首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Protein misfolding is considered a key event in the pathogenesis of polyglutamine disease such as Machado-Joseph disease (MJD). Overexpression of chaperone proteins and the application of chemical chaperones are reported to suppress polyglutamine induced cytotoxicity in vitro and in vivo. The effects of compatible solutes, which are osmoprotectants in bacteria and possess the action in stabilizing proteins under stress, have not, to our knowledge, been studied. We explored the protective effects of the compatible solutes ectoine, hydroxyectoine, and betaine on apoptotic cell death produced by the truncated MJD gene product with an expanded polyglutamine tract in cultured neuro2a cells. Ectoine, but not hydroxyectoine or betaine, decreased large cytoplasmic inclusions and increased the frequency of nuclear inclusions. Immunoblot analysis showed that ectoine reduced the total amount of aggregates. Despite the presence of nuclear inclusions, apoptotic features were less frequently observed after ectoine application. Our findings suggest that ectoine, a natural osmoprotectant in bacteria, may function as a novel molecule protecting cells from polyglutamine-induced toxicity.  相似文献   

2.
Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal-dominant neurodegenerative disorder caused by expansion of CAG repeats in the DRPLA gene, which codes for a polyglutamine (polyQ) stretch. The expanded polyQs are known to form intracellular aggregates and to confer neurotoxic activity. Recent studies have indicated that activation of apoptosis signal-regulating kinase 1 (ASK1) is involved in polyQ-induced apoptosis. Humanin (HN) is an endogenous peptide that inhibits neuronal cell death caused by mutant Alzheimer’s disease genes, and this neuroprotective factor has recently been reported to suppress apoptosis by inhibiting activation of ASK1. To test the anti-ASK1 effect of HN on polyQ neurotoxicity, we constructed neuronal PC12 cells expressing expanded polyQs under the control of the Tet-Off™ system. Using this cell line, we showed that HN suppresses apoptotic cell death induced by expanded polyQs. However, the suppression was incomplete, suggesting that polyQs also stimulate other pathogenic cascades unrelated to ASK1. We further showed that HN suppresses polyQ aggregate formation. This result implied the possibility that aggregation is also related to the polyQ-mediated cascade involving ASK1 activation. Although the details remain uncertain, our results suggest that ASK1 is potentially involved in pathogenesis of DRPLA and that HN might contribute partially to the suppression of neurodegeneration in polyQ diseases.  相似文献   

3.
We examined the toxicity of paraquat, a possible environmental risk factor for neurodegenerative disorders like Parkinson's disease (PD). Paraquat is structurally similar to the neurotoxin MPP+ that can induce Parkinsonian-like features in rodents, non-human primates and human. Exposure of cerebellar granule cells to relatively low concentrations of paraquat (5 μM) produces apoptotic cell death with a reduction in mitochondrial cytochrome c content, proteolytic activation and caspase-3 activity increase and DNA fragmentation. Paraquat-induced apoptosis was significantly attenuated by co-treatment of cerebellar granule cells with the radical scavenger vitamin E, suggesting that paraquat-induced free radicals serve as important signal in initiation of cell death. As a decrease in mitochondrial cytochrome c content is also prevented by allopurinol, we suggest that xanthine oxidase plays an important role in the free radical production that precedes the apoptotic cascade and cell death after paraquat exposition.  相似文献   

4.
Zinc-chelating agents, including ethambutol and its metabolite 2,2'(ethylenediamino)-dibutyric acid (EDBA) are toxic to retinal ganglion cells through a glutamate dependent mechanism. We explored whether such cell death was mediated through the caspase family of cysteine proteases. Retinal cultures were treated with EDBA alone, or EDBA plus a variety of known caspase inhibitors, and ganglion cell viability was assayed. EDBA killed 20-30% of ganglion cells. A general caspase inhibitor, BAF, prevented EDBA induced ganglion cell death. Specific inhibitors of caspase-3 and caspase-6 showed a similar ability to BAF in preventing EDBA mediated ganglion cell loss, whereas inhibitors of caspase-8 and caspase-9 were not able to rescue EDBA treated ganglion cells. A caspase-1,4 inhibitor was less effective than BAF. These studies show that a caspase mediated mechanism of apoptosis accents for a portion of EDBA mediated retinal ganglion cell death. This toxicity was mediated by downstream effector caspases, 3 and 6. Caspase inhibitors may prevent ganglion cell death secondary to ethambutol treatment.  相似文献   

5.
Huntington’s disease (HD) is caused by an increase in the length of the poly(Q) tract in the huntingtin (Htt) protein, which changes its solubility and induces aggregation. Aggregation occurs in two general phases, nucleation and elongation, and agents designed to block either phase are being considered as potential therapeutics. We demonstrate that inclusion formation can be retarded by introducing modified, single-stranded oligonucleotides into a model neuronal cell line. This cell-based assay is used in conjunction with a standardized biochemical assay to identify molecules that can disrupt the process of aggregate formation. Active oligonucleotides include a 6-mer containing a single phosphorothioate linkage on each terminus, a 53-mer and a 9-mer containing three phosphorothioate linkages at each end, and a 25-mer consisting of all modified RNA residues. The disruption process directed by the active oligonucleotides appears to be independent of sequence specificity and complementarity. In contrast, the activity is more dependent on the type of chemical modifications contained within the oligonucleotide. Some oligonucleotides that demonstrated inhibition activity were also found to extend the life span of PC12 cells after the toxic Htt aggregation process was induced. Our data provide the first evidence that short synthetic oligonucleotides inhibit a fundamental pathological pathway of HD and may provide the basis for a novel therapeutic approach.  相似文献   

6.
Neurodegenerative prion diseases, characterized by a progressive dementia, are associated with the accumulation of abnormal forms of the prion (PrPc) protein, potentially due to an aberrant regulation of PrPc biogenesis and/or topology. One of these forms, termed ctmPrP, displays a transmembrane conformation and might trigger neuronal cell death in Gerstmann-Straüssler-Scheinker (GSS) syndrome and other prion-associated diseases in humans. Although the primary target cells involved in the progression of prion diseases remain unidentified, it was recently suggested that modifications of the oligodendroglial cells occur early in prion diseases. In the present study, we demonstrate that a putative transmembrane domain of the human PrPc, i.e., amino acids 118-135, induces oligodendrocyte (OLG) death in vitro in a time- and dose-dependent manner. The process leading to OLG death and induced by the PrP[118-135] peptide was characterized by DNA fragmentation, cytoskeletal disruption, and caspase activation. Protection against the PrP[118-135] peptide-induced OLG apoptosis by several antioxidant molecules, such as probucol, propylgallate, and promethazine, suggests that oxidative injuries contribute to the PrP[118-135] cytotoxicity to OLGs. These results suggest a potential pathophysiological role of the ctmPrP- and/or PrP fragment-mediated OLG cytotoxicity in spongiform encephalopathies.  相似文献   

7.
Previous studies have demonstrated that programmed cell death takes place at different stages during the development of the CNS in vivo. Our purpose in this study was to detect early programmed cell death associated with the induction of differentiation by retinoic acid (RA) in the NT2 cell line. By using the annexin V labeling as a marker of apoptosis, a significant apoptotic cell death was quantified during the third and the fourth days of the RA treatment. Double-labeling studies using the staining of the genomic DNA strand breaks with the terminal deoxyribosyl-transferase-mediated dUTP nick end-labeling (TUNEL) assay and either nestin or microtubule-associated protein 2 (MAP2) showed that 1) the early apoptotic cell death affected mostly nestin-positive cells and 2) after 8 days of differentiation, although cells with neuronal phenotypes are present, no colabeled TUNEL/MAP2 cells were detected. With regard to the neuronal protein MAP2, we observed discrete immunolabeling of a few NT2 cells as early as day 3 of the differentiation and a significant emergence of MAP2-immunopositive cells at days 6-8. Thus, our results show that, when as a whole the differentiating NT2 cell population is considered, 1) the apoptotic cell death observed during the third day of differentiation occurs mostly in undifferentiated cells, 2) this process coincides with the first detection of the neuronal phenotype in NT2 cell cultures, and 3) the end of the cell death period in NT2 cell cultures is marked by both the accumulation of MAP2-positive cells and the beginning of expression of the Bcl-2 protein in the cultures.  相似文献   

8.
Apoptotic death is a physiological process with regulatory mechanisms that are under the control of different molecules such as caspases. These are classified as initiators, such as caspases-8 and -9, and effectors, such as caspases-3 and -7. The participation of caspase-2 in the effector phase of apoptosis has been commonly observed in many cell types; however, it is able to act as an initiator caspase, depending on the apoptotic stimulus. Cerebellar granule cells (CGCs) undergo apoptosis when they are transferred from high potassium (K25) to low potassium (K5); this process seems to be mediated by caspase-3 activation. Staurosporine (STS), a full strength inhibitor of kinase proteins, also induces apoptosis in these cells. To characterize the caspase cascade induced by two stimuli in the same cell type we studied the activation of different caspases in CGCs treated with STS or K5. We found that both K5 and STS induce the activation of caspase-3. This result was confirmed by the proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), an endogenous caspase-3 substrate. Caspase-2 was activated preferentially by STS, which showed a temporal course suggesting that this caspase was induced before caspase-3. The initiator caspase-9 was also activated by both K5 and STS, as well as cytochrome-c release. The results obtained in this study suggest that STS and K5 induced different activation caspase pathways for apoptotic cell death of CGCs.  相似文献   

9.
Machado-Joseph disease/spinocerebellar ataxia-3 (MJD/SCA-3) is an inherited neurodegenerative disorder caused by expansion of the polyglutamine stretch in the MJD gene-encoded protein ataxin-3. The truncated form of mutated ataxin-3 causes aggregation and cell death in vitro and in vivo. Abnormal conformation and misfolding of the pathological protein are assumed critical to pathogenesis. To test this hypothesis, we transfected BHK-21 and Neuro2a cells transiently with N-terminal truncated ataxin-3 with an expanded polyglutamine stretch. We then studied the effects of organic solvent dimethyl sulfoxide (DMSO), cellular osmolytes glycerol, and trimethylamine N-oxide (TMAO) on aggregate formation and cell death. These reagents stabilize proteins in their native conformation and are called chemical chaperones based on their influence on protein folding. Aggregate formation and cytotoxicity induced by truncated expanded ataxin-3 were reduced by exposing cells to these chemical chaperones. Our results indicate the potentially useful therapeutic strategy of the chemical chaperones in preventing cell death in MJD.  相似文献   

10.
PD is a common, late-onset neurodegenerative disorder that results in part from the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The neurotoxin MPTP can induce PD-like clinical symptomatology and neuropathological destruction and, thus, has been used as a PD model. The human neuroblastoma cell line SH-SY5Y possesses many of the qualities of human neurons and, as such, has served as a model for them. Apoptosis is the mode of cell death induced in SH-SY5Y cells by MPTP, and this was confirmed with nick end labeling and bisbenzimide staining. Transmission electron microscopic analysis of the ultrastructural changes occurring in neurotoxin exposed SH-SY5Ys revealed many morphological characteristics consistent with apoptosis. These changes included plasmalemmal blebbing, altered cytosolic density, nuclear condensation and fragmentation, pronounced vacuole formation, ribosomal dispersion, and the disappearance of the golgi complex, microtubules, and smooth endoplasmic reticulum. Limited amounts of rough endoplasmic reticulum and mitochondria exhibited normal morphology throughout the apoptotic changes but then were disrupted during secondary necrotic changes. The in vitro induction of apoptosis by a parkinsonism neurotoxin might be reflective of the mechanisms of in vivo nigral degeneration occurring during PD. J. Neurosci. Res. 48:226–237, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Primary septo-hippocampal cell cultures were incubated in varying concentrations of tumor necrosis factor (TNF-alpha; 0.3-500 ng/ml) to examine proteolysis of the cytoskeletal protein alpha-spectrin (240 kDa) to a signature 145 kDa fragment by calpain and to the apoptotic-linked 120-kDa fragment by caspase-3. The effects of TNF-alpha incubation on morphology and cell viability were assayed by fluorescein diacetate-propidium iodide (FDA-PI) staining, assays of lactate dehydrogenase (LDH) release, nuclear chromatin alterations (Hoechst 33258), and internucleosomal DNA fragmentation. Incubation with varying concentrations of TNF-alpha produced rapid increases in LDH release and nuclear PI uptake that were sustained over 48 hr. Incubation with 30 ng/ml TNF-alpha yielded maximal, 3-fold, increase in LDH release and was associated with caspase-specific 120-kDa fragment but not calpain-specific 145-kDa fragment as early as 3.5 hr after injury. Incubation with the pan-caspase inhibitor, carbobenzosy- Asp-CH(2)-OC (O)-2-6-dichlorobenzene (Z-D-DCB, 50-140 microM) significantly reduced LDH release produced by TNF-alpha. Apoptotic-associated oligonucleosomal-sized DNA fragmentation on agarose gels was detected from 6 to 72 hr after exposure to TNF-alpha. Histochemical changes included chromatin condensation, nuclear fragmentation, and formation of apoptotic bodies. Results of this study suggest TNF-alpha may induce caspase-3 activation but not calpain activation in septo-hippocampal cultures and that this activation of caspase-3 at least partially contributes to TNF-alpha-induced apoptosis.  相似文献   

12.
目的研究微小核糖核酸592(miR-592)对神经胶质瘤细胞株U251凋亡的影响。方法首先通过定量聚合酶链反应分析miR-592在神经胶质瘤组织和癌旁组织中的表达变化;随后向U251细胞转染miR-592的拟合物,并通过流式细胞技术分析miR-592过表达对U251细胞凋亡的影响;通过生物信息学分析,找到miR-592的潜在靶分子,并通过荧光素酶双报告实验以及蛋白免疫印迹法等进行验证;进一步,转染U251细胞Runx2的下调si RNA,绘制细胞的生长曲线,并对U251细胞的凋亡进行分析。结果定量PCR结果分析发现,miR-592在肿瘤组织中明显低表达(t=2.752,P=0.013);miR-592过表达能明显抑制U251细胞的生长,与对照组比较,培养36 h、48 h后存在统计学差异(t=2.127,P=0.031;t=2.284,P=0.026);流式细胞分析结果显示,miR-592显著促进U251细胞凋亡:对照组晚期凋亡率为7.2%±0.68%,而转染miR-592组晚期凋亡率为17.47%±1.45%,存在统计学差异(t=3.294,P=0.007);荧光素酶双报告实验以及蛋白免疫印迹法实验结果发现miR-592直接靶向Runx2的3’-UTR来抑制Runx2蛋白的水平;检测下调Runx2对U251细胞生长的影响,结果显示转染了Runx2 si RNA的细胞生长明显比对照组低(t=3.124,P=0.011),流式细胞技术对周期的检测显示,Runx2下调表达上调U251细胞的凋亡率。通过绘制肿瘤生长曲线,发现miR-592过表达明显抑制肿瘤的生长。同时,Runx2的下调表达也明显抑制肿瘤的生长。结论 miR-592通过直接靶向Runx2来诱导神经胶质瘤细胞凋亡,进而抑制细胞的生长。  相似文献   

13.
We have explored the molecular mechanism underlying amyloid beta-peptide (Abeta)-mediated cytotoxicity in vitro. Exposure of murine cerebral endothelial cells (CECs) or C6 glioma cells to Abeta25-35 resulted in dose-dependent cell death. Ceramide is a pro-apoptotic lipid mediator. Forced elevation of cellular ceramide levels, either by application of an exogenous C2 ceramide analogue or bacterial sphingomyelinase that induces endogenous ceramide release from sphingomyelin, mimicked Abeta25-35 cytotoxicity in both CECs and C6 glioma cells. Abeta25-35-induced synthesis of ceramide was selectively mediated by activation of neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase (aSMase) or ceramide synthase. Both 3-O-Me-SM and N-acetyl-L-cysteine, the selective and nonselective pharmacological inhibitors of nSMase, respectively, suppressed nSMase activation, ceramide production, and cytotoxic action induced by Abeta25-35 in CECs. Furthermore, genetic knockdown of nSMase by an antisense strategy rendered C6 glioma cells specifically resistant to Abeta25-35 cytotoxicity without affecting their vulnerability to serum deprivation. Together, nSMase activation with subsequent ceramide production may contribute, at least partially, to Abeta25-35 cytotoxicity in cell types with cerebral endothelial and glial lineage.  相似文献   

14.
Ataxin-3, a protein coded by the Machado-Joseph disease gene, possesses a polyglutamine stretch whose expansion is known to produce neuronal intranuclear inclusion and neurodegeneration. Although previous studies describe the aggregate formation and toxic effect of the expanded polyglutamine tract in vitro and in vivo, differences in the susceptibility of different cultured cell lines has not been reported. Using the plasmid expressing N-terminal truncated ataxin-3 with an expanded polyglutamine stretch, we evaluated the aggregate formation and cytotoxicity in eight cultured cell lines—HeLa, Swiss/3T3, P19, C2C12, COS-1, BHK-21, PC12, and Neuro2a—that demonstrated a diverse range of aggregate formation and cell death. Although aggregate frequency did not appear to be correlated with cell death, Neuro2a demonstrated a high frequency of both. Our data indicates that susceptibility to cell death produced by mutant truncated ataxin-3 differs significantly among different cell lines and provides useful information when using a cultured cell line as an in vitro cellular model of polyglutamine disease.  相似文献   

15.
Neuronal apoptotic death involves the participation of reactive oxygen species (ROS), but their sources have not been completely elucidated. Previous studies have demonstrated that the ROS‐producing enzyme NADPH oxidase is present in neuronal cells and that this enzyme could participate in the apoptotic neuronal death. Cerebellar granule neurons (CGN) undergo apoptosis when cells are transferred from a medium with 25 mM KCl (K25) to a 5 mM KCl (K5) medium or when they are treated with staurosporine (ST). Under these conditions, apoptotic death of CGN is dependent on ROS production. In this study, we evaluated the role of NOX2, an NADPH oxidase homolog, in the apoptotic death of CGN induced by two different conditions. In CGN from NOX2‐deficient (ko) mice, a significantly lower rate of apoptotic death occurs compared with wild‐type (wt) CGN. Also, caspase‐3 activation, NADPH oxidase activity, and superoxide anion production induced by ST were markedly lower in ko neurons than in wt CGN. In contrast to the case with ST, when CGN were treated with K5, no differences were observed between ko and wt cells in any of the parameters measured. However, all NADPH oxidase inhibitors tested noticeably reduced cell death and apoptotic parameters induced by K5 in both wt and ko CGN. These results suggest that NOX2 could be necessary for apoptotic death induced by ST, but not by K5, which could require other member of the NOX family in the apoptotic process. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
T Hosoda  H Nakajima  H Honjo 《Neuroreport》2001,12(9):1965-1970
Accumulating studies have shown that estrogen replacement therapy reduces the risk of Alzheimer's disease. In this study, we clarified that 17beta-estradiol (E2) significantly rescues PC12 neuronal cells from amyloid beta protein (Abeta)-induced cell death. We found that the amino acid residues of 25 to 35 (Abeta25-35) were more cytotoxic than the full length protein (Abeta1-40) and these residues induced DNA fragmentation typical for apopto- sis. In addition, E2 was confirmed to inhibit calcium influx and cytochrome c release induced by Abeta25-35. Since these sequential events cause apoptosis, the protective effect of E2 may be exerted not by the direct interaction with Abeta, but by the blockade of the mitochondrial apoptotic pathway induced by Abeta.  相似文献   

17.
The mitochondrial toxin 3-nitropropionic acid (3-NP) has been largely used to study neurodegenerative disorders in which bioenergetic defects are implicated. In the present study, we analyzed the molecular pathways involved in FK506 neuroprotection against cell death induced by 3-NP, using cultured cortical neurons. 3-NP induced cytochrome c release and increased caspases -2, -3, -8, and -9-like activities, although, calpain activity was not significantly affected. FK506 decreased cytochrome c release and caspase-3-like activity induced by 3-NP, without changing the activities of other caspases. FK-506 also decreased the number of apoptotic neurons, determined by Hoechst. Under these conditions, FK506 alone significantly reduced calcineurin activity by about 50%. Our results also showed a decrease in mitochondrial Bax and an increase in mitochondrial Bcl-2 levels upon exposure to FK506 and 3-NP. However, no significant changes occurred in total Bcl-2 and Bax levels. Altogether, the results suggest that FK506 neuroprotection against 3-NP-induced apoptosis is associated with the redistribution of Bcl-2 and Bax in the mitochondrial membrane.  相似文献   

18.
Parkinson's disease (PD) is a movement disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Microglia activation and neuroinflammation have been associated with the pathogenesis of PD. Indeed, cytokines have been proposed as candidates that mediate the apoptotic cell death of dopaminergic neurons seen in PD. In this study, we investigated the effect of two natural polyphenols, resveratrol and quercetin, on neuroinflammation. For glial cells, we observed that lipopolysaccharide (LPS)-induced mRNA levels of two proinflammatory genes, interleukin 1-alpha and tumor necrosis factor-alpha, are strongly decreased by treatments with resveratrol or quercetin. We also undertook microglial-neuronal coculture to examine the influence of resveratrol and quercetin on dopaminergic neuronal cell death evoked by LPS-activated microglia. Cytotoxicity assays were performed to evaluate the percentage of cell death, with apoptotic cells identified by both the TdT-mediated dUTP nick end labeling technique and the detection of cleaved caspase-3. We report that treatment of N9 microglial cells with resveratrol or quercetin successfully reduced the inflammation-mediated apoptotic death of neuronal cells in our coculture system. Altogether our results demonstrate that resveratrol and quercetin diminished apoptotic neuronal cell death induced by microglial activation and suggest that these two phytoestrogens may be potent antiinflammatory compounds.  相似文献   

19.
Caspase inhibition decreases cell death in regions of adult neurogenesis   总被引:1,自引:0,他引:1  
Biebl M  Winner B  Winkler J 《Neuroreport》2005,16(11):1147-1150
The generation of new neurons in adult neurogenic regions is paralleled by a high rate of cell death. To further characterize the interplay between generation and removal of new cells, we studied the role of caspase 2 (Nedd 2) and 3 (CPP 32) on the basis of the high expression of these cysteine proteases in neurogenic regions. By injecting the broad spectrum caspase inhibitor BOC-Asp(OMe)-fluoromethyl ketone into the lateral ventricle of adult rats, a 60% ;reduction of terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) profiles was observed in all neurogenic regions without changing the number of newly generated cells. These data suggest that inhibiting the caspase activity in vivo decreases the rate of cell death, but has no influence on the generation of new neurons.  相似文献   

20.
Caspase-2 mediates neuronal cell death induced by beta-amyloid.   总被引:16,自引:0,他引:16  
beta-amyloid (Abeta) has been proposed to play a role in the pathogenesis of Alzheimer's disease (AD). Deposits of insoluble Abeta are found in the brains of patients with AD and are one of the pathological hallmarks of the disease. It has been proposed that Abeta induces death by oxidative stress, possibly through the generation of peroxynitrite from superoxide and nitric oxide. In our current study, treatment with nitric oxide generators protected against Abeta-induced death, whereas inhibition of nitric oxide synthase afforded no protection, suggesting that formation of peroxynitrite is not critical for Abeta-mediated death. Previous studies have shown that aggregated Abeta can induce caspase-dependent apoptosis in cultured neurons. In all of the neuronal populations studied here (hippocampal neurons, sympathetic neurons, and PC12 cells), cell death was blocked by the broad spectrum caspase inhibitor N-benzyloxycarbonyl-val-ala-asp-fluoromethyl ketone and more specifically by the downregulation of caspase-2 with antisense oligonucleotides. In contrast, downregulation of caspase-1 or caspase-3 did not block Abeta(1-42)-induced death. Neurons from caspase-2 null mice were totally resistant to Abeta(1-42) toxicity, confirming the importance of this caspase in Abeta-induced death. The results indicate that caspase-2 is necessary for Abeta(1-42)-induced apoptosis in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号