首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In late pregnancy maternal hypothalamo-pituitary-adrenal (HPA) axis responses to emotional and physical stressors are attenuated. This is expected to minimize the detrimental programming effects of glucocorticoid exposure on the fetuses. We have utilized a model of immune challenge, systemic administration of interleukin-1β (IL-1β), to investigate the underlying mechanisms. Intravenous IL-1β activates corticotropin-releasing hormone (CRH) neurones in the parvocellular division of the paraventricular nucleus (pPVN) via noradrenergic (A2 cell group) neurones in the nucleus tractus solitarii (NTS). Despite comparable activation of these brainstem neurones by IL-1β in virgin and in late pregnant rats, pPVN CRH neurones are activated only in virgin rats. As a consequence IL-1β fails to evoke ACTH and corticosterone secretion in late pregnant rats, in contrast to virgin rats. Suppressed responsiveness of the CRH neurones, and hence the HPA axis, following IL-1β in late pregnancy is explained by presynaptic inhibition of noradrenaline release in the pPVN, due to increased endogenous enkephalin and μ-opioid receptor production in brainstem NTS neurones. The factor that signals to the brain the pregnancy status of the animal and stimulates opioid production in the brainstem is allopregnanolone, a neurosteroid metabolite of progesterone. The supporting evidence for these mechanisms is discussed.  相似文献   

2.
Exposure of the rat to restraint results in activation of the hypothalamic-pituitary-adrenal (HPA) axis, a characteristic pattern of c-fos expression in the brain and increased cardiovascular function. These responses adapt with repeated exposure of an individual to the same stress. Corticosterone secretion habituates, and c-fos mRNA expression in the paraventricular nucleus of the hypothalamus (PVN) decreases. The increased expression of corticotropin releasing hormone mRNA in the PVN also becomes less prominent, whereas vasopressin mRNA progressively increases. The neural mechanisms responsible for this adaptation remain obscure. Because of its role in conditioned learning, we have hypothesised that the amygdala might be involved in this adaptive process. Here we show that large neurotoxic lesions of the amygdala in male rats do not prevent acute stress activation of the HPA axis following 30 min restraint, whilst more discrete lesions of the central nucleus actually exacerbate the acute response. Rats with large amygdala lesions demonstrate delayed habituation of corticosterone and c-fos to repeated restraint, an affect not apparent with central nucleus lesions. Furthermore we show that neither type of lesion significantly reduced tachycardiac responses to single or repeated restraint as measured by telemetry. We conclude that the amygdala and the central nucleus are not necessary for HPA and cardiovascular activation in response to stress (though the central nucleus may modulate it), and that adaptation to repeated stress is only modestly dependent upon the amygdala.  相似文献   

3.
Corticotropin-releasing factor has an integrative role on the behavioral, endocrine and autonomic responses to stress. Immediate-early gene (c-fos) expression was used to determine patterns of neural activity in the limbic system following i.c.v. infusion of corticotropin-releasing factor. Either 250 or 1000 pmol corticotropin-releasing factor infused into the lateral ventricle of precannulated and handled male rats resulted in marked c-fos expression 60 or 120 min later in localized regions of the basal forebrain, including the ventrolateral septum, the dorsal and medial parvicellular divisions of the paraventricular nucleus, the central nucleus of the amygdala, and dorsal bed nucleus of the stria terminalis. Pre-infusion of alpha-helical corticotropin-releasing factor (2500 pmol), a competitive corticotropin-releasing factor antagonist of corticotropin-releasing factor, had no effect on immediate-early gene expression alone but reduced that elicited by exogenous i.c.v. corticotropin-releasing factor (250 pmol)--in some areas to control levels. Fifteen minutes of restraint stress, a situation in which corticotropin-releasing factor is released endogenously, also activated c-fos expression in a pattern that resembled corticotropin-releasing factor infusions but was not identical. There was enhanced expression in the dorsal and medial areas of the paraventricular nucleus, but not its magnocellular region, and increased expression in the ventrolateral septum; however, there was no detectable response on the central amygdala. Preinfusion of alpha-helical corticotropin-releasing factor (2500 pmol) had no significant effect on stress-induced c-fos expression in the ventrolateral septum or paraventricular nucleus. This suggests that corticotropin-releasing factor release may form only a part of the central neurochemical response to restraint stress. Rats given i.c.v. corticotropin-releasing factor (250 pmol) before restraint stress showed additive effects on c-fos in the ventrolateral septum but not in the paraventricular nucleus; the central nucleus of the amygdala reacted as if corticotropin-releasing factor alone had been infused. Corticosterone levels were raised by both stress and corticotropin-releasing factor, but pretreatment with alpha-helical corticotropin-releasing factor reduced them after either procedure, which correlates with c-fos expression in the paraventricular nucleus and ventrolateral septum. These results show that corticotropin-releasing factor induces a specific pattern of c-fos expression in localized regions of the amygdala, hypothalamus and septum, which may indicate a corresponding pattern of neural activation. Restraint, one form of stress, activates c-fos in a similar but not identical manner, suggesting that corticotropin-releasing factor may not be the only neuropeptide involved in the response to this stressor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Occlusal disharmony induced by placing an acryl cap on the lower incisors of rats is perceived as chronic stress. This chronic stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN), resulting in stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. The ventral ascending noradrenergic bundles (V-NAB) from the brainstem innervate the PVN. To investigate the relationship between the response of the HPA axis and the V-NAB, we examined changes in extracellular noradrenaline (NA) in the PVN and plasma corticosterone, the final output of the HPA axis, following occlusal disharmony in rats injected with 6-hydroxydopamine (6-OHDA), a specific catecholamine neurotoxin. 6-OHDA microinjection into the V-NAB reduced the magnitude of the responses of extracellular NA in the PVN and the plasma corticosterone to occlusal disharmony. Our results suggest that V-NAB to the PVN are involved in occlusal disharmony-induced activation of the HPA axis.  相似文献   

5.
In late pregnancy maternal hypothalamo-pituitary-adrenal (HPA) axis responses to emotional and physical stressors are attenuated. This is expected to minimize the detrimental programming effects of glucocorticoid exposure on the fetuses. We have utilized a model of immune challenge, systemic administration of interleukin-1beta (IL-1beta), to investigate the underlying mechanisms. Intravenous IL-1beta activates corticotropin-releasing hormone (CRH) neurones in the parvocellular division of the paraventricular nucleus (pPVN) via noradrenergic (A2 cell group) neurones in the nucleus tractus solitarii (NTS). Despite comparable activation of these brainstem neurones by IL-1beta in virgin and in late pregnant rats, pPVN CRH neurones are activated only in virgin rats. As a consequence IL-1beta fails to evoke ACTH and corticosterone secretion in late pregnant rats, in contrast to virgin rats. Suppressed responsiveness of the CRH neurones, and hence the HPA axis, following IL-1beta in late pregnancy is explained by presynaptic inhibition of noradrenaline release in the pPVN, due to increased endogenous enkephalin and mu-opioid receptor production in brainstem NTS neurones. The factor that signals to the brain the pregnancy status of the animal and stimulates opioid production in the brainstem is allopregnanolone, a neurosteroid metabolite of progesterone. The supporting evidence for these mechanisms is discussed.  相似文献   

6.
The paraventricular nucleus of the hypothalamus contains a number of intermingled populations of neuroendocrine cell groups involved in the hormonal stress response, including cells synthesizing corticotropin-releasing hormone and oxytocin. Ascending noradrenergic afferents to the paraventricular nucleus, acting through alpha1 adrenergic receptors, are thought to play a role in stress-induced activation of the hypothalamic-pituitary-adrenal axis. We have previously demonstrated that, of the three known alpha1 adrenergic receptor subtypes, messenger RNA for the alpha1D subtype is the most prominently expressed in the paraventricular nucleus. Thus, regulation of the expression of this receptor may be important in modulation of the stress response. It is currently unknown, however, which populations of stress-related neuroendocrine cells in the paraventricular nucleus express alpha1 receptors, or whether the excitatory influence of norepinephrine in stress is exerted directly on neurons expressing oxytocin or corticotropin-releasing hormone. Thus, in the present study, we used dual in situ hybridization, combining a digoxigenin-labeled riboprobe encoding the rat alpha1D adrenergic receptor with radiolabeled riboprobes for oxytocin or corticotropin-releasing hormone, to determine the degree to which these neurons in the paraventricular nucleus express alpha1D adrenergic receptors. In sections through the rostral and mid-level paraventricular nucleus, nearly all (>95%) oxytocin neurons also expressed alpha1D messenger RNA. In contrast, the populations of corticotropin-releasing hormone- and alpha1D-expressing cells overlapped only partially, with most alpha1D expression situated more laterally. A subset (37%) of the neurons expressing corticotropin-releasing hormone also expressed alpha1D messenger RNA, and these were found almost entirely within the region of overlap in the lateral aspect of the medial parvocellular region. These observations support a direct role for alpha1 receptors in regulation of oxytocin secretion. Expression of alpha1D messenger RNA in distinct subsets of cells synthesizing corticotropin-releasing hormone may also help to clarify contradictory and inconsistent observations in the literature regarding the role of norepinephrine in the stress response, and may account for a presumed stressor-specific role for norepinephrine in activation of the hypothalamic-pituitary-adrenal axis.  相似文献   

7.
Peripheral sympathetic nerves and brainstem noradrenergic neurons of the locus coeruleus (LC) respond in parallel to a variety of stress-related stimuli which results in norepinephrine release both peripherally and centrally. Elucidation of central pathways subserving modulation of LC neurons point to extranuclear noradrenergic dendrites of LC somata that extend into peri-coerulear areas as a major target of afferents that participate in behavioral and physiological responses to stress. Anterograde tract tracing combined with immunoelectron microscopic detection of the catecholamine synthesizing enzyme tyrosine hydroxylase (TH) has demonstrated that the nucleus of the solitary tract (NTS) and the ventrolateral aspect of the periaqueductal gray (PAG), regions that participate in coordinating autonomic and motor behavior in response to stress, preferentially target the rostral ventromedial aspect of the peri-LC. In contrast, limbic forebrain afferents including the central nucleus of the amygdala (CNA) and the bed nucleus of the stria terminalis (BNST), regions that coordinate emotional responses to external stressors, provide direct synaptic input to noradrenergic dendrites that extend into rostral dorsolateral peri-coerulear areas. Neurochemical identification of transmitter systems impinging on LC indicate that the CNA provides corticotropin-releasing factor (CRF), a peptide essential for integrated physiological responses to stress, to the dorsolateral LC. Endogenous opioid peptides that originate from medullary sources, however, target primarily the "core" of the LC. Our physiological data suggest that stress engages CRF and opioid afferents to the LC, which have opposing influences on this noradrenergic system. The balance between opioid and CRF influences acting in the LC may, in part, maintain the balance of active and passive coping behaviors in response to stress. Understanding the afferent and neurochemical organization of the LC may help elucidate adaptations in neural circuits associated with stress which impact on central noradrenergic function.  相似文献   

8.
In the hypothalamus, corticotropin-releasing factor (CRF) initiates the hypothalamic-pituitary-adrenal (HPA) axis response to stress, resulting in the release of glucocorticoids, including cortisol. Extrahypothalamic CRF, particularly in the limbic system, also appears to play a role in the stress response. To further define brain CRF response to stress, immunosensor-based microdialysis probes were used to measure the extracellular levels of CRF in the paraventricular nucleus of the hypothalamus (PVN) and in the amygdala of sheep during a predator (dog) exposure stress. In addition, gamma amino butyric acid (GABA) was measured in the amygdala and cortisol was measured in venous blood. Exposure to the predator stress increased CRF in the PVN and both CRF and GABA in the amygdala. These were followed in time by a rise in venous cortisol. Application of a CRF antagonist to the amygdala, immediately prior to stress, had a small effect on the subsequent observed stress responses. This treatment, however, significantly reduced the responses to a repeat stress administered 2 days later, compared to nontreated animals. Application of a GABA antagonist to the amygdala prior to stress had no effect on the subsequent observed stress response but increased the response to the stress repeated 2 days later. Perfusion with 4-aminopyridine, a neuronal depolarising agent, into the PVN induced a release of CRF accompanied shortly thereafter by a small increase in CRF in the amygdala, and 5-10 min later by an increase in venous cortisol. Perfusion into the amygdala increased the levels of both CRF and GABA but had no effect on either PVN CRF or venous cortisol. These data support roles for both the PVN and amygdala in stress responsiveness. It suggests further that actions at the amygdala can strongly influence subsequent responsiveness to a further stress, mediated in part by both CRF and GABA actions.  相似文献   

9.
The role of brain corticotropin-releasing hormone receptors in modulating hypothalamic-pituitary-adrenal and sympathoadrenal responses to acute immobilization stress was studied in conscious rats under central corticotropin-releasing hormone receptor blockade by intracerebroventricular injection of a peptide corticotropin-releasing hormone receptor antagonist. Blood for catecholamines, adrenocorticotropic hormone and corticosterone levels was collected through vascular catheters, and brains were removed at 3 h for in situ hybridization for tyrosine hydroxylase messenger RNA in the locus coeruleus, and corticotropin-releasing hormone and corticotropin-releasing hormone receptor messenger RNA in the hypothalamic paraventricular nucleus. Central corticotropin-releasing hormone receptor blockade reduced the early increases in plasma epinephrine and dopamine, but not norepinephrine, during stress. Immobilization stress increased tyrosine hydroxylase messenger RNA levels in the locus coeruleus by 36% in controls, but not in corticotropin-releasing hormone antagonist-injected rats. In control rats, corticotropin-releasing hormone messenger RNA and type 1 corticotropin-releasing hormone receptor messenger RNA in the paraventricular nucleus increased after stress (P<0.01), and these responses were attenuated by central corticotropin-releasing hormone receptor blockade. In contrast, central corticotropin-releasing hormone antagonist potentiated plasma adrenocorticotropic hormone responses, but slightly attenuated plasma corticosterone responses to stress. The inhibition of plasma catecholamine and locus coeruleus tyrosine hydroxylase messenger RNA responses to stress by central corticotropin-releasing hormone receptor blockade supports the notion that central corticotropin-releasing hormone regulates sympathoadrenal responses during stress. The attenuation of stress-induced corticotropin-releasing hormone and corticotropin-releasing hormone receptor messenger RNA responses by central corticotropin-releasing hormone receptor blockade suggests direct or indirect positive feedback effects of corticotropin-releasing hormone receptor ligands on corticotropin-releasing hormone expression, whereas additional mechanisms potentiate adrenocorticotropic hormone responses at the pituitary level. In addition, changes in neural activity by central corticotropin-releasing hormone are likely to modulate adrenocortical responsiveness during stress.  相似文献   

10.
McNally GP  Akil H 《Neuroscience》2002,112(3):605-617
The extra-hypothalamic actions of corticotropin-releasing hormone (CRH) have been accorded an important role in coordinating responses to stressors and contributing to the consequences of drug abuse. Recent proposals suggest that CRH actions in the bed nucleus of the stria terminalis coordinate responses to tonic/unpredictable stressors whereas these actions in the central nucleus of the amygdala coordinate responses to phasic/predictable stressors. We used in situ hybridization histochemistry and site-specific microinjections of a CRH receptor antagonist to study the role of CRH in opiate withdrawal.Rats undergoing opiate withdrawal displayed clear behavioral and autonomic changes accompanied by hyperalgesia and increased plasma corticosterone. In situ hybridization of CRH mRNA revealed significant increases in the central nucleus of the amygdala but not in the bed nucleus of the stria terminalis among rats either chronically pre-treated with morphine, given an injection of naloxone, or both (precipitated withdrawal). An increase of CRH mRNA in the paraventricular nucleus of the hypothalamus was specific to rats undergoing withdrawal. Intracerebroventricular microinjection of the CRH receptor antagonist, alpha(h)CRH(9-41), reduced the severity of opiate withdrawal. Microinjections of alpha(h)CRH(9-41) into the central nucleus of the amygdala also reduced the severity of withdrawal whereas bed nucleus of the stria terminalis microinjections of alpha(h)CRH(9-41) were without effect.These experiments provide evidence for a role of amygdala, but not bed nucleus of the stria terminalis, CRH in opiate dependence. We propose a specific role for down-regulation of opiate receptor signaling in increased expression of the CRH gene in the amygdala. Moreover, we suggest that the roles accorded to CRH in the bed nucleus of the stria terminalis versus amygdala in coordinating responses to stressors may need to be reconsidered to distinguish between external and internal/interoceptive stressors.  相似文献   

11.
Single exposure to the proinflammatory cytokine interleukin-1 induces sensitization of the adrenocorticotropin hormone and corticosterone responses to stressors weeks later (hypothalamus-pituitary-adrenal sensitization). Hypothalamus-pituitary-adrenal responses are controlled by corticotropin-releasing hormone and arginine-vasopressin secreted from parvocellular corticotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus and may involve autoexcitatory feedback mechanisms. Therefore, we studied the temporal relationship between resting levels of corticotropin-releasing hormone, corticotropin-releasing hormone-R1 and arginine-vasopressin receptor (V1a, V1b) mRNAs in the paraventricular nucleus and the development of hypothalamus-pituitary-adrenal sensitization to an emotional stressor (novelty). The adrenocorticotropin hormone precursor molecule proopiomelanocortin hnRNA in the pituitary gland served as an index for acute activation. Single administration of interleukin-1 induced sensitization of the hypothalamus-pituitary-adrenal to novelty from 3 to 22 days later, but not after 42 days. Single administration of interleukin-1 induced biphasic increases in corticotropin-releasing hormone and corticotropin-releasing hormone-R1 mRNAs in the paraventricular nucleus: an early peak within 24 h, followed by a delayed (>7 days) increase that peaked after 22 days. Hypothalamic V1a and V1b mRNA levels were unaffected. In contrast, in the pituitary gland, there was an early decrease in corticotropin-releasing hormone-R1 mRNA (from 10.5 to 3 h after interleukin-1) and V1b receptor mRNA (3 to 6 h), which returned to control levels from 24 h onwards. Thus, interleukin-1-induced long-lasting hypothalamus-pituitary-adrenal sensitizations associated with prolonged activation of corticotropin-releasing hormone and corticotropin-releasing hormone-R1 mRNA expression in the paraventricular nucleus, but not with changes in the expression of proopiomelanocortin hnRNA or V1b receptor or corticotropin-releasing hormone R1 mRNAs in the pituitary gland. We propose that transient exposure to immune events can induce long-lasting hypothalamus-pituitary-adrenal sensitization, which at least in part involves long-term hypothalamic adaptations that enhance central corticotropin-releasing hormone signaling.  相似文献   

12.
In the present study, on rats, a quantitative analysis of Fos protein immunohistochemistry was performed as a way of investigating the effects of inhalation of green odor (a mixture of equal amounts of trans-2-hexenal and cis-3-hexenol) on the neuronal activations in stress-related forebrain regions induced by acute and repeated stress. Rats were exposed to restraint stress for 90 min each day for 1, 2, 4, 7, or 11 consecutive days. The hypothalamic paraventricular nucleus (PVN), amygdala, hippocampus and paraventricular thalamic nucleus (PVT) were examined. Both acute and repeated restraint stress increased Fos-positive cells in the entire hypothalamic PVN, in the central and medial amygdala, and in PVT, although these responses declined upon repeated exposure to such stress. The stress-induced Fos responses were much weaker in rats that inhaled green odor during each day's restraint. No increases in Fos-positive cells were observed in the hippocampus in acutely stressed rats. The Fos-immunoreactive response to acute stress shown by the piriform cortex did not differ significantly between the vehicle + stress and green + stress groups. Green odor had inhibitory effects on the stress-induced corticosterone response, body-weight loss, and adrenal hypertrophy. These results suggest that in rats, green odor inhalation may, in an as yet unknown way, act on the brain to suppress activity in the neuronal networks involved in stress-related responses (such as activation of the hypothalamo–pituitary–adrenocortical axis and activation of the sympathetic nervous system, as well as stress-induced fear responses).  相似文献   

13.
14.
Estrogen is likely involved in the gender specific differences in coping with stress. Activation of catecholamine (CA) biosynthetic enzyme gene expression in central and peripheral CA systems plays a key role in response to stress and in regulation of the cardiovascular system. Here we examined whether estradiol can modulate response of hypothalamic-pituitary-adrenal axis (HPA), gene expression of enzymes related to CA biosynthesis in several noradrenergic locations, tetrahydrobiopterin (BH4) concentration and blood pressure (BP) in response to immobilization stress (IMO) of ovariectomized female rats. Rats were injected with 25 mug/kg estradiol benzoate (EB) or sesame oil once daily for 16 days and subsequently exposed to two hours of IMO. The IMO triggered elevation in plasma ACTH was lessened in EB-pretreated animals. However, estradiol did not alter the IMO-elicited rise of tyrosine hydroxylase mRNA levels in adrenal medulla (AM) and in the nucleus of solitary track (NTS) compared with controls. The response of GTP cyclohydrolase I (GTPCH) mRNA in AM to IMO was also similar in both groups. Several responses to IMO in EB-treated rats were reversed. Instead of IMO-elicited elevation in dopamine beta-hydroxylase mRNA levels in the locus coeruleus, GTPCH mRNA and BH4 levels in the NTS, they were reduced by IMO. In a parallel experiment, BP was monitored during restraint stress. The elevation of BP in response to single or repeated restraint stress was sustained during 2 h in controls and reduced after 70 min stress in EB treated rats. One month after withdrawal of EB treatment, the BP response to restraint was similar to that of rats which never received EB. The results demonstrate that estrogen can modulate responses to stress affecting HPA axis, CA biosynthesis, in central and peripheral noradrenergic systems, and BP.  相似文献   

15.
Limbic and HPA axis function in an animal model of chronic neuropathic pain   总被引:4,自引:0,他引:4  
Chronic pain can be considered a form of chronic stress, and chronic pain patients often have disturbances of the hypothalamic-pituitary-adrenal (HPA) axis, including abnormal cortisol levels. In addition, chronic pain patients have an increased incidence of depression and anxiety, stress-related disorders that are frequently accompanied by disturbances in the limbic system (e.g. hippocampus and amygdala) and the HPA axis. Despite the fact that the literature supports a strong link between chronic pain, stress disorders, and limbic dysfunction, the mechanisms underlying the effects of chronic pain on the HPA axis and limbic system are not understood. The current study employs a rodent neuropathic pain model (chronic constriction injury (CCI) of the sciatic nerve) to assess the long-term impact of chronic pain on the HPA axis and limbic system. Adult male rats received CCI or sham surgery; nociceptive behavioral testing confirmed CCI-induced neuropathic pain. Tests of HPA axis function at 13-23 days postsurgery demonstrated that CCI did not affect indices of basal or restraint stress-induced HPA axis activity. CCI increased the expression of corticotrophin releasing hormone mRNA in the central amygdala, and not the paraventricular nucleus of the hypothalamus or the bed nucleus of the stria terminalis. Moreover, glucocorticoid receptor mRNA expression in CCI rats was increased in the medial and central amygdala, unaffected in the paraventricular nucleus, and decreased in the hippocampus. These results suggest that increased nociceptive sensitivity during chronic pain is associated with alterations in the limbic system, but is dissociated from HPA axis activation.  相似文献   

16.
Ma S  Morilak DA 《Neuroscience》2004,124(4):963-972
Activation of the brain noradrenergic system during acute stress is thought to play an important integrative function in coping and stress adaptation by facilitating transmission in many brain regions involved in regulating behavioral and physiologic components of the stress response. Compared with outbred control Sprague-Dawley (SD) rats, inbred Wistar-Kyoto (WKY) rats exhibit an exaggerated hypothalamic-pituitary-adrenal (HPA) response as well as increased susceptibility to certain forms of stress-related pathology. However, we have also shown previously that WKY rats exhibit reduced anxiety-like behavioral reactivity to acute stress, associated with reduced activation of the brain noradrenergic system. Thus, to understand better the possible neurobiological mechanisms underlying dysregulation of the stress response in WKY rats, we investigated potential strain differences in stress-induced neuronal activation in brain regions that are both involved in regulating behavioral and neuroendocrine stress responses, and are related to the noradrenergic system, either as targets of noradrenergic modulation or as sources of afferent innervation of noradrenergic neurons. This was accomplished by visualizing stress-induced expression of Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, lateral bed nucleus of the stria terminalis, central nucleus of the amygdala, and medial nucleus of the amygdala (MeA), as well as the noradrenergic nucleus locus coeruleus (LC). Stress-induced Fos expression was found to be decreased in the LC and MeA of WKY rats compared with similarly stressed SD rats, whereas no strain differences were observed in any of the other brain regions. This suggests that strain-related differences in activation of the MeA may be involved in the abnormal neuroendocrine and behavioral stress responses exhibited by WKY rats. Moreover, as the MeA is both an afferent as well as an efferent target of the brainstem noradrenergic system, reduced MeA activation may either be a source of reduced noradrenergic reactivity seen in WKY rats, or possibly a consequence. Nonetheless, understanding the mechanisms underlying altered stress reactivity in models such as the WKY rat may contribute to a better understanding of stress-related psychopathologies such as depression, post-traumatic stress disorder or other anxiety disorders.  相似文献   

17.
The medial prefrontal cortex is important for normal regulation of stress responses, and is implicated in stress-related affective disease states (e.g. depression). In the current study, we investigated the role of the prelimbic division of the prefrontal cortex in control of responses to psychogenic and systemic stressors (restraint and hypoxia, respectively). Acute stimulation of the prelimbic cortical region with bicuculline methiodide (BMI) caused significant reduction of ACTH and corticosterone responses to restraint and reduced Fos activation of paraventricular nucleus neurons, consistent with a role in central inhibition of acute psychogenic stress responses. In contrast, BMI enhanced corticosterone (but not ACTH) responses to hypoxia via a mechanism suggestive of central PVN drive and enhanced adrenal sensitivity. Acute BMI increased restraint stress-induced Fos activation in known downstream targets of the prelimbic cortex (e.g., the basolateral amygdala and central amygdaloid nuclei), suggesting a connection between modulation of amygdalar signaling and stress inhibition. In contrast, hypoxia caused robust Fos activation in the basolateral and central amygdala, which was not affected by prelimbic BMI injection. The data suggest that the prelimbic cortex stimulation is sufficient to trigger inhibition of the HPA axis to psychogenic stress, but may play a very different role in enhancing HPA responsiveness to physical threats.  相似文献   

18.
19.
The present study was designed to investigate whether mild stress during pregnancy affects offspring behaviors, including learning performance. Prenatal stress was induced by short-lasting, mild restraint stress, which had previously been shown to facilitate the morphological development of fetal brain neurons. Adult offspring whose dams had been restrained in a small cage for 30min daily from gestation day 15 to 17 showed enhanced active avoidance and radial maze learning performance. In addition, the prenatally stressed rats showed weaker emotional responses than unstressed control, as indicated by decreases both in ambulation upon initial exposure to an open field and in Fos expression in the amygdala induced by physical stress. The observed effects of prenatal stress on learning performance and emotional behavior were attenuated by foster rearing by unstressed dams. Fos expression in the hypothalamic paraventricular nucleus following physical stress and corticosterone secretion during physical and psychological stress did not differ between the prenatally stressed and unstressed control rats. From these results we suggest that mild prenatal stress facilitates learning performance in the adult offspring. The enhancement of learning performance appears to be accompanied by reduced emotionality, but not by any apparent alterations in hypothalamic-pituitary-adrenal responses. In addition, the observation of differential behaviors in the adopted and non-adopted animals supports the notion that the postnatal environment modifies the behavioral effects of prenatal stress.  相似文献   

20.
The complement anaphylatoxin C5a is a potent mediator of the innate immune response to infection. Recent evidence also reveals that C5a contributes to central nervous system effects in addition to its well-known peripheral functions. However, it is not known if C5a has a role in the activation of the hypothalamic–pituitary–adrenal (HPA) axis; a critical cascade that exemplifies neuroimmune interactions between the periphery and the brain. In the present study we examined if systemic pre-treatment with a C5a receptor antagonist, PMX53, can affect lipopolysaccharide-induced (LPS; 1 mg/kg, i.p.) activation of the HPA axis in the rat. Using Fos protein as a marker of neuronal activation, we found that systemic administration of PMX53 reduced the LPS-induced activation of paraventricular corticotropin-releasing factor (PVN CRF) and central amygdala cells. However, PMX53 did not alter LPS-induced responses in the bed nucleus of the stria terminalis, nucleus tractus solitarius and ventrolateral medulla. Our findings demonstrate that C5a may have a role in the activation of the HPA axis in response to systemic LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号