首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 132 毫秒
1.
Lean 6 Sigma方法优化放射学工作流程的应用体会   总被引:1,自引:1,他引:0  
在HIS/PACS/RIS集成构建中应用Lean6sigma方法,找出传统放射科工作流程中影响工作效率和质量的关键影响因素,再应用精益的方法消除影响工作流程的"浪费"现象,设计能持续发展的解决方案,优化放射科工作流程,提高放射科室的工作效率,为数字化医院的内在流程建设提供宝贵的实施经验和方法。  相似文献   

2.
医学影像存档与通信系统(PACS)的应用体会   总被引:3,自引:0,他引:3  
目的介绍了胜利油田中心医院医学影像存档与通信系统(PACS)应用的体会。方法把具有医学数字成像及通信(digital imaging and communication in medicine)影像设备连接成医院的PACS系统;将传统的胶片存储模式与现代的PACS管理系统相比较。结果传统的胶片存储模式在影像和管理与存储上存在种种弊端,PACS系统实现了统一存储和资源共享。结论PACS的应用明显提高了放射科及相关科室的工作效率,方便了工作、教学、科研和会诊,提高了医院的社会效益和经济效益。  相似文献   

3.
放射科RIS/PACS构建的技术应用探讨   总被引:5,自引:0,他引:5  
目的:探索符合国情的RIS/PACS系统架构,推动RIS/PACS在中国的发展。材料和方法:以杭州邵逸夫医院的RIS/PACS系统为例,介绍RIS/PACS系统的软硬件框架。结果:RIS/PACS系统的实施给放射科和相关科室的工作带来了很大便捷,方便了工作、教学、科研和会诊。结论:在PACS的部署中结合医院的具体需求,采用了一些新的技术和新的理念,实现了病理自动获取、学生考试模式、机房工作站和QA工作站、电子排班等。  相似文献   

4.
目的:开发基于医学影像存储与传输系统(PACS)的交付,满足临床医生对影像的需求。本文着重介绍了计算机医学图文诊断系统的研制和临床应用,分析影像数据流程类型过程及实现方式。材料与方法:利用具有较好支持DICOM3.0的Mini-PACS实现放射科数字化影像设备的互联与医院影像工作站联网,并最后与HIS联网。结果:数字影像通过PACS实现放射科医生和临床医生影像资源共享.并实现远程医疗会诊。结论:影像存档与传输系统能提高影像资源信息利用率、工作效率和经济效益。  相似文献   

5.
目的:通过构建医学影像存贮与通讯系统(Picture archiving and communication systems,PACS),从而实现医学影像及诊断报告的网络化。方法:将放射科数字化影像设备(DR,CR,CT,MR,138A等)、独立工作站、诊断报告终端、登记室终端、主任室终端、激光相机终端经标准接口(DICOM3.0)连接,完成数字化工作流程。结果:成功实现了数字化医学影像图像及诊断报告在PACS内的传送、存储、图像再处理以及与HIS系统的联接。结论:数字化放射科的成功构建及运作提高了工作效率与管理水平,大大增加了信息存储量,利用医学资源共享,推动了医院工作模式的变革。  相似文献   

6.
放射科工作流集成的应用实践   总被引:2,自引:1,他引:1  
探讨综合性大型医院RIS/PACS建设中放射科工作流集成方案。采用I HE radiology工作流相关的4个集成模式,并根据国内需求优化应用,达到改善预定工作流、报告工作流、简化纠错流程、提高工作诊疗效率及质量的要求。重视I HE radiology集成模式应用,兼顾本土化需求,完善数字化医疗影像工作环境。  相似文献   

7.
近年来,自主开发的计算机管理系统、图文工作站及医学影像存档与通讯系统(PACS)已相继应用于医院放射科的档案管理中。但由于其具有一定的复杂性和高投入性,在中小医院尚未普及,很多放射科检查登记、档案管理还处于手工操作阶段。本院自2000年起应用电子表格软件(Excel)对放射科检查实行微机信息化管理,实现了档案快速存储。检索以及工作量、检查费用和综合信息的快速准确统计,提高了工作效率。  相似文献   

8.
PACS/RIS展望     
PACS(picturearchiving and comnmnieation system)是以医学影像领域数字化、网络化、信息化的趋势为要求,以数字成像技术、计算机技术和网络技术为基础,以全面解决医学影像获取、显示、处理、储存、传输和管理为目的的综合性规划方案及系统即图像存档与传输系统,是信息技术在医院影像科室的具体应用,使整个医院数字化、网络化建设的重要环节。RIS(radioloyinformationsystem)主要实现放射科内部工作流程及管理的数字化和信息化,即放射信息系统。  相似文献   

9.
图像存储与传输系统的总体设计与分步实施   总被引:23,自引:6,他引:17  
目的 探讨在组建图像存储与传输系统(picture archiving and communication system,PACS)过程中的总体设计及如何进行具体每一步的实施方案。方法 把具有医学数学成像及通讯(digital imaging and communication in medicine,DICOM)标准接口或非DICOM标准接口的影像设备进行联网,制定资源共享、系统存储的解决方案,建立典型的医院放射科PACS系统,连接目前医院现有的设备,服务器采用Windows NT SQL Server 7.0组成,解决管理及存储问题,工作站基于浏览(WEB)方式访问,扩大客户端的使用权限(license),数量为100个,磁盘阵列(RAID 5)在线存储3个月,线性磁带库(DLT)离线海量存储;扩展全院并解决放射学信息系统(radiology information systems,RIS)、PACS的数据共享连接;建立地区影像数据交换中心。结果 建立了典型的医院放射科PACS系统,连接了目前医院现有的设备,实现了放射科初步的无胶片化方式;将PACS扩展到了全院的临床科室、手术室、急诊室等,以及实现了和已有的医院信息系统(hospital information systems,HIS)、其他医院网络联网,建立起了影像数据中心;实现了和本地区其他医院及其他地区的影像数据中心的联网,使用起来较为得心应手,方便了医生,提高了工作效率。结论 实践证明,上述PACS的总体设计与分步实施方案是可行的、成功的。  相似文献   

10.
张毅  卢晶  张毅军 《人民军医》2009,(7):469-470
影像存档及传输系统(PACS)是一种综合性的影像管理系统,通过高速计算机设备及通讯网络,将数字化图像资料进行有效的采集、传输、存储和管理,可实现医院内无胶片化的管理以及医学影像资源的共享,提升了医院和放射科的整体数字化建设水平,在更好地为临床医疗工作服务的同时,也极大地方便了教学和科研工作,为医学影像学的临床教学提供了更加先进的手段。现就我们将PACS应用于医学影像学临床教学的经验介绍如下。  相似文献   

11.
PACS support: the radiology approach   总被引:3,自引:0,他引:3  
  相似文献   

12.
目的结合我们的PACS设计实践探讨PACS系统需求方案的设计方法和原则。材料与方法搜集和分析各类PACS有关的信息和数据,建立对PACS发展技术和动向的深入理解,基于此确立将构建的PACS系统的规模、结构和功能方面的实际需求。结果PACS的RFP中主要的组成包括:放射科以及医院状况的概述和对PACS的一般需求;对新建PACS及其亚系统的结构和功能需求的细节描述;对PACS集成/提供商的能力和产品支持的具体要求的描述和说明。结论建立基于放射科和医院实际需求的RFP,是完成适用并具较高性价比PACS设计方案的可靠保证。  相似文献   

13.
RATIONALE AND OBJECTIVES: Picture archiving and communication systems (PACS) have the vocation to manage all medical images acquired within the hospital. To address the various situations encountered in the imaging specialties, the traditional architecture used for the radiology department has to evolve. MATERIALS AND METHODS: We present our preliminarily results toward an enterprise-wide PACS intended to support all kind of image production in medicine, from biomolecular images to whole-body pictures. Our solution is based on an existing radiologic PACS system from which images are distributed through an electronic patient record to all care facilities. This platform is enriched with a flexible integration framework supporting digital image communication in medicine (DICOM) and DICOM-XML formats. In addition, a generic workflow engine highly customizable is used to drive work processes. RESULTS: Echocardiology; hematology; ear, nose, and throat; and dermatology, including wounds, follow-up is the first implemented extensions outside of radiology. CONCLUSION: We also propose a global strategy for further developments based on three possible architectures for an enterprise-wide PACS.  相似文献   

14.
Stockman T  Krishnan S 《Radiology management》2006,28(2):16-8, 20-7; quiz 28-9
This article describes the quality improvement program that Mercy Hospital (Alegent Health System) initiated after it implemented a picture archiving and communication system (PACS) in November 2003. The radiology department encountered numerous PACS-related issues that directly affected the quality and workflow of patient care. In order to get a better understanding of the situation, the department developed a quality improvement plan for its PACS program. The first step was to dedicate a resource--in this case, a radiology information technology (RIT) support specialist--who would serve as a PACS subject matter expert while dealing with day-to-day PACS-related issues--specifically, errors. The error data were collected and categorized for consistency using statistical process control (SPC) tools. The information gathered was then traced back to the team members responsible for the errors and used as a training tool to further educate them. As a result of this program, the average error rate was reduced from 12% to 4% because the radiology team developed a better understanding of the errors by identifying the root causes and being accountable for eliminating errors within their control. In addition, the radiology staff learned to accept and trust the PACS, resulting in a positive culture change that benefited teamwork and staff morale as well as improve the workflow and the quality of patient care.  相似文献   

15.
During peak hours of operation, it was not uncommon for the radiology department at St. Luke's Episcopal Hospital in Houston, Texas, to have a backlog of six to ten patients. While some of this was due to competing schedules from the emergency department (ED) and inpatients, the major problem was an inefficient workflow, especially for emergency department patients. Our staff in the radiology department worked with the hospital management to include plans for a new radiology room in an ED renovation project. In designing the new radiology room the most important issues under consideration were the physical location of the room and the type of radiography system to be installed. With plans to implement PACS, we evaluated computed radiography and digital radiography options. At St. Luke's, we had had our first experience with digital radiography after the purchase of a dedicated digital chest system. As a beta test site for the manufacturer, we had an opportunity to test--what was at the time--a new digital radiography system. The powerful impact of digital radiography became most evident by the decreased patient backlog. Even without PACS, workflow became dramatically more efficient. Images now are available for review within seconds after exposure, since there are no films to process. This has reduced our average exam time from ten minutes to one and a half minutes, not including patient transport time. The efficiency demonstrated with the digital chest system provided evidence that digital systems could handle significantly more patients than computed radiography or screen-film systems, without a compromise in image quality. Therefore, we decided to put a digital radiography system in the new ED radiology room. We estimate that the new unit will pay for itself in less than three years.  相似文献   

16.
One year ago, the radiology department at Ball Memorial Hospital, a 350-bed facility in Muncie, IN, was completely film-based. The need to support a new all-digital, 35-room emergency department (ED) hastened the facility's transition to a digital environment. Today, with the exception of mammography, the hospital's imaging services are now digital. To develop and implement the project, the hospital formed an internal implementation team. An independent consultant was also hired to evaluate the impact of these new technologies and to provide an estimated cost payback. After research, site visits, and vendor demonstrations, the hospital selected a single vendor for its picture archiving and communication system (PACS), digital radiography (DR), computed radiography (CR), and overall project management. The DR system was installed in the ED to provide digital image capture for a full range of trauma exams. The ED also initially began utilizing a Web-based PACS distribution originally implemented for after-hours teleradiology. The majority of the hospital's imaging studies are captured with 2 multi-cassette CR systems that serve 7 exam rooms in the radiology department. The hospital also installed remote operations panels to expedite entry of patient and exam information. Technologists readily embraced both CR and DR systems. The Web distribution system now transmits images to hospital-based computers and to 150 remote referring physicians. The PACS platform automatically e-mails key images and radiology reports to referring physicians. Authorized physicians can also request reports and images on an as-needed basis. The PACS vendor had previously performed multiple integrations with the radiology information system (RIS) vendor; the integration of PACS and RIS was extremely smooth. One of the critical components of a successful conversion is experienced, dedicated management. The hospital retained professional project management services to facilitate implementation and to ensure adequate training for all users.  相似文献   

17.
PACS has been widely adopted as an image storage solution that perfectly fits the radiology department workflow and that can be easily extended to other hospital departments. Integrations with other hospital systems, like the Radiology Information System, the Hospital Information System and the Electronic Patient Record are fully achieved but still challenging aims. PACS also creates the perfect environment for teleradiology and teleworking setups. One step further is the regional PACS concept where different hospitals or health care enterprises share the images in an integrated Electronic Patient Record. Among the different solutions available to share images between different hospitals IHE (Integrating the Healthcare Enterprise) organization presents the Cross Enterprise Document Sharing profile (XDS) which allows sharing images from different hospitals even if they have different PACS vendors. Adopting XDS has multiple advantages, images do not need to be duplicated in a central archive to be shared among the different healthcare enterprises, they only need to be indexed and published in a central document registry. In the XDS profile IHE defines the mechanisms to publish and index the images in the central document registry. It also defines the mechanisms that each hospital will use to retrieve those images regardless on the Hospital PACS they are stored.  相似文献   

18.
PACS系统的应用体会   总被引:5,自引:0,他引:5  
目的:介绍我院影像医学存档与通讯系统(PACS)应用的经验。材料与方法:将所有B超、CT、X线机和一台IBM服务器、四台奔腾Ⅱ档次的工作站及惠普光盘塔连接成医学数字影像传输(DICOM)网络;DICOM服务器与各种图像浏览终端羞以太网络;通过HUB连接成PACS系统。结果:将常规放射图像的模拟信号通过数字转换器转换为数字信号后,与CT等数字成像系统的数字信号一并输入光盘塔,并进行诊断。将数字图像和诊断报告一起舆到医院各个图像浏览终端,使其可通过WEB界面系统及咨询平台进行查询。PACS投入使用2年来,效果良好。结论:PACS的应用明显提高了放射科及相关科室的工作效率,方便了工作、教学、科研和会诊。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号