, respectively. However, this PI 3-K inhibitor also reduced insulin-mediated phosphorylation of p44/p42 MAPK in cultured rat hepatocytes, indicating that both the PI 3-K and MAPK pathways could be involved in PK-L activation by insulin. Three facts appear to reinforce this hypothesis: 1) the selective and complete inhibition of the PI 3-K/protein kinase B pathway by LY294002 (50 microM) was accompanied by a partial blockade of insulin-induced PK-L activation; 2) when signaling through the MAPK cascade was selectively suppressed by the presence of PD98059 (50 microM), a 50% reduction of insulin-induced activation of PK-L was observed; and 3) the effect of PD98059 (50 microM) on PK-L activation was reinforced by the additional presence of 100 nM wortmannin. We also observed that the blockade of p70 S6-kinase by rapamycin did not affect the activation of PK-L by insulin. From these findings it can be concluded that both PI 3-K and MAPK pathways, but not p70 S6-kinase, are involved in the short-term activation of PK-L by insulin in rat hepatocytes.  相似文献   

10.
CONTEXT: All-trans retinoic acid (tRA) induces differentiation in MCF-7 breast cancer cells, stimulates sodium/iodide symporter (NIS) gene expression, and inhibits cell proliferation. Radioiodine administration after systemic tRA treatment has been proposed as an approach to image and treat some differentiated breast cancer. OBJECTIVE: The objective of this work was to study the relative role of genomic and nongenomic pathways in tRA stimulation of NIS expression in MCF-7 cells. DESIGN: We inspected the human NIS gene locus for retinoic acid-responsive elements and tested them for function. The effects of signal transduction pathway inhibitors were also tested in tRA-treated MCF-7 cells and TSH-stimulated FRTL-5 rat thyroid cells, followed by iodide uptake assay, quantitative RT-PCR of NIS, and cell cycle phase analysis. RESULTS: Multiple retinoic acid response elements around the NIS locus were identified by sequence inspection, but none of them was a functional tRA-induced element in MCF-7 cells. Inhibitors of the IGF-I receptor, Janus kinase, and phosphatidylinositol 3-kinase (PI3K), significantly reduced NIS mRNA expression and iodide uptake in tRA-stimulated MCF-7 cells but not FRTL-5 cells. An inhibitor of p38 MAPK significantly reduced iodide uptake in both tRA-stimulated MCF-7 cells and TSH-stimulated FRTL-5 cells. IGF-I and PI3K inhibitors did not significantly reduce the basal NIS mRNA expression in MCF-7 cells. Despite the chronic inhibitory effects on cell proliferation, tRA did not reduce the S-phase distribution of MCF-7 cells during the period of NIS induction. CONCLUSION: The IGF-I receptor/PI3K pathway mediates tRA-stimulated NIS expression in MCF-7 but not FRTL-5 thyroid cells.  相似文献   

11.
Purpose  Ewing sarcoma cells, of which over 85% retain chimeric fusion gene EWS/Fli-1, are by and large more resistant to chemotherapeutics compared to nonneoplastic cells. The purpose of this study is to determine the role of EWS/Fli-1 fusion and its downstream targets regarding the cells’ resistance against actinomycin D (ActD), which is one of the most commonly used antitumor agents in combination chemotherapy of Ewing sarcomas. Methods  Cytotoxicity was measured by WST-8 assay. Caspase-dependent and -independent cell death was examined by fluorescence microscope. Protein expression was analyzed by western blotting. Caspase activity was determined by Caspase-Glo assay. Results  ActD-induced caspase-dependent apoptotic cell death to Ewing sarcoma TC-135 cells in a dose- and time- dependent manner. Knockdown of EWS/Fli-1 fusion by siRNA resulted in enhancement of ActD-induced apoptosis. ActD treatment activated both mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/Akt pathways although in a distinctive manner. Combined administration of U0126 (MEK inhibitor) and LY294002 (PI3K inhibitor) significantly enhanced ActD-induced apoptosis in vitro and suppressed xenograft tumor growth in vivo. Conclusions  The present study demonstrated for the first time that combination of U0126 and LY294002 can augment the cytotoxicity of ActD against Ewing sarcoma cells in vitro and in vivo. Our results indicate that further study on combination of conventional chemotherapies with MEK and PI3K inhibitors may be considered for innovative treatments of Ewing sarcoma patients.  相似文献   

12.
Aims/hypothesis. Pancreatic AR42J cells express both exocrine and neuroendocrine properties. When exposed to activin A, approximately 50 % of the cells die within 3 days by apoptosis. Addition of hepatocyte growth factor prevents apoptosis induced by activin A and induces differentiation into insulin-producing cells. The present study was conducted to examine the role of mitogen-activated protein kinase and phosphoinositide 3-kinase in the action of hepatocyte growth factor. Methods. The role of mitogen-activated protein kinase was assessed by using 2-(2 ′-amino-3 ′-methoxyphenol)-oxanaphthalen-4-one (PD098 059). Cells were also transfected with cDNA for mitogen-activated protein kinase phosphatase and constitutively active mutant of mitogen-activated protein kinase kinase. Results. Hepatocyte growth factor induced sustained activation of the mitogen-activated protein kinase, which was inhibited by PD098 059. PD098 059 completely blocked the differentiation and also blocked the prevention of apoptosis. Transfection of the cells with cDNA for mitogen-activated protein kinase phosphatase reproduced the effect of PD098 059. Conversely, transfection with cDNA for the constitutively active mutant of mitogen-activated protein kinase kinase reproduced the effect of hepatocyte growth factor. In contrast, addition of wortmannin or transfection of the dominantly negative form of the p85 subunit of the phosphoinositide 3-kinase did not affect differentiation induced by hepatocyte growth factor. Instead, wortmannin enhanced the increase in the insulin content of the differentiated AR42J cells. Conclusion/interpretation. The MAP kinase pathway is necessary and sufficient for the action of HGF on differentiation of AR42J cells. [Diabetologia (1999) 42: 450–456] Received: 24 August 1998 and in final revised form: 16 November 1998  相似文献   

13.
Basic fibroblast growth factor (bFGF) belongs to the large set of intratesticular regulators that provide the fine tuning of cellular processes implicated in the maintenance of spermatogenesis. The aim of the present study was to determine the participation of mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3-kinase/protein kinase B (PI3K/PKB) pathways in bFGF regulation of Sertoli cell function. Twenty-day-old rat Sertoli cell cultures were used. Stimulation of the cultures with bFGF showed a time-dependent increment in phosphorylated MAPK and PKB levels that reached maximal values in 5-min incubations. MAPK kinase inhibitors U0126 (U) and PD98059 (PD) and a PI3K inhibitor wortmannin (W) were able to block the stimulatory effects of bFGF on phosphorylated MAPK and PKB levels respectively. The participation of MAPK- and PI3K/PKB-signaling pathways in the regulation by bFGF of two well-known Sertoli cell-differentiated functions, lactate and transferrin production, was next explored. As for lactate production, PD and W did not modify the ability of bFGF to stimulate lactate production. However, a combination of PD and W partially impaired the increase in lactate production elicited by bFGF. The participation of MAPK- and PI3K/PKB-signaling pathways in the regulation by bFGF of glucose uptake and lactate dehydrogenase (LDH) activity was also analysed. In this respect, it was observed that W markedly decreased basal and bFGF-stimulated glucose uptake and that U and PD did not modify it. On the other hand, U and PD decreased the stimulation of LDH activity by bFGF whereas W did not modify it. As for transferrin production, while both MAPK kinase inhibitors partially decreased the ability of bFGF to stimulate transferrin secretion, the PI3K inhibitor did not modify it. In summary, the results demonstrated that bFGF stimulates MAPK- and PI3K/PKB-dependent pathways in rat Sertoli cells. Moreover, these results showed that while bFGF utilizes the MAPK pathway to regulate transferrin production and LDH activity, it uses the PI3K/PKB pathway to regulate glucose transport into the cell.  相似文献   

14.
Bai RY  Ouyang T  Miething C  Morris SW  Peschel C  Duyster J 《Blood》2000,96(13):4319-4327
More than half of anaplastic large-cell lymphomas (ALCLs) have a chromosomal translocation t(2;5) that leads to the expression of a hybrid protein composed of the nucleolar phosphoprotein nucleophosmin (NPM) and the anaplastic lymphoma kinase (ALK) that exhibits an unregulated tyrosine kinase activity. We have previously identified PLC-gamma as a crucial downstream signaling molecule of NPM-ALK that contributes to its mitogenic potential. Here, we show that NPM-ALK recruits the C-terminal SH2 domain of the phosphatidylinositol 3-kinase (PI 3kinase) p85 subunit. PI 3-kinase assays revealed that the kinase is activated by NPM-ALK in vivo, in turn activating PKB/Akt in NPM-ALK-expressing cells. The use of 2 specific PI 3-kinase inhibitors, wortmannin and LY294002, demonstrated the requirement of PI 3-kinase for the growth of NPM-ALK-transformed cell lines, as well as a cell line established from a patient with ALCL. Primary murine bone marrow retrovirally transduced with NPM-ALK showed a transformed phenotype that was reversible on treatment with PI 3-kinase inhibitors. Flow cytometric analysis revealed that wortmannin-treated NPM-ALK-transformed cell lines underwent apoptosis. Furthermore, apoptosis induced by overexpression of the proapoptotic molecule Bad could be partially blocked by the overexpression of NPM-ALK. Thus, NPM-ALK activates the antiapoptotic PI 3-kinase/Akt pathway, which likely contributes to the molecular pathogenesis of ALCL. (Blood. 2000;96:4319-4327)  相似文献   

15.
Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. One of the paracrine regulators of bone-derived osteoblasts, insulin-like growth factor-I (IGF-I), is also present in atherosclerotic lesions. To evaluate its possible role in vascular calcification, we assessed its in vitro effects on proliferation and differentiation in calcifying vascular cells (CVCs), a subpopulation of bovine aortic medial cells. Results showed that IGF-I inhibited spontaneous CVC differentiation and mineralization as evidenced by decreased alkaline phosphatase (AP) activity and decreased matrix calcium incorporation, respectively. Furthermore, IGF-I inhibited the AP activity induced by bacterial lipopolysaccharide, TNF-alpha, or H2O2. It also induced CVC proliferation based on 3H-thymidine incorporation. Results from Northern analysis and tests using IGF-I analogs suggest that IGF-I effects are mediated through the IGF-I receptor. IGF-I also activated both the extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) pathways. Inhibition of either the ERK or PI3K pathway reversed IGF-I effects on CVC proliferation and AP activity, suggesting a common downstream target. Overexpression of ERK activator also mimicked IGF-I inhibition of lipopolysaccharide-induced AP activity. These results suggest that IGF-I promotes proliferation and inhibits osteoblastic differentiation and mineralization of vascular cells via both ERK and PI3K pathways.  相似文献   

16.
AIM: Osteopontin (OPN) is a phosphorylated glycoprotein with diverse functions including cancer development, progression and metastasis. It is unclear how osteopontin is regulated in HepG2 cells. The aim of this study was to investigate the effect of epidermal growth factor on the expression of osteopontin in HepG2 cells, and to explore the signal transduction pathway mediated this expression. METHODS: Osteopontin expression was detected by RNAase protection assay and Western blot. Wortmannin, a specific inhibitor of PI3K, was used to see if PI3K signal transduction was involved in the induction of osteopontin gene expression. RESULTS: HepG2 cells constitutively expressed low levels of osteopontin. Treatment with epidermal growth factor increased osteopontin mRNA and protein level in a dose- and time-dependent manner. Application of wortmannin caused a dramatic reduction of epidermal growth factor-induced osteopontin expression. CONCLUSION: Osteopontin gene expression can be induced by treatment of HepG2 cells with epidermal growth factor. Epidermal growth factor may regulate osteopontin gene expression through PI3K signaling pathway. Several potential targets in the pathway can be manipulated to block the synthesis of osteopontin and inhibit liver cancer metastasis.  相似文献   

17.
IGF-II, a potent stimulator of cellular proliferation, differentiation, and development, regulates uterine function and conceptus growth in several species. In situ hybridization analyses found that IGF-II mRNA was most abundant in the caruncular endometrial stroma of both cyclical and pregnant ewes. In the intercaruncular endometrium, IGF-II mRNA transitioned from stroma to luminal epithelium between d 14 and 20 of pregnancy. IGF-II mRNA was present in all cells of the conceptus but was particularly abundant in the yolk sac. Immunohistochemical analyses revealed that phosphorylated (p)-protooncogenic protein kinase 1, p-ribosomal protein S6 kinase, p-ERK1/2, and p-P38 MAPK proteins were present at low levels in a majority of endometrial cells but were most abundant in the nuclei of endometrial luminal epithelium and conceptus trophectoderm of pregnant ewes. In mononuclear trophectoderm cells isolated from d-15 conceptuses, IGF-II increased the abundance of p-pyruvate dehydrogenase kinase 1, p-protooncogenic protein kinase 1, p-glycogen synthase kinase 3B, p-FK506 binding protein 12-rapamycin associated protein 1, and p-ribosomal protein S6 kinase protein within 15 min, and the increase was maintained for 90 min. IGF-II also elicited a rapid increase in p-ERK1/2 and p-P38 MAPK proteins that was maximal at 15 or 30 min posttreatment. Moreover, IGF-II increased migration of trophectoderm cells. Collectively, these results support the hypothesis that IGF-II coordinately activates multiple cell signaling pathways critical to survival, growth, and differentiation of the ovine conceptus during early pregnancy.  相似文献   

18.
19.
Yuan G  Deng J  Wang T  Zhao C  Xu X  Wang P  Voltz JW  Edin ML  Xiao X  Chao L  Chao J  Zhang XA  Zeldin DC  Wang DW 《Endocrinology》2007,148(5):2016-2026
We previously reported that iv delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV-HK) as a sole, long-term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin in conjunction with a high-fat diet induced systemic hypertension, diabetes, and renal damage in rats. Delivery of rAAV-HK resulted in a long-term reduction in blood pressure, and fasting plasma insulin was significantly lower in the rAAV-HK group than in the control group. The expression of phosphatidylinositol 3-kinase p110 catalytic subunit and the levels of phosphorylation at residue Thr-308 of Akt, insulin receptor B, and AMP-activated protein kinases were significantly decreased in organs from diabetic animals. These changes were significantly attenuated after rAAV-mediated HK gene therapy. Moreover, rAAV-HK significantly decreased urinary microalbumin excretion, improved creatinine clearance, and increased urinary osmolarity. HK gene therapy also attenuated diabetic renal damage as assessed by histology. Together, these findings demonstrate that rAAV-HK delivery can efficiently attenuate hypertension, insulin resistance, and diabetic nephropathy in streptozotocin-induced diabetic rats.  相似文献   

20.
Y Imai  D R Clemmons 《Endocrinology》1999,140(9):4228-4235
Insulin-like growth factor-I (IGF-I) is a potent stimulator of vascular smooth muscle cell (SMC) migration, a process that contributes to the accumulation of SMC within atherosclerotic lesions. Our previous studies have shown that IGF-I increases the affinity of the alphaVbeta3 integrin toward ligands and that occupancy of this integrin is indispensable for IGF-I to stimulate cell migration. In this study, the role of phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinase (MAPK) pathways in IGF-I induced cell motility and integrin activation was studied using porcine aortic smooth muscle cells (pSMC). Two structurally different inhibitors of PI 3-kinase decreased IGF-I-stimulated pSMC migration in a dose-dependent manner. The IC50 of wortmannin for inhibiting migration was 10 nM, and that of LY294002 was 0.3 microM. These inhibitors also suppressed IGF-I-induced phosphorylation of protein kinase B PKB/Akt at Ser437 using concentrations that also inhibited cell motility. PD98059, an inhibitor of the MAPK pathway, was somewhat less potent than PI 3-kinase inhibitors in blocking cell migration that had been stimulated by IGF-I. When IGF-I increased migration of pSMC 2.1-fold above control, 100 nM wortmannin inhibited this response by 79%, 1 microM LY294002 inhibited it by 58%, and 50 microM PD98059 caused a 34% reduction. In comparison, 100 nM wortmannin inhibited IGF-I stimulated DNA synthesis by 57%, 1 microM LY294002 inhibited it by 59%, whereas 50 microM PD98059 suppressed it completely. Thus, activation of PI 3-kinase plays the major role in IGF-I-stimulated migration and proliferation of pSMC. While the activation of the MAPK pathway seems to be necessary for stimulation of mitogenesis by IGF-I, the contribution of this pathway in IGF-I-induced cell migration is limited in pSMC. Interestingly, neither PI 3-kinase inhibitors nor PD98059 blocked the increase in alphaVbeta3 integrin affinity that followed IGF-I treatment. Therefore, although both the PI 3-kinase and MAPK pathways were used by IGF-I to increase migration of pSMC, alphaVbeta3 integrin activation did not depend on either PI 3-kinase or MAPK activation, suggesting the possible importance of some other signal transduction pathway to account for its full actions on pSMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号