首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spliceosome-mediated RNA trans-splicing.   总被引:1,自引:0,他引:1  
RNA repair or reprogramming is a new avenue for human gene therapy. Unlike conventional gene therapy, in which exogenous cDNAs are introduced into cells, RNA repair approaches, which are based on spliceosome-mediated pre-mRNA trans-splicing, trans-splicing ribozymes, and tRNA-splicing endonuclease, allow the correction of endogenous RNA species. Recently published accounts that in vivo phenotypic correction of a variety of inherited diseases can be achieved by RNA repair are encouraging. Nevertheless, the science of RNA repair for treatment of human diseases is just beginning and faces several scientific and technical challenges that must be addressed and surmounted. In this review, we summarize recent advances in spliceosome-mediated pre-mRNA trans-splicing. We also provide an update on the progress of this emerging technology toward the development of molecular therapy and diagnosis for human diseases and discuss the outstanding issues and challenges confronting RNA therapeutics.  相似文献   

2.
3.
Gene therapy, a potential solution to hereditary and nonhereditary diseases, faces the challenges of safe and specific gene delivery. Cationic carrier molecules (e.g., liposome and polymers) that form noncovalent complexes with negatively charged DNA have been in use as nonviral gene delivery vectors. Although they tend to be relatively less efficient than viral systems, they have inherent advantages of flexibility and safety. Their derivatives, in conjugation with functional molecules such as peptides, proteins, growth factors, and antibodies, have been focused on to generate nanocarriers with low toxicity, high stability, high efficiency, and cell-specific targeting features. Here we describe internalizing polyclonal and monoclonal antibodies against a stress chaperone, mortalin/mtHsp70. We demonstrate that these internalizing anti-mortalin antibodies (i-mot Ab) could be employed for (1) internalization of nanoparticles (quantum dots, Qdots) and the generation of illuminating cells and (2) gene delivery. By using cancer and normal human cells in parallel, we further demonstrate that gene delivery can be specifically enhanced in human cancer cells if cationic polymer polyethylenimine (PEI) and i-mot Ab complex are used and may provide a novel cancer-targeting nanocarrier.  相似文献   

4.
Cisplatin is widely used for the treatment of numerous types of cancer, while its application is limited by the adverse side effects for its poor selectivity. Trastuzumab is a highly targeting protein to HER2 protein, and it is usually combined with paclitaxel or cisplatin for the treatment of HER2-overexpressing breast cancer. In the present work, we used trastuzumab as a targeting carrier for platinum drug delivery. In ELISA assays and immunofluorescence study, Tmab-1 exhibited high and specific binding affinity to HER2 protein and HER2-overexpressing SK-BR-3 cells. In cytotoxicity test, Tmab-1 showed promising antiproliferative activity to SK-BR-3 cells, while it hardly inhibited the growth of MCF-7 cells and MDA-MB-231 cells. The cell cycle arrest study showed Tmab-1 induced the cell cycle arrest mainly at G2/M phase. This work indicates that trastuzumab is an effective and potential targeting carrier for drug delivery.  相似文献   

5.
The capsid proteins of adenovirus serotype 5 (Ad5) are key to the virus' highly efficient cell binding and entry mechanism. In particular, the penton base plays a significant role in both viral internalization and endosome penetration. We have produced an adenovirus penton fusion protein (HerPBK10) containing moieties for DNA transport and targeted delivery to breast cancer cells. HerPBK10 binds DNA through a polylysine appendage, while the EGF-like domain of the heregulin-alpha(1) isoform is used as the targeting ligand. This ligand binds with high affinity to HER2/3 or HER2/4 heterodimers, which are overexpressed on certain aggressive breast cancers. In addition, this ligand is rapidly internalized after binding, thus adding to the utility of heregulin for targeting. HerPBK10 binds MDA-MB-453 breast cancer cells in a receptor-specific manner, and mediates the entry of a reporter plasmid in MDA-MB-453 cells in culture. Delivery can be competed by excess heregulin peptide, thus confirming receptor specificity. Importantly, the penton segment appears to contribute significantly to enhanced delivery. Complexes containing HerPBK10 and DNA have been optimized to provide targeted gene delivery to breast cancer cells in vitro. We demonstrate that delivery can be accomplished in the presence of serum, thus suggesting a potential use for in vivo delivery.  相似文献   

6.
7.
8.
Anti-GAD antibody targeted non-viral gene delivery to islet beta cells.   总被引:1,自引:0,他引:1  
An islet cell targeting polymeric gene carrier was synthesized by conjugating anti-GAD Fab' fragment to PEI via PEG linker (PEI-PEG-Fab'). The Fab' fragment was prepared from a murine monoclonal antibody against glutamic acid decarboxylase (GAD), which has been identified as one of the major auto-antigens expressed in islet cells, and used as a targeting moiety for islet cell targeting. The electrophoretic migration of plasmid DNA (pCMVLuc)/PEI-PEG-Fab' complexes in agarose gel was completely retarded above the N/P ratio of 2. The complexes demonstrated a size of 100-275 nm with an almost neutral surface charge. Confocal microscopy revealed that the PEI-PEG-Fab' complexes showed much higher cellular binding and uptake efficiency compared to PEI-PEG complexes. The PEI-PEG-Fab' showed about 10-fold higher transfection efficiency (relative luciferase activity) than PEI-PEG in GAD-expressing mouse insulinoma cells (MIN6), however the transfection efficiency of PEI-PEG-Fab' reduced to that of PEI-PEG in GAD negative cells (293) and in the presence of competitive free Fab'. Considering the neutral surface charge of its complexes with DNA, and selectivity toward the islet cells expressing a specific antigen, the PEI-PEG-Fab' conjugate could be thought as a potential candidate of the systemic gene therapy for the treatment of type I diabetes.  相似文献   

9.
Artificial polymeric cells for targeted drug delivery.   总被引:1,自引:0,他引:1  
Selectins are optimal biological molecules for targeted delivery of therapeutic agents because of their localized and carefully regulated expression in several human diseases, and their highly specific interactions with their counter receptors. In this study, we describe a targeted delivery system that can potentially deliver anti-inflammatory drug to sites of chronic inflammation using Poly(lactic-co-glycolic acid) (PLGA) and selectin-ligand chemistry. Biotinylated-sialyl Lewis(x) (sLe(x)), a carbohydrate that serves as a ligand to selectins, was attached to the surface of avidin-linked PLGA microspheres. These carbohydrate-coated microspheres mimic the adhesive behavior of leukocytes on selectins in flow chambers, displaying slow rolling under flow. The rolling velocity of these artificial leukocytes is similar to that displayed by leukocytes rolling on P- or E-selectin coated surfaces. We can tune rolling velocity, and hence residence time of capsules on surfaces, by changing the density of sialyl Lewis(x) on the microsphere surfaces. Therefore, we have made a targeted drug delivery vehicle that mimics the adhesive properties of leukocytes and is biodegradable.  相似文献   

10.
Most messenger RNA precursors (pre-mRNA) undergo cis-splicing in which introns are excised and the adjoining exons from a single pre-mRNA are ligated together to form mature messenger RNA. This reaction is driven by a complex known as the spliceosome. Spliceosomes can also combine sequences from two independently transcribed pre-mRNAs in a process known as trans-splicing. Spliceosome-mediated RNA trans-splicing (SMaRT) is an emerging technology in which RNA pre-therapeutic molecules (PTMs) are designed to recode a specific pre-mRNA by suppressing cis-splicing while enhancing trans-splicing between the PTM and its pre-mRNA target. This study examined the feasibility of SMaRT as a potential therapy for genetic diseases to correct mutations using cystic fibrosis (CF) as an example. We used several versions of a cystic fibrosis transmembrane conductance regulator (CFTR) mini-gene expressing mutant (deltaF508) pre-mRNA targets and tested this against a number of PTMs capable of binding to the CFTR target intron 9 and trans-splicing in the normal coding sequences for exons 10-24 (containing F508). When 293T cells were cotransfected with both constructs, they produced a trans-spliced mRNA in which normal exon 10-24 replaced mutant exon 10. To test whether SMaRT produced mature CFTR protein, proteins were immunoprecipitated from lysates of cotransfected cells and detected by Western blotting and PKA-phosphorylation. Tryptic phosphopeptide mapping confirmed the identity of CFTR. This proof-of-concept study demonstrates that exon replacement by SMaRT can repair an abnormal pre-mRNA associated with a genetic disease.  相似文献   

11.
12.
Exposure of MCF-7 breast and PC-3 prostate cancer cells to 10 W microwaves at 2.45 GHz increased their uptake of the cancer drug doxorubicin from media by almost 100%, concomitantly increasing cell death, while microwave exposure alone had no cellular toxicity. Addition of inhibitors of endocytosis during the treatment of MCF-7 cells with doxorubicin and microwaves showed no impact on the uptake of the anticancer drug. Furthermore, the uptake of oligonucleotides by MCF-7 cells is not affected by the treatment with microwaves. These observations suggest that endocytosis is not involved in the uptake of doxorubicin while cells are exposed to microwave irradiation. Thus, targeted low power microwave irradiation could be a safe and effective means of promoting chemotoxin delivery to cancer cells, potentially reducing the dosages and side effects of anti-cancer drugs.

Exposure of MCF-7 breast and PC-3 prostate cancer cells to 10 W microwaves at 2.45 GHz increased their uptake of doxorubicin from media by almost 100%, concomitantly increasing cell death, while microwave exposure alone had no cellular toxicity.  相似文献   

13.
A variety of mutations in the p53 tumor suppressor gene have been found in over half of human tumors. Thus, restoration of wild-type p53 activity by repair of mutant RNA has been previously suggested as an approach to cancer treatment. To explore the potential utility of RNA repair for cancer therapy, we developed a group I intron-based ribozyme that can replace mutant p53 RNA with a wild-type RNA sequence attached to the 3' end of the ribozyme by trans-splicing reaction. First, RNA mapping analysis demonstrated that the leader sequences upstream of the AUG start codon in the mutant p53 RNA appeared to be particularly accessible to the ribozymes. Then, the trans-splicing ribozyme specifically recognizing the most accessible sequence induced functional p53 activity, resulting in an 8- and a 2.6-fold induction of transactivation of p53-responsive promoters in two mutant p53-related ovarian cancer cell lines, SKOV3 cells and 2774 cells, respectively, by repairing defective p53 RNA. The repair efficiency of the mutant p53 RNA was almost 10% in 2774 cells. Moreover, the ribozyme activated the expression level of endogenous p21 and Bax genes in the cells. Furthermore, apoptosis was efficiently triggered in the human cancer cells transfected with the specific ribozyme. These results suggest that a trans-splicing ribozyme could be a potent anti-cancer agent that can revert the defective p53-related neoplastic phenotype.  相似文献   

14.
15.
Targeted delivery of intravenously administered genetically altered cells or stem cells is still in an early stage of investigation. We developed a method of delivering iron oxide (ferumoxide)-labeled mesenchymal stem cells (MSCs) to a targeted area in an animal model by applying an external magnet. Rats with or without an external magnet placed over the liver were injected intravenously with ferumoxide-labeled MSCs and magnetic resonance imaging (MRI) signal intensity (SI) changes, iron concentration, and concentration of MSCs in the liver were monitored at different time points. SI decreased in the liver after injection of MSCs and returned gradually to that of control rat livers at approximately day 29. SI decreases were greater in rats with external magnets. Higher iron concentration and increased labeled cell numbers were detected in rat livers with external magnets. The external magnets influenced the movement of labeled MSCs such that the cells were retained in the region of interest. These results potentially open a new area of investigation for delivering stem cells or genetically altered cells.  相似文献   

16.
Telomerase plays a key role in cell fate: loss of telomerase in normal differentiated cells heralds senescence and limits cell division, whereas reactivation of telomerase sustains proliferation and potentiates mutagenesis and transformation. Given this pivotal role, telomerase has been the subject of intense investigation in the field of developmental cancer therapeutics. To date, a broad spectrum of therapeutic strategies has been developed, ranging from direct targeting or reprogramming of the enzyme, to immune or virus-mediated targeting of cells expressing telomerase, to strategies focusing on the telomeres themselves. The recent discovery and growing interest in cancer stem cells has thrust telomerase therapy into new relief as an approach that may be uniquely suited to neutralizing this treatment-resistant subpopulation of cancer cells. Here we will review the mechanistic rationale and preclinical and clinical state of development of the various telomerase-based therapeutic approaches, with emphasis on the role of telomerase in cancer stem cell biology and its implications for therapeutic efforts.  相似文献   

17.
Prostate-specific membrane antigen (PSMA) is a membrane-bound protein that is preferentially expressed in the prostate gland and induced in many prostate cancers, making it an important target for new diagnostics and therapeutics. To improve the efficacy of nanoparticle formulations for the imaging and/or eradication of prostate cancer, we synthesized the PSMA-binding glutamic acid derivative DUPA and conjugated it to the external surface of tobacco mosaic virus (TMV) particles. DUPA-targeted TMV was subsequently loaded with the antineoplastic agent mitoxantrone (MTO) or conjugated internally with the fluorescent dye cyanine 5 (Cy5). We found that TMV particles could be efficiently decorated with DUPA and loaded with MTO or Cy5 while maintaining structural integrity. DUPA-targeted TMV particles were able to bind more efficiently to the surface of PSMA+ LNCaP cells compared to non-targeted TMV; but there was little difference in binding efficiency between targeted and untargeted TMV when we tested PSMA PC3 cells (both cell lines are prostate cancer cell lines). DUPA-targeted TMV particles were internalized by LNCaP cells enabling drug delivery. Finally, we loaded the DUPA-targeted TMV particles and untargeted control particles with MTO to test their cytotoxicity against LNCaP cells in vitro. The cytotoxicity of the TMV-MTO particles (IC50 = 10.2 nM) did not differ significantly from that of soluble MTO at an equivalent dose (IC50 = 12.5 nM) but the targeted particles (TMV-DUPA-MTO) were much more potent (IC50 = 2.80 nM). The threefold increase in cytotoxicity conferred by the DUPA ligand suggests that MTO-loaded, DUPA-coated TMV particles are promising as a therapeutic strategy for PSMA+ prostate cancer and should be advanced to preclinical testing in mouse models of prostate cancer.

Prostate-specific membrane antigen (PSMA) is a membrane-bound protein that is preferentially expressed in the prostate gland and induced in many prostate cancers, making it an important target for new diagnostics and therapeutics.  相似文献   

18.
Angiogenesis is an attractive target for cancer therapy, due to its central position in tumor growth and development. Vascular Endothelial Growth Factor (VEGF) and its receptors (VEGFRs) play a key role in the angiogenic process. A promising strategy for targeting VEGF-mediated angiogenesis is RNA interference (RNAi) using short interfering RNA (siRNA). However, for efficacious RNAi a well-designed siRNA delivery system is crucial. Liposome-Polycation-DNA (LPD) particles form a promising system for siRNA delivery to tumors. In order to target angiogenic endothelial cells, LPD particles may be modified with a targeting ligand, such as a cyclic Arg-Gly-Asp (RGD) peptide that specifically binds to integrins expressed on tumor-associated endothelial cells. In the current study, RGD-targeted PEGylated LPD particles containing VEGFR-2 siRNA were prepared and optimized with respect to their size and charge by varying protamine content, carrier DNA content for stronger complexation, and PEGylation density. The size of the optimized particles was around 200 nm and the ζ-potential was approximately +20 mV. The uptake and silencing efficacy of the RGD-targeted PEGylated LPD particles were evaluated in H5V cells (murine endothelial cells) and Human Umbilical Vein Endothelial cells (HUVECs). When compared to non-targeted LPD particles, enhanced uptake and silencing of VEGFR-2 expression was observed for RGD-targeted PEGylated LPD particles. In conclusion, the RGD-targeted PEGylated LPD particles containing VEGFR-2 siRNA presented here may be a promising approach for targeting VEGF-mediated angiogenesis in cancer therapy.  相似文献   

19.
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.  相似文献   

20.
Nanoparticles (NPs) have been extensively investigated for applications in both experimental and clinical settings to improve delivery efficiency of therapeutic and diagnostic agents. Most recently, novel multifunctional nanoparticles have attracted much attention because of their ability to carry diverse functionalities to achieve effective synergistic therapeutic treatments. Multifunctional NPs have been designed to co-deliver multiple components, target the delivery of drugs by surface functionalization, and realize therapy and diagnosis simultaneously. In this review, various materials of diverse chemistries for fabricating multifunctional NPs with distinctive architectures are discussed and compared. Recent progress involving multifunctional NPs for immune activation, anticancer drug delivery, and synergistic theranostics is the focus of this review. Overall, this comprehensive review demonstrates that multifunctional NPs have distinctive properties that make them highly suitable for targeted therapeutic delivery in these areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号