首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thiopurine S-methyltransferase (TPMT) genetic polymorphism has a significant clinical impact on the toxicity of thiopurine drugs. It has been proposed that the identification of patients who are at high risk for developing toxicity on the basis of genotyping could be used to individualize drug treatment. In the present study, phenotype-genotype correlation of 1214 healthy blood donors was investigated to determine the accuracy of genotyping for correct prediction of different TPMT phenotypes. In addition, the influence of gender, age, nicotine and caffeine intake was examined. TPMT red blood cell activity was measured in all samples and genotype was determined for the TPMT alleles *2 and *3. Discordant cases between phenotype and genotype were systematically sequenced. A clearly defined trimodal frequency distribution of TPMT activity was found with 0.6% deficient, 9.9% intermediate and 89.5% normal to high methylators. The frequencies of the mutant alleles were 4.4% (*3A), 0.4% (*3C) and 0.2% (*2). All seven TPMT deficient subjects were homozygous or compound heterozygous carriers for these alleles. In 17 individuals with intermediate TPMT activity discordant to TPMT genotype, four novel variants were identified leading to amino acid changes (K119T, Q42E, R163H, G71R). Taking these new variants into consideration, the overall concordance rate between TPMT genetics and phenotypes was 98.4%. Specificity, sensitivity and the positive and negative predictive power of the genotyping test were estimated to be higher than 90%. Thus, the results of this study provide a solid basis to predict TPMT phenotype in a Northern European Caucasian population by molecular diagnostics.  相似文献   

2.
3.
Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme, catalyzing S-methylation of thiopurine drugs. TPMT exhibits autosomal codominant polymorphism. Patients carrying a variant genotype have low TPMT activity, and produce elevated levels of 6-thioguanine nucleotides (6-TGN) in their red blood cells (RBC). 6-TGN accumulation may result in azathioprine (AZA)-induced bone marrow myelosuppression in the course of treatment with the drug in a standard dosage regimen in patients following renal transplantation. In the current study, TPMT activity (phenotype) and genotype were determined in dialyzed patients, qualified for renal transplantation. TPMT activity was measured in RBC after dialysis by HPLC method. Patients were genotyped for TPMT *2, *3A and *3C variant alleles using PCR-RFLP and allele-specific PCR methods. TPMT activity ranged between 12.2 and 45.5 nmol 6-mMP/g Hb/h (median value 30.6). A significant correlation between TPMTphenotype and genotype was noted: the heterozygous patients (11.5%) demonstrated significantly lower mean TPMT activity as compared to the wild homozygotes (17 +/- 3.6 vs. 32.4 +/- 4.8 nmol 6-mMP/g Hb/h, p < 0.0003). No overlap in TPMT activity values between the group of heterozygous (range 12.2-20.6) and wild-type homozygous patients (range 22.7-45.5) was noted. TPMT activity, established after hemodialysis and TPMT genotyping results seem to be convergent in dialyzed patients, so both methods can be used for the identification of patients with lower TPMT activity. Such tests could be helpful in AZA dose individualization, and thus in reducing the risk of myelosuppression during AZA therapy following renal transplantation.  相似文献   

4.
Thiopurine S-methyltransferase (TPMT) is an enzyme that catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathioprine. TPMT activity exhibits an interindividual variability mainly as a result of genetic polymorphism. Patients with intermediate or deficient TPMT activity are at risk for toxicity after receiving standard doses of thiopurine drugs. The aim of this study was to determine the TPMT genotype and phenotype (activity) and investigate the correlation between TPMT genotype and enzyme activity in 43 Polish children receiving 6-MP during maintenance therapy in course of acute lymphoblastic leukemia (ALL), in 16 children with ALL at diagnosis and 39 healthy controls. TPMT activity was measured in RBC by HPLC method. Patients were genotyped for TPMT *2, *3A and *3C variant allelesusing PCR-RFLP and allele-specific PCR methods. In the group of children with ALL during maintenance therapy, median TPMT activity (29.3 nmol 6-mMP g(-1) Hb h(-1)) was significantly higher compared to the group of children with ALL at diagnosis (20.6 nmol 6-mMP g(-1) Hb h(-1), p = 0.0028), as well as to the control group (22.8 nmol 6-mMP g(-1) Hb h(-1), p = 0.0002). Percentages of individuals heterozygous for TPMT variant allele in respective groups were: 9.3, 6.2 and 15.5% (p > 0.05). In all the study groups heterozygous patients manifested a significantly lower TPMT activity as compared to the wild type homozygotes (16.7 +/- 2.1 vs. 31.2 +/- 6.8 nmol 6-mMP g(-1) Hb h(-1), p = 0.002, in children during maintenance therapy, 11.9 +/- 2.7 vs. 24.6 +/- 9.5, p = 0.0003, in the combined group of children with ALL at diagnosis and controls). The results present that commencement of the thiopurine therapy caused an increase in the TPMT activity in RBCs by approximately 20%. All patients heterozygous for the TPMT variant allele revealed decreased TPMT activity compared to TPMT wild-type patients. Since decreased TPMT activity is associated with higher risk for toxicity after receiving standard doses of thiopurine drugs, pretreatment determination of TPMT status, with phenotypic or genetic assay, should be performed routinely, also in Poland.  相似文献   

5.
AIMS: Ethnicity is an important variable influencing drug response. Thiopurine S-methyltransferase (TPMT) plays an important role in the metabolism of thiopurine drugs. Previous population studies have identified ethnic variations in both phenotype and genotype of TPMT, but limited information is available within Chinese population that comprises at least 56 ethnic groups. The current study was conducted to compare both phenotype and genotype of TPMT in healthy Han and Yao Chinese children. METHODS: TPMT activity was measured in healthy Chinese children by a HPLC assay (n = 213, 87 Han Chinese and 126 Yao Chinese). Allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) were used to determine the frequency of TPMT mutant alleles (TPMT*2, TPMT*3 A, TPMT*3B and TPMT*3C) in these children. RESULTS: There was no significant difference in the mean TPMT activity between Han and Yao Chinese children. A unimodal distribution of TPMT activity in Chinese children was found and the mean TPMT activity was 13.32 +/- 3.49 U ml(-1) RBC. TPMT activity was not found to differ with gender, but tended to increase with age in Yao Chinese children. TPMT*2, TPMT*3B and TPMT*3A were not detected, and only one TPMT*3C heterozygote (Han child) was identified in 213 Chinese children. Erythrocyte TPMT activity of this TPMT*3C heterozygote was 12.36 U ml(-1) RBC. The frequency of the known mutant TPMT alleles was 0.2%[1/426] in Chinese children. CONCLUSION: The frequency distribution of RBC TPMT activity was unimodal. The frequency of the known mutant TPMT alleles in Chinese Children is low and TPMT*3C appears to be the most prevalent among the tested mutant TPMT alleles in this population.  相似文献   

6.
Thiopurine methyltransferase (TPMT) degrades 6-mercaptopurine, azathioprine and 6-thioguanine which are commonly used in the treatment of autoimmune diseases, leukaemia and organ transplantation. TPMT activity is polymorphic as a result of gene mutations. Heterozygous individuals have an increased risk of haematological toxicity after thiopurine medication, while homozygous mutant individuals suffer life threatening complications. Previous population studies have identified ethnic variations in both phenotype and genotype, but limited information is available within African populations. This study determined the frequency of common TPMT variant alleles in 101 Kenyan individuals and 199 Caucasians. The frequency of mutant alleles was similar between the Caucasian (10.1%) and Kenyan (10.9%) populations. However, all mutant alleles in the Kenyan population were TPMT*3C compared with 4.8% in Caucasians. In contrast TPMT*3A was the most common mutant allele in the Caucasian individuals. This study confirms ethnic differences in the predominant mutant TPMT allele and the findings will be useful for the development of polymerase chain reaction-based strategies to prevent toxicity with thiopurine medications.  相似文献   

7.
OBJECTIVE: The aim of the present study was to estimate the concordance rate between erythrocyte thiopurine methyltransferase (TPMT) activity and genotype at the TPMT locus in an Italian population sample. METHODS: The TPMT phenotype and genotype were determined in an unrelated population of 103 Italian healthy blood donors. Erythrocyte TPMT activity was measured with a radiochemical assay using 12.5 microM S-adenosyl-L-(methyl-14C)-methionine and 4 mM 6-mercaptopurine. The genotyping assay was based on restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR) methods. RESULTS: All subjects had detectable TPMT activity. The activity of TPMT varied 2.8-fold between the 5th and 95th percentile. This variation was neither age (P = 0.63) nor gender (P = 0.44) regulated and the frequency distribution of TPMT activity is compatible with a polymorphic distribution. The presence of the four most common defective alleles, i.e. TPMT*2, TPMT*3A, TPMT*3B and TPMT*3C, was examined through the entire phenotyped population. Ninety-two subjects did not carry any of the tested mutations. Eleven individuals were heterozygous for one of the mutant alleles and had a TPMT activity lower than 30 pmol/min/mg. Eight subjects were TPMT*1/TPMT*3A, two TPMT*1/TPMT*3C and one was TPMT*1/TPMT*2. The TPMT*3B allele was not detected in the samples analysed. CONCLUSION: There was a concordance of 97% between genotype and phenotype. All the heterozygotes had an intermediate phenotype. However, the wide variation range in TPMT activity detected in the wild-type homozygotes indicates that other genetic or epigenetic factors influence the TPMT phenotype.  相似文献   

8.
Thiopurine methyltransferase metabolizes 6-mercaptopurine, thioguanine and azathioprine, thereby regulating cytotoxicity and clinical response to these thiopurine drugs. In healthy Caucasian populations, 89-94% of individuals have high thiopurine methyltransferase activity, 6-11% intermediate and 0.3% low, resulting from genetic polymorphism. Four variant thiopurine methyltransferase alleles were detected in over 80% of individuals with low or intermediate thiopurine methyltransferase activity. The wild-type allele is defined as TPMT*1 and the mutant alleles are TPMT*2 (G238C), TPMT*3A (G460A and A719G), TPMT*3B (G460A) and TPMT*3B (A719G). The frequency of these alleles in different ethnic groups is not well defined. In this study, DNA from 199 British Caucasian, 99 British South West Asian and 192 Chinese individuals was analysed for the presence of these variant alleles using polymerase chain reaction-restriction fragment length polymorphism and allele-specific polymerase chain reaction based assays. The frequency of individuals with a variant thiopurine methyltransferase genotype was: Caucasians 10.1% (20/199), South West Asians 2.0% (2/99) and Chinese 4.7% (9/192). Two TPMT*2 heterozygotes were identified in the Caucasian population, but this allele was not found in the two Asian populations. TPMT*3A was the only mutant allele found in the South West Asians (two heterozygotes). This was also the most common mutant allele in the Caucasians (16 heterozygotes and one homozygote) but was not found in the Chinese. All mutant alleles identified in the Chinese population were TPMT*3C (nine heterozygotes). This allele was found at a low frequency in the Caucasians (one heterozygote). This suggests that A719G is the oldest mutation, with G460A being acquired later to form the TPMT*3A allele in the Caucasian and South West Asian populations. TPMT*2 appears to be a more recent allele, which has only been detected in Caucasians to date. These ethnic differences may be important in the clinical use of thiopurine drugs.  相似文献   

9.
Objective More than 11% of the Caucasian population are heterozygous or homozygous carriers of thiopurine S-methyltransferase (TPMT) mutants and are at risk for toxic side effects when treated with thiopurine drugs. Therefore, screening for TPMT polymorphisms in a patient prior to prescribing these agents is recommended. The goal of this study was to determine a cut-off concentration of the TPMT activity assay beyond which genotyping of the TPMT gene should be performed.Methods The TPMT activity of 240 unrelated Caucasian subjects was measured using high-performance liquid chromatography. Genotyping for the most frequent allelic variants, TPMT*2, *3A, *3B, *3C and *7 was performed by LightCycler technology and sequencing.Results The inter-individual TPMT activity showed a range from 23 nmol MTG/g*Hb*h–1 to 97 nmol MTG/g*Hb*h–1 with a median of 56 nmol MTG/g*Hb*h–1. Using a cut-off concentration of 45.5 nmol MTG/g*Hb*h–1, a test sensitivity of 100% and a specificity of 89% were reached for heterozygous carriers of a TPMT mutation. We identified 1 carrier of TPMT*2, 14 carriers of TPMT*3A and 3 carriers of TPMT*3C, resulting in a TPMT heterozygosity prevalence of 7.5%.Conclusions This study defines the cut-off value for the TPMT phenotyping assay at 45.5 nmol/g*Hb*h–1, beyond which additional genotyping elucidates the individual risk for drug therapy. Using this cut-off concentration, the number of genotyping assays could be reduced by about 60%.  相似文献   

10.
Thiopurine S-methyltransferase (TPMT) is an enzyme that catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathioprine. TPMT activity exhibits an interindividual variability, mainly as a result of genetic polymorphism. Patients with intermediate or deficient TMPT activity are at risk for toxicity after receiving standard doses of thiopurine drugs. It has previously been reported that 3 variant alleles: TPMT*2, *3A, and *3C are responsible for over 95% cases of low enzyme activity. The purpose of this study was to explore the association between these polymorphisms and the occurrence of azathioprine adverse effects in 112 renal transplant recipients undergoing triple immunosuppressive therapy including azathioprine, cyclosporine, and prednisone. TPMT genetic polymorphism was determined using PCR-RFLP and allele-specific PCR methods. Azathioprine dose, leukocyte, erythrocyte, and platelet counts, graft rejection episodes, as well as cyclosporine levels were analyzed throughout the first year after organ transplantation. We found the frequency of leukopenia episodes (WBC < 4.0 x 10(9)/L) significantly higher in heterozygous patients (53.8%) compared with those with TPMT wild-type genotype (23.5%). One patient, who was a compound homozygote (3A/*3C), experienced severe azathioprine-related myelotoxicity each time after receiving the standard drug dose. Our results suggest that polymorphisms in TPMT gene may be responsible for approximately 12.5% of all leukopenia episodes in renal transplant recipients treated with azathioprine. Genotyping for the major TPMT variant alleles may be a valuable tool in preventing AZA toxicity and optimization of immunosuppressive therapy.  相似文献   

11.
Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine (6-MP), thioguanine and azathioprine (AZA). These drugs are used to treat conditions such as acute lymphoblastic leukemia, inflammatory bowel disease, rheumatoid arthritis, and organ transplant rejection. This review highlights the polymorphisms of TPMT gene and their clinical impact on the use of thiopurine drugs. To date, there are 18 known mutational TPMT alleles. The three main TPMT alleles, namely TPMT *2, *3A and *3C, account for 80 - 95% of the intermediate and low enzyme activity. The TPMT gene exhibits significant genetic polymorphisms among all ethnic groups studied. Patients who inherited very low levels of TPMT activity are at greatly increased risk for thiopurine-induced toxicity such as myelosuppression, when treated with standard doses of these drugs, while subjects with very high activity may be undertreated. Moreover, clinical drug interactions may occur due to TMPT induction or inhibition. Identification of the TPMT mutant alleles allows physicians to tailor the dosage of the thiopurine drugs to the genotype of the patient or to use alternatives, improving therapeutic outcome.  相似文献   

12.
目的 研究硫嘌呤甲基转移酶(TPMT)在中国哈萨克族的活性分布和4 种常见TPMT基因突变等位基因频率。方法 用高效液相色谱法测定TPMT 活性;用等位基因特异性聚合酶链反应检测TPMT*2;用限制性片段长度多态性 检测TPMT*3A、TPMT*3B和TPMT*3C的等位基因频率。结果 哈萨克族T PMT活性呈正态分布,活性的均值为(12.27±3.42)U·mL-1 Rbc,其中发现6 例TPMT*3C杂合子和2例TPMT*3A杂合子,总TPMT基因突变频率是1.2%。 结论 中国哈萨克族TPMT活性呈正态分布,总TPMT基因突变频率同汉族相 比差异无显著性。  相似文献   

13.
Thiopurine S-methyltransferase (TPMT) catalyses the S-methylation of thiopurine drugs. In Caucasians, four variant TPMT alleles have been detected in over 80% of individuals with low or intermediate TPMT activity. The wild-type allele is designated as TPMT*1 and the mutant alleles are designated TPMT*2 through TPMT*8. The frequency of these alleles in different ethnic groups has not been well defined. In this study, one hundred individuals, from each of the Indonesian, Thai and Philippine populations, together with 249 Taiwanese, were analysed by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing methods. The results showed that the allelic frequencies of TPMT*3C were 0.6% for Taiwanese and 1% for Filipino, Thai and Indonesian populations, respectively. One Filipino with a Caucasian parent was found to be heterozygous for the TPMT*2 allele. This study provides the first analysis of the allele frequency distribution of all known TPMT mutations in South-east Asian populations.  相似文献   

14.
Thiopurine methyltransferase (TPMT) is a polymorphic enzyme involved in the metabolism of thiopurine drugs. Owing to polymorphisms in the TPMT gene (TPMT*2-*22), the enzyme activity varies interindividually. Patients with reduced TPMT activity may develop adverse reactions when treated with standard doses of thiopurines. This work focuses on a TPMT genotype/phenotype discrepancy found in a patient during routine testing. The patient displayed very low TPMT enzyme activity and she was genotyped by pyrosequencing as being heterozygous for the 460G>A and 719A>G polymorphisms (TPMT*3A). Complete sequencing in combination with haplotyping of the TPMT gene revealed a novel sequence variant, 500C>G, on one allele and TPMT*3A on the other allele, giving rise to the novel genotype TPMT*3A/*23. When investigating the patient's relatives, they too had the TPMT*3A/*23 genotype in combination with low enzyme activity. We conclude that this novel variant allele affects enzyme activity, as the individuals carrying it had almost undetectable TPMT activity.  相似文献   

15.
16.
Thiopurine S-methyltransferase (TPMT) is an enzyme that converts thiopurine drugs into inactive metabolites. It is now well established that interindividual variation in sensitivity to thiopurines can be the result of the presence of genetic polymorphisms in the TPMT gene. The aim of this study was to determine the frequency and type of TPMT polymorphisms in the population of Serbia and Montenegro and to assess its relevance in the management of childhood acute lymphoblastic leukemia (ALL). Blood samples from 100 healthy adults and 100 children with ALL were analyzed for common mutations in the TPMT gene using polymerase chain reaction-based assays. The results revealed that allelic frequencies were 0.2% for TPMT*2, 3.2% for TPMT*3A, and 0.5% for TPMT*3B. A rare TPMT*3B allele was detected in 2 families. No TPMT*3C allele was found. The general pattern of TPMT-variant allele distribution as well as their frequencies in the population of Serbia and Montenegro, is similar to those determined for other Slavic and Mediterranean populations. The ability to tolerate 6-mercaptopurine (6-MP) -based maintenance therapy was used as a surrogate marker of hematologic toxicity. In the study of 50 patients with childhood ALL treated according to the BFM-like protocol, it was found that even TPMT-heterozygous patients are at greater risk of thiopurine drug-related leukopenia (mean duration of period when children missed therapy as a result of leukopenia for TPMT-heterozygous patients was 11.3 weeks vs 3.4 weeks for wild-type genotype patients, P < 0.01). In another group of 50 patients, the TPMT genotype was determined prospectively. The therapy protocol was modified considering their TPMT genotype. Administering reduced 6-MP dosages in the initial phase of maintenance allowed TPMT-heterozygous patients to later receive full protocol doses of both 6-MP and nonthiopurine therapy without omitting therapy resulting from myelotoxicity. These results justify performing TPMT genotyping before initiating thiopurine therapy in all children with ALL to minimize consequent toxicity.  相似文献   

17.
BACKGROUND: Inter-individual response to azathioprine is partly due to inter-individual variation in the thiopurine methyltransferase (TPMT) activity. The TPMT genotype, which reflects the TPMT activity, has previously been studied in healthy Caucasians, with the most common variant allele being TPMT*3A. TPMT genotyping in adult patients with Crohn's disease has never been performed systematically. AIM: To determine the TPMT genotype distribution in adult patients with Crohn's disease. METHODS: One hundred and twenty randomly selected Danish patients (64 females and 56 males) with azathioprine-dependent Crohn's disease were included, and a polymerase chain reaction assay was used for TPMT genotyping. The patients were genotyped for the low-level genotype G460-->A and A719-->G transitions. RESULTS: One hundred and nine patients (90.3%; 95% confidence interval, 84.1-95.3) had a wild-type/ wild-type genotype, whereas 10 patients (8.3%; 95% confidence interval, 4.1-14.8) had one non-functional mutant allele and one patient (0.8%; 95% confidence interval, 0.02-4.6) had two non-functional mutant alleles. Only the TPMT*3A variant allele was found. CONCLUSIONS: The study showed a TPMT genotype distribution amongst adult Danish patients with Crohn's disease which was similar to the distribution of TPMT variant alleles normally found in healthy Caucasians.  相似文献   

18.
AIMS: To determine the incidence of the thiopurine S-methyltransferase (TPMT) genetic polymorphism in the Thai population. METHODS: Genomic DNAs were isolated from peripheral blood leucocytes of 200 healthy Thais. The frequencies of five allelic variants of the TPMT gene, TPMT*2, *3A, *3B, *3C and *6 were determined using allele specific polymerase chain reaction (PCR) or PCR-Restriction fragment length polymorphism technique. RESULTS: Of the 200 Thai subjects participating in this study, 181 subjects (90.5%) were homozygous for TPMT*1, 18 subjects (9.0%) were heterozygous for TPMT*1/*3C. Only one subject (0.5%) was homozygous for TPMT*3C. The frequency of TPMT*3C mutant allele was 0.050. CONCLUSIONS: Although the TPMT*3C is the most prevalent mutant allele in Asian populations, the frequency of this defective allele is significantly higher in Thais than has been reported in other Asian populations.  相似文献   

19.
Wei H  Zhou S  Li C  Zhang J  Wu J  Huang M 《Pharmaceutical research》2005,22(10):1762-1766
Objective This study was conducted to investigate the thiopurine S-methyltransferase (TPMT) activity distribution and gene mutations in Kazaks, and compared the results with those of other ethnic groups. Methods Erythrocyte TPMT activity was measured in Kazaks (n = 327) via a validated high-performance liquid chromatography assay. Polymerase chain reaction-based methods were used to analyze three commonly reporter-inactivating mutations: G238C, G460A, and A719G. Results Unimodal distribution of TPMT activity was found in Kazaks. Six TPMT*3C heterozygotes and two TPMT*3A heterozygotes were found in 327 Kazaks, with allele frequencies of 0.9 and 0.3%, respectively. The subjects with TPMT*3A and TPMT*3C heterogygotes had substantial TPMT activity over the range of 6.40–11.75 U/ml RBC. Conclusion Unlike in most Caucasians, TPMT*3C is a common mutant allele in Kazaks, whereas TPMT*3A is a rare mutant allele. Further studies are needed to explore the clinical impact of these TPMT mutants to thiopurine therapy in Kazak patients.  相似文献   

20.
Thiopurine S-methyltransferase (TPMT) is an enzyme that catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathioprine. TPMT activity exhibits an interindividual variability mainly a result of genetic polymorphism. Patients with intermediate or deficient TPMT activity are at risk for toxicity after receiving standard doses of thiopurine drugs. It has previously been reported that 3 variant alleles:TPMT*2, *3A, and *3C are responsible for over 95% cases of lower enzyme activity. The purpose of this study was to determine the frequency of TPMT variant alleles in a Polish population. DNA samples were obtained from 358 unrelated healthy Polish subjects of white origin, and TPMT genetic polymorphism was determined using PCR-RFLP and allele-specific PCR methods. The results showed that allelic frequencies were 0.4% for TPMT*2, 2.7% for TPMT*3A, and 0.1% for TPMT*3C, respectively. A TPMT*3B allele was not found in the studied population. The general pattern of TPMT allele disposition in the Polish population is similar to those determined for other white populations, but the frequency of total variant alleles is lower than in other European populations studied to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号