首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been known that there is a relationship between cannabis use and schizophrenia-related symptoms; however, it can be a subject of controversy. The involvement of CB1 receptor ligands in the schizophrenia has already been revealed and confirmed. However, there is still lack of information concerning the role of CB2 receptors in the psychosis-like effects in mice and the further studies are needed.The aim of the present research was to study the role of the CB2 receptor ligands in the symptoms typical for schizophrenia. We provoked hyperlocomotion in mice which is analogous to positive psychosis-like effects in humans, by an acute administration of a NMDA receptor antagonist, MK-801 (0.3 and 0.6 mg/kg), a pharmacological model of schizophrenia. An acute administration of MK-801 induced the increase in locomotor activity (hyperactivity) in rodents, measured in actimeters.We revealed that an acute injection of CB2 receptor agonist JWH 133 at the dose range (0.05–1.0 mg/kg) and CB2 receptor antagonist, AM 630 at the dose range (0.1–1.0 mg/kg) decreased locomotion of mice. An acute injection of JWH 133 (2.0 mg/kg) and AM 630 (2.0 mg/kg) had no statistical significant influence on the locomotor activity of mice. However, an acute injection of both CB2 receptor ligands (agonist and antagonist), JWH 133, at the non-effective dose of 2.0 mg/kg and AM 630 at the non-effective dose of 2.0 mg/kg, potentiated the MK-801-induced hyperactivity.The present findings have confirmed that endocannabinoid system, not only via CB1, but also via CB2 receptors, may be involved in the schizophrenia-like responses, including hyperlocomotion in mice.  相似文献   

2.
Guanosine has been shown to modulate glutamate system by stimulating astrocytic glutamate uptake. Recent evidence suggest that the locomotor effects of NMDA receptor antagonists, an animal model of schizophrenia, is associated with activation of non-NMDA glutamatergic receptors caused by increased glutamate release. The present work was undertaken to evaluate whether guanosine could have influence on the hyperlocomotion induced in mice by dizocilpine (MK-801), a NMDA antagonist. We also evaluated the effect of guanosine on the hyperlocomotion induced by the indirect dopamine agonist amphetamine, and by the non-selective adenosine receptor antagonist caffeine. Guanosine (7.5 mg/kg) produced an attenuation of about 60% on the hyperlocomotion induced by dizocilpine (0.25 mg/kg), whereas it did not affect the hyperlocomotion induced by amphetamine (5 mg/kg) or caffeine (30 mg/kg). Guanosine pre-treatment did not affect total spontaneous locomotion in all experiments. To test neuronal pathway selectivity, we evaluated MK-801 against guanosine in a working memory paradigm (spontaneous alternation task). Guanosine did not reverted the impairment caused by MK-801 in the spontaneous alternation test, and when administered alone also presented an amnesic effect. The results are discussed based on the current hypothesis of locomotor activation induced by the psychoactive drugs studied. Further studies are necessary to evaluate if guanosine could have clinical utility for the treatment of schizophrenia.  相似文献   

3.
Acute administration of morphine (10 mg/kg) to rats elicited an increase in locomotion that became sensitized upon repeated treatment over 14 days. Administration of the noncompetitive N-methyl-D-aspartate receptor (NMDA) antagonist MK-801 (0.1 or 0.25 mg/kg) prior to each morphine injection prevented the development of behavioral sensitization to morphine, an effect that persisted even after a 7-day withdrawal from repeated treatment. Sensitization was also prevented by coadministration of the competitive NMDA receptor antagonist CGS 19755 (10 mg/kg). In contrast, acute pretreatment with MK-801 did not alter the response of sensitized rats to morphine challenge, indicating that MK-801 does not prevent the expression of sensitization. When administered alone, MK-801 produced stereotyped movements at moderate doses (0.25 rng/kg) and horizontal locomotion at higher- doses, (0.5 mg/kg). Repeated administration of 0.25 mg/kg MK-801 elicited sensitization to its own locomotor stimulatory effects, such that this dose became capable of eliciting horizontal locomotion. Sensitization was not seen during repeated administration of 0.1 mg/kg MK-801 or 10 mg/kg CGS 19755, although both of these pretreatments did produce a sensitized response to subsequent challenge with 0.25 mg/kg MK-801. This effect was enhanced by coadministration of morphine, even though repeated administration of morphine alone failed to sensitize rats to MK-801 challenge. These results suggest a complex interplay between NMDA and opioid receptors, such that NMDA antagonists prevent morphine sensitization while morphine enhances the ability of NMDA antagonists to elicit sensitization to their own locomotor stimulatory effects. © 1994 Wiley-Liss, Inc.  相似文献   

4.
We previously reported that chronic administration of N-methyl-D-aspartate (NMDA) antagonists reduced the density of vasopressin V1a receptors in several brain regions in rats that demonstrated social interaction deficits and increased locomotor activity. These observations indicate the ability of arginine-vasopressin (AVP), or its analogues, to modulate behavioral abnormalities associated with blockade of NMDA receptors. The present study was performed to investigate the effect of NC-1900, an AVP analogue, on social behavior and locomotor activity in rats treated with MK-801, a non-competitive NMDA receptor antagonist. Male Wistar rats were administered MK-801 (0.13 mg/kg/day ip) or saline for 14 days. Social behavior and locomotor activity were measured 45 min after the injection of NC-1900 (10 ng/kg sc) or saline together with the last MK-801 or vehicle administration. Social interaction was quantified by an automated video-tracking system, and stereotyped behavior and ataxia were manually measured. Acute administration of NC-1900 partially reversed MK-801-induced hyperlocomotion and deficits in social interaction, while NC-1900 itself did not affect these behavioral measures in animals chronically treated with vehicle saline. These results suggest that the central AVP system may interact with glutamatergic and dopaminergic transmissions, and indicate potential therapeutic effects of AVP analogues on positive and negative symptoms of schizophrenia.  相似文献   

5.
In the rat, antinociception of supraspinal origin is observed in response to administration of cocaine or an antagonist of the NMDA receptor for glutamate. The current study was conducted to determine if endocannabinoids are involved in the antinociceptive effect of cocaine, or antagonism of NMDA receptor binding. Intraperitoneal (i.p.) administration to male rats of cocaine, or the NMDA receptor antagonist, MK-801, resulted in a significant antinociceptive response of supraspinal origin, as indicated by a significant increase in reaction time in the hot plate test of analgesia (increase in the amount of time before the animal reacted to the hot plate by licking its paws or jumping). Treatment with SR141716A, a specific antagonist of the cannabinoid (CB1) receptor, resulted in a complete reversal of cocaine-induced antinociception when administered at a dose of 5.0mg/kg. Although the 2.5 and 5.0mg/kg doses of SR141716A produced a significant reduction in the antinociceptive effect of MK-801, the effect was incomplete since the reaction time in the hot plate test remained greater than that observed in vehicle-treated controls. These findings suggest that activation of the CB1 receptor participates significantly in antinociception resulting from treatment with cocaine and with the NMDA receptor antagonist, MK-801. The partial reversal of the antinociceptive effect of MK-801 by CB1 receptor antagonism indicates other mediators of nociception, in addition to the endocannabinoids, appear to be active in the antinociceptive response to NMDA receptor antagonism.  相似文献   

6.
Summary It was found previously that the MK-801 (an uncompetitive NMDA receptor antagonist)-induced locomotor hyperactivity in rats was potently increased by antidepressant drugs. The present paper analysed the locomotor hyperactivity induced by combined treatment with fluoxetine + MK-801 in male Wistar rats. The MK-801 hyperactivity was increased by citalopram (the latter effect was prevented by zacopride and ketanserin), sertraline, p-chloramphetamine, 8-OH-DPAT and TFMPP. The hyperlocomotion caused by fluoxetine + MK-801 was antagonized by tropisetron and zacopride and, to a lesser extent, by ketanserin, ritanserin and NAN-190, but not by WAY 100135, pindolol, metergoline or mianserin. Sulpiride and clozapine were able to inhibit the fluoxetine + MK-801 hyperlocomotion. The hyperlocomotion induced by D-amphetamine or apomorphine was not modified by fluoxetine or citalopram. Fluoxetine increased the release of dopamine (measured by a microdialysis method) in the striatum, induced by MK-801. The obtained results indicate that fluoxetine increases the MK-801-induced locomotor hyperactivity via activation of 5-HT3 receptors and, to a lesser degree, 5-HT2 ones.  相似文献   

7.
Summary. The locomotor stimulation induced by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine) in mice was regarded as a model of at least some aspects of schizophrenia. The serotonin synthesis inhibitor dl-p-chlorophenylalanine (PCPA) was used to evaluate the involvement of endogenous serotonin in (a) the induction of MK-801-induced hyperlocomotion in NMRI mice, and (b) the inhibition of MK-801-induced hyperlocomotion by each of five monoaminergic antagonists (M100907, clozapine, olanzapine, raclopride, SCH23390). Further, brain monoaminergic biochemistry was characterised in rats and mice after various drug treatments. PCPA pretreatment did not significantly reduce MK-801-induced hyperlocomotion in any of the experiments performed; however in a meta-analysis of six experiments, the locomotion displayed by MK-801-treated animals was diminished 17% by PCPA pretreatment. The selective 5-HT2A receptor antagonist M100907 exerted a dose-dependent inhibition of MK-801-induced hyperlocomotion. This effect was abolished in mice pretreated with PCPA, but could be restored in a dose-dependent manner by restitution of endogenous 5-HT by means of 5-hydroxytryptophan (5-HTP). On the other hand, the inhibition of MK-801-induced hyperlocomotion exerted by the selective dopamine D-2 receptor antagonist raclopride or the dopamine D-1 receptor antagonist SCH23390 was unaffected by PCPA pretreatment. The antipsychotics clozapine and olanzapine displayed a split profile. Hence, the inhibitory effect on MK-801-induced hyperlocomotion exerted by low doses of these compounds was diminished after PCPA pretreatment, while inhibition exerted by higher doses was unaffected by PCPA. These results suggest that (1) MK-801-induced hyperlocomotion is accompanied by an activation of, but is not fully dependent upon, brain serotonergic systems. (2) In the hypoglutamatergic state induced by MK-801, endogenous serotonin exerts a stimulatory effect on locomotion through an action at 5-HT2A receptors, an effect that is almost completely counterbalanced by a concomitant inhibitory impact on locomotion, mediated through stimulation of serotonin receptors other than 5-HT2A receptors. M100907, by blocking 5-HT2A receptors, unveils the inhibitory effect exerted on locomotion by these other serotonin receptors. (3) Dopamine D-2 receptor antagonistic properties of antipsychotic compounds, when they come into play, override 5-HT2A receptor antagonism. Possible implications for the treatment of schizophrenia with 5-HT2A receptor antagonists are discussed. It is hypothesized that treatment response to such agents is dependent on increased serotonergic tone. Accepted February 9, 1998; received December 16, 1997  相似文献   

8.
Kosten TA  Bombace JC 《Brain research》2000,878(1-2):20-31
Three experiments compared the effects of prior versus delayed applications of dizocilpine (MK-801), a noncompetitive NMDA antagonist, to ethanol, a putative NMDA antagonist, on morphine locomotor activity. In Experiment 1, rats received MK-801 (0.1 mg/kg), ethanol (1 g/kg), or vehicle injections 30 min prior to morphine (0 or 10 mg/kg) injections for 14 days. The expression of morphine (0 or 3 mg/kg) locomotor sensitization was assessed 1 week later. Both MK-801 and ethanol attenuated morphine-induced locomotor activity. Chronic MK-801 with or without morphine eliminated morphine's temporal pattern of activity calling into question the specificity of its effect on sensitization. In contrast, chronic ethanol administration attenuated morphine locomotor sensitization. In Experiment 2, the effects of the agents on the acute biphasic locomotor effects of morphine (hypoactivity followed by hyperactivity) were examined. Agents were administered 30 min prior to or 120 min after morphine (or vehicle). Neither agent at either administration time altered morphine's acute locomotor effects. In Experiment 3, the effects of chronic delayed application of MK-801 or ethanol (120-min post-morphine administration for 14 days) on the expression of morphine locomotor sensitization were assessed. Results were similar to the prior application effects of Experiment 1. These data suggest that the delayed effects of morphine are important in changes seen with chronic administration and these may involve NMDA receptor activation. Further, in conjunction with our previous work, ethanol appears to alter plasticity effects of chronic morphine administration perhaps via its NMDA antagonist effects.  相似文献   

9.
This study investigated the effects of acute and chronic administration of the non-competitive NMDA receptor antagonists MK-801 on c-Fos protein expression in different brain regions of mice with or without clozapine. MK-801 (0.6 mg/kg) acute administration produced a significant increase in the expression of c-Fos protein in the layers III–IV of posterior cingulate and retrosplenial (PC/RS) cortex, which was consistent with the previous reports. Moreover, we presented a new finding that MK-801 (0.6 mg/kg) chronic administration for 8 days produced a significant increase of c-Fos protein expression in the PC/RS cortex, prefrontal cortex (PFC) and hypothalamus of mice. Among that, c-Fos protein expression in the PC/RS cortex of mice was most significant. Compared to acute administration, we found that MK-801 chronic administration significantly increased the expression of c-Fos protein in the PC/RS cortex, PFC and hypothalamus. Furthermore, pretreatment of mice with clozapine significantly decreased the expression of c-Fos protein induced by MK-801 acute and chronic administration. These results suggest that c-Fos protein, the marker of neuronal activation, might play an important role in the chronic pathophysiological process of schizophrenic model induced by NMDA receptor antagonist.  相似文献   

10.
1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is an endogenous compound that is constantly present in the brain, and that exhibits neuroprotective activity. Our earlier study has suggested that 1MeTIQ may play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. It is well known that central nervous system stimulants such as: amphetamine, cocaine, phencyclidine, and selective NMDA receptor antagonists, e.g., MK-801 produce neuropsychotoxicity (psychosis, addiction) that is indistinguishable from paranoid type schizophrenia. In rodents, phencyclidine and MK-801 are often used to evoke schizophrenia-like behavioral abnormalities which are inhibited by neuroleptics. The present study was designed to further investigate potential antipsychotic properties of 1MeTIQ by using both behavioral and neurochemical studies in the rat. We investigated the influence of 1MeTIQ (25 and 50 mg/kg ip) on locomotor hyperactivity, disruptions of prepulse inhibition (PPI), and working memory impairment induced by the NMDA receptor antagonist, MK-801 (0.2–0.3 mg/kg ip). In addition in the biochemical study, we analyzed the effect of 1MeTIQ on the changes in dopamine metabolism in different brain structures and in extraneuronal release of dopamine and glutamate in the rat frontal cortex, produced by MK-801. The concentration of dopamine (DA) and its metabolites: 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA), as well as the extraneuronal concentration of dopamine and glutamate were established by HPLC. MK-801 (0.25 mg/kg ip) evoked significant disruptions of PPI and working memory impairment, and co-administration of 1MeTIQ at two investigated doses of 25 and 50 mg/kg ip did not antagonize these effects. On the other hand hyperactivity evoked by MK-801 as well as a rise in dopamine metabolism in specific brain structures and glutamate release in the frontal cortex was completely antagonized by pretreatment with 1MeTIQ. If the hyperlocomotion elicited by acutely administered MK-801 is a valid model of at least some aspects of schizophrenia, these results indicate that 1MeTIQ will show efficacy in treating this condition. In conclusions, the present study suggests that 1MeTIQ, an endogenous neuroprotective compound, exhibits also antipsychotic-like efficacy in some animal tests, and may be useful in clinical practice as a psychosis-attenuating drug in schizophrenic patients. However, 1MeTIQ did not attenuate sensorimotor gating deficit or working memory impairment evoked by MK-801 which may be served as a model of negative symptoms of schizophrenia.  相似文献   

11.
Several studies involving postnatal administration of the N-methyl-D-aspartate (NMDA) antagonists, dizocilpine (MK-801; 3 x 0.5 mg/kg, at 08.00, 16.00 and 24.00 h) on Postnatal day 11, or Ketamine (1 × 50 mg/kg) or Ethanol (1 × 2.5 g/kg, Ethanol-Low, or 2 × 2.5 g/kg, 2-h interval, Ethanol-High) on Postnatal day 10, are described. Some mice from each treatment/vehicle group were sacrificed 24 h after NMDA antagonist treatment and brain regions were taken for fluoro-jade staining analysis. Functional analysis was initiated at 60 days of age. All three treatments inducing an antagonistic action at NMDA receptors, MK-801, Ketamine and Ethanol-High induced a similar pattern of initial hypoactivity followed by marked and lasting hyper-activity in the motor activity test chambers. In each case, the basal hyperactivity level was abolished by acute treatment with a low dose of D-amphetamine (0.25 mg/kg). All three treatments, MK-801, Ketamine and Ethanol-High, induced a deficit in acquisitive performance in the radial arm maze test of instrumental learning. The deficit induced by postnatal MK-801 was abolished by acute treatment with the low dose of D-amphetamine. All three treatments, MK-801, Ketamine and Ethanol-High, resulted in normal acquisitive performance during the first three test days in the circular swim with the submerged platform maintained in a constant position, but on the fourth test day, with the platform position shifted to a different “quadrant”, induced marked deficits. Fluoro-jade staining analyses indicated a devastating cell degeneration in several brain regions of mice administered NMDA antagonists postnatally, including the hippocampus, frontal cortex, parietal cortex, and cerebellum. Severe cell degeneration in the laterodorsal thalamus due to Ethanol or diazepam (5 mg/kg) appeared not to affect the different aspects of function. The pattern of dysfunctional outcome and apoptotic cell loss following postnatal NMDA antagonist treatment offers a plausible similarity to the major aspects of ‘syndromatic continuity’ in ADHD, hyperactivity, inattention and impulsivity, thereby providing an interesting animal model of the disorder.  相似文献   

12.
目的 观察奥氮平对谷氨酸功能低下小鼠模型表现出的高活动性及前脉冲抑制(PPI)缺失的作用.方法 昆明种小鼠165只.(1)取36只小鼠分为4组:溶媒空白对照组(腹腔注射溶媒,以下简称对照组),3种奥氮平剂量(0.1 mg/kg体质量,0.2 mg/kg体质量,0.3 mg/kg体质量,腹腔注射)组,每组8~10只;观察奥氮平对小鼠探究行为和自主活动的影响.(2)取49只小鼠分为5组:对照组,地卓西平马来酸盐(MK-801)模型组(溶媒+MK-801,0.25 mg/kg体质量,腹腔注射),3种剂量(同上)奥氮平干预组(奥氮平+MK-801 0.25 mg/kg体质量,腹腔注射),每组9~10只;观察奥氮平对MK-801致小鼠自主活动增加的影响.(3)取80只小鼠分为8组:对照组,MK-801模型组(溶媒+MK-801,0.5 mg/kg体质量,腹腔注射),3种奥氮平剂量给药组(奥氮平+生理盐水,奥氮平剂量分别为0.3 mg/kg体质量,1 mg/kg体质量,3 mg/kg体质量),3种奥氮平剂量(同上)干预组(奥氮平+MK-801 0.5 mg/kg体质量,腹腔注射),每组10只;观察奥氮平对基线前脉冲抑制(PPI)及MK-801引起的PPI缺失的影响.结果 (1)与对照组比较,奥氮平剂量为0.2 mg/kg体质量和0.3mg/kg体质量时,小鼠的探究行为及自主活动总路程减少(P均<0.05);但剂量为0.1 mg/kg时,对小鼠的探究行为(P=0.363)及自主活动(P=0.196)无影响.(2)奥氮平剂量为0.1~0.3 mg/kg体质量时,呈剂量依赖性抑制MK-801引起的自主活动增加(P均<0.05).(3)奥氮平剂量为0.3~3mg/kg体质量时,对基线的PPI无影响(P均>0.05),剂量为1~3 mg/kg时呈剂量依赖性修复了MK-801引起的PPI缺失(P均<0.05).结论 奥氮平能够特异性地抑制谷氨酸功能低下小鼠模型表现出的高活动性和PPI缺失,与奥氮平的临床药理作用一致.  相似文献   

13.
Summary The present study was aimed at clarifying to what extent the hypermotility induced by the uncompetitive N-methyl-D-aspartate (NMDA) antagonist MK-801 depends on dopamine (DA) D-1 compared to D-2 receptor tone. The D-1 receptor antagonist SCH 23390 was found to reduce locomotion to a greater extent in MK-801-treated than in vehicle-treated mice, whereas the reverse appeared to be the case for the DA D-2 receptor antagonist raclopride. In other words, MK-801-induced hyperactivity was more readily antagonized by SCH 23390 than by raclopride and, thus, DA D-1 receptors seem to be more important than D-2 receptors for MK-801-induced hyperactivity. These results are in line with our previous observation that MK-801 generally interacts synergistically with a DA D-1 but not with a D-2 receptor agonist in monoamine-depleted mice. In view of the possible role of deficient glutamatergic neurotransmission in schizophrenia, our findings underline the importance of investigating the efficacy of selective DA D-1 antagonists in this disorder.  相似文献   

14.
Involvement of NMDA receptors in morphine state-dependent learning in mice   总被引:2,自引:0,他引:2  
In the present study, the effects of intracerebroventricular (i.c.v.) injection of NMDA receptor agonist and antagonist on impairment of memory formation and the state-dependent learning by morphine have been investigated in mice. Pretraining administration of morphine (5 mg/kg; s.c.) decreased the learning of one-trial passive avoidance task. Pretest administration of morphine (5 mg/kg) induced state-dependent learning acquired under pretraining morphine influence. Pretest administration of NMDA receptor agonist, L-glutamate (0.00001 and 0.0001 and 0.001 microg/mouse, i.c.v.) following pretraining saline treatment did not affect retention. Amnesia induced by pretraining morphine was significantly reversed by pretest administration of L-glutamate (0.0001 and 0.001 microg/mouse, i.c.v.). Pretest administration of noncompetitive NMDA receptor antagonist, MK-801 (0.5, 1, and 2 microg/mouse, i.c.v.) significantly impaired memory formation. Amnesia induced by pretraining morphine was increased by pretest administration of MK-801 (2 microg/mouse, i.c.v.). Pretest coadministration of L-glutamate (0.0001 and 0.001 microg/mouse, i.c.v.) or MK-801 (0.5, 1, and 2 microg/mouse, i.c.v.) with morphine (5 mg/kg, s.c.) increased and decreased morphine state-dependent learning, respectively. The results suggest that NMDA receptors are involved in morphine state-dependent learning in mice.  相似文献   

15.
The effect of dizocilpine (MK-801), anN-methyl-D-aspartate (NMDA) receptor antagonist, on the analgesic response to U-50,488H, a κ-opioid receptor agonist, and tolerance to the analgesic effect of U-50,488H was determined in mice. The doses of MK-801 used were 0.03–0.30 mg/kg, whereas U-50,488H was administered at a dose of 25 mg/kg. Intraperitoneal (i.p.) administration of U-50,488H (25 mg/kg) produced analgesia as evidenced by the delay in the tail-flick latency in the mouse and lasted for a period of 240 min. MK-801 (0.03–0.30 mg/kg, i.p.) given 30 min prior to the injection of U-50,488H did not modify U-50,488H-induced analgesia. Twice daily administration of U-50,488H (25 mg/kg) for 9 days produced tolerance to its analgesic action. Administration of MK-801 (0.03 and 0.10 mg/kg) injected 30 min before each injection of U-50,488H prevented the development of tolerance to its analgesic effect. The higher dose, 0.3 mg/kg, of MK-801 had a minimal effect on U-50,488H tolerance. It is concluded that MK-801 in doses which do not affect U-50,488H-induced analgesia blocks the development of tolerance to its analgesic action in mice. These studies suggest that NMDA receptors play a crucial role in the development of tolerance to κ-opioid agonist in mice.  相似文献   

16.
The effects of NG-monomethyl-l-arginine (l-NMMA), an inhibitor of nitric oxide (NO) synthase and MK-801, an NMDA receptor antagonist on abrupt and naltrexone-precipitated abstinence symptoms were determined in male Swiss-Webster mice rendered dependent on morphine by subcutaneous implantation of a pellet containing 75 mg of morphine base for 3 days. Mice which served as controls were implanted with placebo pellets. Six hours after pellet removal, mice were injected intraperitoneally with either the vehicle or MK-801 (0.03, 0.1 and 0.3 mg/kg). Thirty minutes later the animals were injected with naltrexone subcutaneously (50 μg/kg) and the intensity of abstinence symptoms were determined. Of the three doses of MK-801 used, only 0.1 mg/kg dose inhibited the jumping behavior precipitated by naltrexone in morphine-dependent mice. Whereas the lower dose (0.03 mg/kg) of MK-801 increased, the higher doses of MK-801 (0.1 and 0.3 mg/kg) displayed a decrease in the formation of fecal boli. Administration of MK-801 did not affect the body weight loss observed during abrupt withdrawal (induced by removal of the pellets) in morphine-dependent mice. MK-801 at 0.1 mg/kg dose further decreased the body temperature during abrupt withdrawal in morphine-dependent mice. Other two doses of MK-801 (0.03 and 0.3 mg/kg) did not modify the hypothermia observed during abrupt morphine withdrawal. On the other hand, l-NMMA (0.02 to 4.0 mg/kg) injected intraperitoneally 15 min prior to the naltrexone administration blocked the stereotyped jumping response in a dose-dependent manner. Higher doses of l-NMMA 2.0 and 4.0 mg/kg also decreased the number of fecal boli formation. l-NMMA (0.2 to 4.0 mg/kg) also significantly reduced the abrupt withdrawal-induced body weight loss in morphine-dependent mice. Thus MK-801 has very little effect, which is not dose-dependent, on abrupt and antagonist-precipitated withdrawal in morphine-dependent mice. However, the l-NMMA has more profound dose-dependent effects on both the abrupt and antagonist-precipitated withdrawal in morphine-dependent mice. It is concluded that the inhibitors of NO synthase may be more beneficial than NMDA receptor antagonists in managing the symptoms of morphine abstinence syndrome.  相似文献   

17.
Ibogaine (IBO) is an alkaloid with putative antiaddictive properties, alleviating opiates dependence and withdrawal. The glutamate N-methyl-D-aspartate (NMDA) receptors have been implicated in the physiological basis of drug addiction; accordingly, IBO acts as a noncompetitive NMDA antagonist. The purpose of this study was to evaluate the effects of IBO on naloxone-induced withdrawal syndrome in morphine-dependent mice, focusing on the role of NMDA receptors. Jumping, a major behavioral expression of such withdrawal, was significantly (P<.01) inhibited by IBO (40 and 80 mg/kg, 64.2% and 96.9% inhibition, respectively) and MK-801 (0.15 and 0.30 mg/kg, 67.3% and 97.7%, respectively) given prior to naloxone. Coadministration of the lower doses of IBO (40 mg/kg) and MK-801 (0.15 mg/kg) results in 94.7% inhibition of jumping, comparable to the effects of higher doses of either IBO or MK-801. IBO and MK-801 also significantly inhibited NMDA-induced (99.0% and 71.0%, respectively) jumping when given 30 min (but not 24 h) prior to NMDA in nonaddictive mice. There were no significant differences in [3H]MK-801 binding to cortical membranes from naive animals, morphine-dependent animals, or morphine-dependent animals treated with IBO or MK-801. This study provides further evidence that IBO does have an inhibitory effect on opiate withdrawal symptoms and suggests that the complex process resulting in morphine withdrawal includes an IBO-sensitive functional and transitory alteration of NMDA receptor.  相似文献   

18.
There are experimental evidences indicating that the non-competitive NMDA receptor antagonist MK-801 impairs cognition and produces a series of schizophrenia-like symptoms in rodents (hypermotility, stereotypies and ataxia). The present study was designed to investigate the efficacy of the selective 5-HT(6) receptor antagonist Ro 04-6790 in counteracting these MK-801-induced behavioural effects in the rat. The effects of Ro 04-6790 in antagonizing MK-801-induced memory deficits were assessed using the object recognition task. The ability of this 5-HT(6) receptor antagonist in counteracting hypermotility, stereotypies and ataxia produced by MK-801 were evaluated in a motor activity cage. Post-training administration of Ro 04-6790 (10 and to some extent also 3mg/kg) antagonized MK-801-induced performance deficits in a recognition memory test. In a subsequent study, Ro 04-6790 (3 and 10 mg/kg) reversed hypermotility and ataxia produced by MK-801. This 5-HT(6) receptor antagonist also alleviated MK-801-induced certain stereotypies. Our findings indicate that Ro 04-6790 attenuates behavioural effects related to the hypofunction of the NMDA receptor suggesting that this compound might be involved in the psychotomimetic effects of non-competitive NMDA receptor antagonists.  相似文献   

19.
We examined the effects of intraperitoneal administrations of the noncompetitive NMDA receptor antagonist, (+) MK-801, its inactive enantiomer, (-) MK-801, and the prototypic opiate antagonist, naloxone, on restraint- and morphine-induced analgesia in male and female deer mice, Peromyscus maniculatus. Both restraint (30 min) and morphine (1.0 mg/kg) induced significant analgesic responses with male mice displaying significantly greater levels of opioid-induced analgesia than female animals. These analgesic responses were completely blocked by, naloxone (1.0 mg/kg), significantly reduced by (+) MK-801 (0.25 mg/kg) and unaffected by (-) MK-801 (0.25 mg/kg) pretreatments. There were significant male-female differences in the inhibitory effects of (+) MK-801; the higher levels of morphine- and restraint-induced analgesia of the males were completely blocked, while the lower level analgesic responses of the females were significantly reduced, but not blocked, by (+) MK-801. These observations provide further evidence that NMDA receptors are involved in the mediation of endogenous and exogenous opioid analgesia and show that there are significant male-female differences in the inhibitory effects of (+) MK-801 on opioid-mediated analgesia.  相似文献   

20.
Glutamate mediates its effects in mammals through both ionotropic and metabotropic receptors. Antagonists of ionotropic N-methyl-d-aspartate (NMDA) glutamate receptors elicit neuroprotective and neurotropic effects that have been attributed to Ca2+ block through the membrane ion channel. Nonetheless, molecular and biochemical effects of NMDA receptor antagonism on other glutamate receptor subunits remain poorly understood. We investigated the effects of acute administration of the noncompetitive NMDA receptor antagonist MK-801 on the mRNA expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and metabotropic glutamate receptor (mGluR) subunits to determine the contribution of different glutamate receptors in response to blockade of NMDA receptor channels. In situ hybridization to rat brain sections revealed that AMPA receptor subunits GluR3 and GluR4, and mGluR3 were modestly but significantly decreased ∼10–20%, 8 h following 5 mg/kg MK-801 administration. A time course and dose response study revealed that the effect on mGluR3 was reversed by 24 h and occurred significantly at a dose range from 1 to 5 mg/kg. These results indicate that selected AMPA and mGluR subunit mRNAs respond at the RNA level to the blockade of NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号