首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND/AIMS: Hepatocyte growth factor and transforming growth factor-alpha are growth factors with important roles in hepatocyte proliferation. The polyamines, putrescine, spermidine, and spermine are widely distributed in many different cells and play an essential role in cell growth and differentiation. The present study examined the role of polyamine in this growth promoting factor-induced hepatocyte proliferation, in primary cultured rat hepatocytes. METHODOLOGY: Hepatocytes were isolated from rats by the collagenase perfusion method. Ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were measured as the release of 14CO2 from L-[-14C]ornithine and S-adenosyl-L-[carboxyl14C]methionine, respectively. The concentration of polyamine was analyzed by high performance liquid chromatography. RESULTS: When transforming growth factor-alpha and hepatocyte growth factor were added to the hepatocyte culture simultaneously, ornithine decarboxylase activity, S-adenosylmethionine decarboxylase activity, polyamine concentration and DNA synthesis increased additively. The increase in DNA synthesis caused by transforming growth factor-alpha, hepatocyte growth factor, or both was completely inhibited by alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone). The inhibition was reversed by exogenous spermidine or spermine, but not by putrescine. CONCLUSIONS: Increased spermidine or spermine levels are essential for hepatocyte proliferation in cultured rat hepatocytes.  相似文献   

2.
Polyamine levels in human gastric carcinoma   总被引:2,自引:0,他引:2  
The results of experiments from several cell systems support the hypothesis that a connection exists between increased biosynthesis of polyamines (putrescine, spermidine, and spermine) and cellular growth. We have studied the polyamine levels and the activity of ornithine decarboxylase (a rate-limiting enzyme in mammalian polyamine synthesis) in human gastric carcinoma. Putrescine and spermidine levels were significantly elevated as compared with corresponding 'normal' gastric mucosa. The enzyme activity was also higher in neoplastic tissue, but the difference did not reach statistical significance. The present results may be interpreted to support the suggested role of polyamines in rapid tissue growth as represented by human gastric carcinoma.  相似文献   

3.
Polyamine metabolism in Pneumocystis carinii   总被引:1,自引:0,他引:1  
Alpha-difluoromethylornithine (DFMO) is being used to treat Pneumocystis carinii pneumonia despite a lack of in vitro evidence supporting its antipneumocystis activity. DFMO is a specific inhibitor of ornithine decarboxylase, the rate-limiting enzyme of polyamine biosynthesis. To investigate polyamine metabolism in P. carinii, extracts of the organism were analyzed for polyamine content and ornithine decarboxylase activity, and [3H]ornithine and [14C]arginine incorporation into polyamines during short-term culture was determined. P. carinii extracts contained putrescine and spermidine in a ratio of 0.17:1; traces of spermine were detected. Although ornithine decarboxylase activity was not detected, P. carinii incorporated ornithine and arginine into putrescine and spermidine but not into spermine, suggesting that the spermine detected derived from contaminating host cells. Uninfected rat lung incorporated ornithine minimally. Pentamidine, DFMO, and alpha-monofluoromethyldehydroornithine methyl ester inhibited ornithine incorporation by up to 86% at clinically achievable concentrations. These data provide a rationale for using polyamine synthesis antagonists in P. carinii pneumonia and a method for screening antipneumocystis drugs in vitro.  相似文献   

4.
There is increasing evidence that phenylacetate inhibits growth and modulates differentiation in a variety of tumors with effects on gene expression, and protein prenylation and glycosylation at concentrations that have been safely used in humans. We evaluated the antineoplastic effects of phenylacetate in five thyroid cancer cell lines of follicular cell origin in vitro. We found early growth inhibition occurred with phenylacetate treatment at a dose of 2.5-10 mmol/L. The growth inhibition was cytostatic with the thyroid carcinoma cells arrested in the G0-1 cell phase. When evaluating the effect of phenylacetate on the differentiated functions of thyroid carcinoma cells, phenylacetate exposure: 1) decreased the TSH (10 mU/mL) growth response; 2) increased radioactive iodine (125I) uptake in two out of five cell lines; and 3) inhibited thyroglobulin secretion. Phenylacetate also inhibited the secretion of vascular endothelial growth factor (a glycoprotein dependent on glycosylation for efficient cellular excretion) from the thyroid cancer cell lines. Our results support that phenylacetate has an antiproliferative effect in many cell types, but the differentiating effects were not uniform. Importantly, we have identified that phenylacetate inhibits the secretion of vascular endothelial growth factor, which possibly mediates the antiangiogenic effects observed in vivo. Because of the minimal toxicity associated with phenylacetate treatment in humans, at concentrations we show to have a significant antineoplastic effect in thyroid carcinoma cells, phenylacetate could be useful in patients with differentiated thyroid cancer who fail conventional therapy or as an adjuvant to radioactive iodine therapy in patients with aggressive tumors.  相似文献   

5.
Being one of the most lethal human neoplasms and refractory to such conventional treatment as chemo- and radiotherapy, anaplastic thyroid carcinoma is a prime target for innovative therapy. p53 gene inactivation is a constant feature of this neoplasia. Therefore, we evaluated a therapeutic approach based on an E1B 55-kDa gene-defective adenovirus (ONYX-015) that replicates only in cells with impaired p53 function and leads to cell death. Here we report that the ONYX-015 virus induces cell death in three human thyroid anaplastic carcinoma cell lines (ARO, FRO, and KAT-4). In addition, we found that the growth of xenograft tumors induced in athymic mice by the injection of ARO cells was drastically reduced by ONYX-015 treatment. The ONYX-015 virus worked synergistically with two antineoplastic drugs (doxorubicin and paclitaxel) in inducing ARO and KAT-4 cell death. These results suggest that ONYX-015 may be a valid tool in the treatment of the human thyroid anaplastic carcinoma.  相似文献   

6.
Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy, and heart failure. The polyamines putrescine, spermidine, and spermine are polycations absolutely required for cell growth and division. However, increasing evidence indicates that polyamines, cell growth, and cell death can be tightly connected. In this paper, we have studied the involvement of polyamines in apoptosis of H9c2 cardiomyoblasts in a model of simulated ischemia. H9c2 cells were exposed to a condition of simulated ischemia, consisting of hypoxia plus serum deprivation, that induces apoptosis. The activity of ornithine decarboxylase, the rate limiting enzyme of polyamine biosynthesis that synthesizes putrescine, is rapidly and transiently induced in ischemic cells, reaching a maximum after 3 h, and leading to increased polyamine levels. Pharmacological inhibition of ornithine decarboxylase by alpha-difluoromethylornithine (DFMO) depletes H9c2 cardiomyoblasts of polyamines and protects the cells against ischemia-induced apoptosis. DFMO inhibits several of the molecular events of apoptosis that follow simulated ischemia, such as the release of cytochrome c from mitochondria, caspase activation, downregulation of Bcl-xL, and DNA fragmentation. The protective effect of DFMO is lost when exogenous putrescine is provided to the cells, indicating a specific role of polyamine synthesis in the development of apoptosis in this model of simulated ischemia. In cardiomyocytes obtained from transgenic mice overexpressing ornithine decarboxylase in the heart, caspase activation is dramatically increased following induction of apoptosis, with respect to cardiomyocytes from control mice, confirming a proapoptotic effect of polyamines. It is presented for the first time evidence of the involvement of polyamines in apoptosis of ischemic cardiac cells and the beneficial effect of DFMO treatment. In conclusion, this finding may suggest novel pharmacological approaches for the protection of cardiomyocytes injury caused by ischemia.  相似文献   

7.
BACKGROUND: Estrogens may, by means of their receptors, modulate the growth of several tumors including gastrointestinal neoplasms. This control may occur through interaction with other molecules such as polyamines. An inverse relation between polyamine levels and the estrogen receptorial content has previously been demonstrated in vivo in human gastric carcinoma. The aim of the present study was to evaluate the effects of 17beta-Estradiol administration on the in vitro cell proliferation rates and the polyamine metabolism of an estrogen receptor-positive human gastric cancer cell line (HGC-27). METHODS: Estrogen receptors were detected with enzyme immunoassay. Cell proliferation was assessed by means of [3H]-thymidine incorporation and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. The polyamine content was evaluated with high-performance liquid chromatography and the ornithine decarboxylase activity with a radiometric technique. RESULTS: Exposure of HGC-27 cells to increasing concentrations of 17beta-Estradiol showed that an antiproliferative action became evident at concentrations of 8 microM or higher. At such concentrations, ornithine decarboxylase (ODC) activity was also significantly reduced, as were all polyamine levels, compared with the untreated control. These findings suggest that one of the mechanisms underlying 17beta-Estradiol inhibition of HGC-27 cell proliferation is a decrease in ODC activity and, hence, in polyamine production.  相似文献   

8.
12-O-Tetradecanoyl phorbol-13-acetate (TPA), a tumor promoter, stimulates DNA synthesis in mouse epidermal cells in vivo and in vitro. This response appears to be mediated through polyamine metabolism because ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17)activity is markedly increased shortly after promoter exposure and this induction varies in magnitude according to dose and promoter potency of a series of phorbol esters. In vitro, exogenous putrescine (0.01-10 mM) results in a dose-related increase and prolongation of promoter-stimulated DNA DNA synthesis, a phenomenon noted in other systems of polyamine-mediated growth stimulation. The anti-inflammatory steroid fluocinolone acetonide (FA), an inhibitor of tumor promotion, prevents TPA stimulation of epidermal proliferation in vivo and in vitro. In vitro, FA most effectively prevents stimulation of DNA synthesis when applied is not required. Paradoxially, FA potentiates the increase in ornithine decarboxylase activity after TPA administeration both in vivo and in vitro. Furthermore, the inhibition of TPA-stimulated DNA synthesis by FA in vitro can be reversed by exogenous putrescine. These results suggestthat FA exerts its antipromotion effect by reducing the sensitivity of the cell to polyamines or by reducing intracellular polyamine levels.  相似文献   

9.
The effect of sodium perchlorate (NaClO4) on the methylthiouracil-induced increase in the activity of thyroid glucose 6-phosphate dehydrogenase (G6PDH), ornithine decarboxylase (ODC) and polyamine contents was studied in the rat. The G6PDH activity was increased nearly three-fold by methylthiouracil (MTU) but not by ClO4- at 7 days of treatment. Perchlorate lowered the MTU-induced enzyme activity to nearly the control level, without changing circulating thyrotrophin (TSH). The anion had no inhibitory effect on G6PDH activity in vitro. The possibility that an inhibitor specific for G6PDH was generated in ClO4- - treated rat thyroids was excluded. The activity of ODC was greatly increased by both ClO4- and MTU, the increase being significant as early as on the second day of treatment. Perchlorate had no inhibitory effect on MTU-induced ODC activity in vivo but decreased total contents of spermidine and spermine in the thyroid, without affecting the concentration (nmoles/g wet weight) of the polyamines. These results suggest that ClO4- acts directly on the thyroid to suppress specifically the stimulatory effect of TSH on G6PDH activity and possibly on polyamine accumulation.  相似文献   

10.
Polyamine metabolism revisited   总被引:5,自引:0,他引:5  
The natural polyamines putrescine, spermidine and spermine play an essential role in cell growth and differentiation. Cellular polyamine depletion results in inhibition of growth, whereas its accumulation appears to be toxic. Intracellular levels of polyamines are regulated by a multitude of mechanisms affecting their synthesis, degradation, uptake and excretion. The three key enzymes in the regulation of polyamine metabolism have short half-lives and are inducible. Ornithine and S-adenosylmethionine decarboxylases regulate polyamine biosynthesis whereas spermidine/spermine acetyltransferase regulates polyamine interconvertion and degradation.  相似文献   

11.
There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication.  相似文献   

12.
Polyamine levels were measured by means of high-performance liquid chromatography in Langendorff-perfused rat hearts subjected to the calcium paradox protocol. The concentrations of putrescine, spermidine and spermine did not change significantly during calcium-free perfusion but decreased when calcium was readmitted. This decrease was due to membrane disruption and release of the polyamines into the coronary effluent. The sum of released and remaining spermidine exceeded the concentration of spermidine in control hearts, but, for spermine, this sum was lower than the control level. The addition of 0.5 mM EGTA to the calcium-free solution raised the myocardial concentrations of putrescine and spermidine and enhanced the net increase of spermidine on calcium repletion. DL-alpha-Difluoromethylornithine (DFMO) inhibited these increases and lowered the putrescine level during all perfusion stages. External polyamines had a negative inotropic effect and inhibited the loss of myoglobin on calcium repletion (order of effectiveness: spermine greater than spermine greater than putrescine). Inhibition of contractions by the combined action of verapamil and ryanodine or by potassium depolarization did not prevent myoglobin loss. External polyamines had no effect on high K/low Na contractures, which were mediated mainly by Na-Ca exchange. Calcium-free perfusion in the presence of 0.5 to 1 mM EGTA improved the membrane protection by polyamines or by diamines and analogues, like ornithine, 1,3-diaminopropane, or DFMO, which, in the absence of EGTA, gave no clear protection. It is concluded that calcium depletion and repletion influences myocardiaal polyamine concentrations by (1) membrane disruption and release of polyamines into the coronary effluent, and (2) probably by a stimulation of ornithine decarboxylase activity. The changes in polyamine concentrations do not seem to have any causal role in calcium overload and cell death. Exogenous polyamines protect against membrane damage.  相似文献   

13.
Exposure of ornithine decarboxylase (ODC; L-ornithine carboxy-lyase, EC 4.1.1.17)-overproducing mouse FM3A cells to micromolar levels of spermine or spermidine caused abnormal accumulation and toxicity of polyamines. This was apparently due to the inefficiency of negative feedback control of polyamine transport by polyamines in ODC-overproducing cells. Since antizyme is the only protein thus far recognized that can interact with ODC, depletion of free antizyme was regarded as the reason for the abnormal accumulation of polyamines. Accordingly, ODC-overproducing cells were transfected with pMAMneoZ1 possessing rat antizyme cDNA under the control of a glucocorticoid-inducible promoter. In the transfected cells, the addition of dexamethasone caused an increase in the amount of antizyme with an apparent molecular mass of 27 kDa, a decrease in the amount of ODC, a decrease in the polyamine transport activity, and the recovery of growth inhibition or cell death. The results indicate that antizyme can regulate not only the amount of ODC but also the activity of polyamine transport.  相似文献   

14.
Our laboratory has investigated the anticancer effects of combined manumycin (a farnesyltransferase inhibitor) and paclitaxel (a microtubule inhibitor) against anaplastic thyroid carcinoma (ATC). In this study we reported the in vivo efficacy of this combination against ATC cells and the lack of toxicity of this treatment in mice. We observed that manumycin-treated tumors looked paler than both control and paclitaxel-treated tumors. We hypothesized that angiogenesis inhibition mediated part of the in vivo effect of manumycin. This hypothesis was supported by the findings that manumycin significantly inhibited angiogenesis (as directly demonstrated by measurement of hemoglobin content and vascular area) in Matrigel implanted into mice, that manumycin decreased the vascular endothelial growth factor in hypoxic ATC cells, and that both manumycin and paclitaxel inhibited endothelial cell proliferation. Interestingly, inhibition of endothelial tubule formation in Matrigel was enhanced by combining manumycin and paclitaxel. As angiogenesis and tumor growth are continuous processes, we investigated the effect of sustained delivery of manumycin and found that paclitaxel plus slow release manumycin (13.25 mg/kg x week) inhibited ATC xenografts more than paclitaxel plus intermittent manumycin (15 mg/kg x week). In conclusion, manumycin plus paclitaxel is an effective combination against ATC, and inhibition of angiogenesis plays a role in the antineoplastic effect of this combination.  相似文献   

15.
Vascular smooth muscle cell migration, occurring after intimal injury, is a substantial clinical problem in atherosclerosis and restenosis after stenting. Here we investigate the effects of polyamine synthesis inhibition on vascular smooth muscle cell migration after maximal and submaximal growth stimulation with PDGF-AB or FCS. Vascular smooth muscle cells were obtained from mouse aorta explants. These cells coexpressed smooth muscle alpha-actin, PDGFRalpha and PDGFRbeta as demonstrated by immunocytochemistry. Treatment with a high (100 ng/ml) concentration of PDGF-AB stimulated DNA synthesis 6-fold and markedly elevated cell migration. PDGF-AB (100 ng/ml) increased cellular spermidine concentration 2-fold, but had no effect on spermine or putrescine levels. Treatment with the polyamine synthesis inhibitors CGP48664 (1 microM) and DFMO (5 mM) prevented the PDGF-AB-induced increase in spermidine and reduced spermine concentrations, but had no effect on PDGF-AB-stimulated DNA synthesis or cell migration. Cell migration after submaximal stimulation with either PDGF-AB (8 ng/ml) or FCS (8%) was, however, inhibited by the polyamine synthesis blockers. In summary, these data show that polyamine synthesis inhibition attenuates vascular smooth muscle cell migration under submaximal growth-stimulating conditions, suggesting that polyamines participate in regulation of cell migration and that treatment with polyamine synthesis inhibitors might reduce vascular smooth muscle cell migration after intimal injury.  相似文献   

16.
DFMO is a selective irreversible inhibitor of ornithine decarboxylase (ODC), the initial enzyme in the polyamine biosynthetic pathway. DFMO was utilized to determine the role of polyamines in isoproterenol (ISO)-induced cardiac hypertrophy. Daily subcutaneous administration of 200 mg/kg of DFMO reduced cardiac putrescine levels but did not significantly alter the basal levels of spermidine or spermine, nor was normal cardiac growth affected. ISO-induced cardiac hypertrophy was accompanied by increased putrescine and spermidine levels but spermine was not significantly altered. DFMO reversed the ISO-induced increases in putrescine and inhibited or attenuated both the increases in spermidine content and the cardiac hypertrophy. Although normal ODC activity appears not to be necessary for the maintenance of basal levels of polyamines or for normal cardiac growth, sustained inhibition of ODC interferes with ISO-induced elevations of putrescine, spermidine and heart weight.  相似文献   

17.
ONYX-015 is a genetically modified adenovirus with a deletion of the E1B early gene and therefore is designed to replicate preferentially in p53-mutated cells causing their death. We previously demonstrated that the ONYX-015 virus kills anaplastic thyroid carcinoma (ATC) cells and enhances the antineoplastic effects of doxorubicin and paclitaxel. Here we report that ONYX-015 increased the cytopathic effect of radiotherapy in three ATC cell lines. In fact, ONYX-015 and radiation induced a significant cytopathic effect on ATC cells. DNA fragmentation analysis showed that ATC ONYX-015-treated cells were very sensitive to radiation-induced apoptosis. In addition, low doses of ONYX-015 associated with a single radiation dose of 10 Gy delayed the growth of a xenograft tumor induced by ARO cells in athymic mice. Our results suggest that the combination of ONYX-015 and radiotherapy should be considered for experimental trials in patients with anaplastic thyroid carcinoma.  相似文献   

18.
Anaplastic thyroid carcinomas are a highly aggressive and extremely lethal form of human cancer, but the biological characteristics related to their aggressive nature are not understood. Moreover, Gadd45 family proteins have been implicated in a variety of growth-regulatory mechanisms, including DNA replication and repair, G(2)/M checkpoint control, and apoptosis. In this study we found that Gadd45gamma RNA was present at significantly lower levels in anaplastic cancer cells, compared with normal primary cultured thyrocytes. In addition, the adenovirus-mediated reexpression of Gadd45gamma significantly inhibited the proliferation of anaplastic thyroid carcinoma cells, ARO, FRO, and NPA cells, which was attributed to apoptosis. Furthermore, the adenovirus-mediated delivery of Gadd45gamma gene in anaplastic thyroid cancer resulted in the inhibition of tumor growth in vivo. This in vitro and in vivo activity of the adenovirus-mediated transduction of CR6/Gadd45gamma, on anaplastic thyroid cancer cell growth suppression, was reminiscent of the effects of p53. This study demonstrates that the Gadd45gamma gene has potential use as a candidate gene for gene therapy in anaplastic thyroid cancer.  相似文献   

19.
We recently found that the beta-adrenergic agonist 1-isoproterenol evokes a rapid (less than 5 min) Ca2+- and receptor-dependent stimulation of endocytosis, hexose transport, and amino acid transport in mouse renal cortex involving proximal tubule cells. This response is associated with increased Ca2+ fluxes and a mobilization of mitochondrial calcium, suggesting that stimulus-response (stimulus-"transport") coupling is mediated by cytosolic Ca2+. We show here that 1 microM isoproterenol evokes a rapid (less than 60 sec) transient increase in the activity of ornithine decarboxylase followed by an early (less than 2 min) sustained increase in putrescine, spermidine, and spermine concentrations in mouse kidney cortex slices in vitro. Small doses of isoproterenol (down to 24 nmol/kg) elicited a rapid (less than 2 min) increase in polyamines in vivo. The ornithine decarboxylase inhibitor alpha-difluoromethylornithine (5 mM) suppressed the testosterone-induced increase in polyamine levels and rates of endocytosis, hexose transport, and amino acid transport, measured by horseradish peroxidase, [14C]aminoisobutyric acid, and deoxy[3H]glucose uptake. alpha-Difluoromethylornithine also blocked the isoproterenol-induced increase in 45Ca influx and efflux and 45Ca redistribution; 0.5 mM putrescine nullified alpha-difluoromethylornithine inhibition and restored the increment in polyamines, 45Ca fluxes, endocytosis, hexose transport, and amino acid transport. These data implicate polyamine synthesis in isoproterenol stimulation of Ca2+ fluxes and membrane transport processes and support a model for signal transduction and stimulus-response coupling in which ornithine decarboxylase activation and polyamine synthesis play a pivotal role in regulating Ca2+ fluxes. In this model the polyamines generate local Ca2+ signals by stimulating Ca2+ influx or mobilizing intracellular calcium (or both) through a cation exchange reaction.  相似文献   

20.
BACKGROUND AND AIMS: Cellular proliferation and differentiation are regulated by polyamines and their rate-limiting enzyme ornithine decarboxylase (ODC), both of which are correlated with tumor growth, but their role in differentiation is less clear. We investigated the correlation of ODC activity and polyamine levels with tumor stage and grade with respect to sample recruitment. PATIENTS AND METHODS: We determined ODC activity ([(14)C]CO(2) release), polyamines (HPLC), and histological staging and grading (TNM classification) of tissue samples from 64 patients with colorectal adenocarcinomas. RESULTS: We found the concentrations of putrescine, spermidine, and N(1)-acetyl-spermidine and the ODC activity in tumor tissue to be twice as high as in adjacent normal mucosa. A critical parameter affecting ODC activity was ischemic time, which significantly reduced ODC activity levels in tumors (threefold) and in the surrounding normal tissue (ninefold) when the ischemic period exceeded 1 h. By contrast, polyamine content was not affected by ischemia. Total polyamine and spermine concentrations were higher in T3 and T4 than in T2 tumors, but putrescine was higher in T4 than in T3 and T2 tumors. There were significantly higher levels of total polyamines and spermine in moderately differentiated (G2) than in poorly differentiated (G3) tumors. CONCLUSION: The lower spermidine/spermine ratio in G2 (0.44) compared with that in G3 (0.64) tumors suggests the involvement of the polyamines in colonic cell differentiation. Polyamine content is thus correlated with the tumor stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号