首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation of tumor-directed cytotoxic T lymphocytes is considered crucial for the induction of antitumor immunity. To activate these CD8(+) T?cells, antigen-presenting cells (APCs) must initially acquire tumor cell-associated antigens. The major source of tumor antigens is dead tumor cells, but little is known about how APCs in draining lymph nodes acquire and crosspresent these antigens. Here we show that CD169(+) macrophages phagocytose dead tumor cells transported via lymphatic flow and subsequently crosspresent tumor antigens to CD8(+) T?cells. Subcutaneous immunization with irradiated tumor cells protects mice from syngenic tumor. However, tumor antigen-specific CD8(+) T?cell activation and subsequent antitumor immunity are severely impaired in mice depleted with CD169(+) macrophages. Neither migratory dendritic cells (DCs) nor lymph node-resident conventional DCs are essential for the crosspresentation of tumor antigens. Thus, we have identified CD169(+) macrophages as lymph node-resident APCs dominating early activation of tumor antigen-specific CD8(+) T?cells.  相似文献   

2.
In this study we report the characterization of a population of lung resident CD11b(-)CD11c(+) cells that are able to take up inhaled antigen and retain it for extended periods of time. Ovalbumin conjugated to fluorescein-isothiocyanate (FITC-OVA) administered intranasally to mice was taken up by two main populations of cells in the lung, a migratory CD11c(+)CD11b(+) population consisting of dendritic cells (DC), which rapidly transported antigen to the draining lymph node (LN), and a resident CD11b(-)CD11c(+) population that retained engulfed antigen without apparently degrading it for up to 8 wk after administration. The FITC(+)CD11b(-)CD11c(+) cells did not migrate to draining LN at a detectable rate, and did not up-regulate expression of costimulatory molecules in response to LPS treatment. FITC(+)CD11b(-)CD11c(+) cells were found in the lung and bronchoalveolar lavage fluid, and their distribution was compatible with macrophages. Although FITC(+)CD11b(-)CD11c(+) cells expressed the DC marker DEC205 and other molecules associated with antigen-presenting cell function, they did not induce proliferation of antigen-specific CD4(+) T cells in vitro or acute cytokine production by activated CD4(+) T cells in vivo. Thus, FITC(+)CD11b(-)CD11c(+) cells appear to represent an intermediate cell type sharing properties with DC and macrophages. These cells may have a role in modulating the responses of lung resident T cells to inhaled antigens.  相似文献   

3.
Coeliac disease is a chronic inflammation of the intestinal mucosa controlled by gluten-specific T cells restricted by disease-associated HLA-DQ molecules. We have previously reported that mucosal CD11c(+) dendritic cells (DCs) are responsible for activation of gluten-reactive T cells within the coeliac lesion. In mice, intestinal CD11c(+) DCs comprise several functionally distinct subsets. Here, we report that HLA-DQ(+) antigen-presenting cells (APCs) in normal human duodenal mucosa can be divided into four subsets with striking similarities to those described in mice: CD163(+) CD11c(-) macrophages (74%), and CD11c(+) cells expressing either CD163 (7%), CD103 (11%) or CD1c (13%). CD103(+) and CD1c(+) DCs belonged to partly overlapping populations, whereas CD163(+) CD11c(+) APCs appeared to be a distinct population. In the coeliac lesion, we found increased density of CD163(+) CD11c(+) APCs, whereas the density of CD103(+) and CD1c(+) DCs was decreased, suggesting that distinct subpopulations of APCs in coeliac disease may exert different functions in the pathogenesis.  相似文献   

4.
Here we identified Ito cells (hepatic stellate cells, HSC), known for storage of vitamin A and participation in hepatic fibrosis, as professional liver-resident antigen-presenting cells (APC). Ito cells efficiently presented antigens to CD1-, major histocompatibility complex (MHC)-I-, and MHC-II-restricted T cells. Ito cells presented lipid antigens to CD1-restricted T lymphocytes such as natural killer T (NKT) cells and promoted homeostatic proliferation of liver NKT cells through interleukin-15. Moreover, Ito cells presented antigenic peptides to CD8(+) and CD4(+) T cells and mediated crosspriming of CD8(+) T cells. Peptide-specific T cells were activated by transgenic Ito cells presenting endogenous neoantigen. Upon bacterial infection, Ito cells elicited antigen-specific T cells and mediated protection. In contrast to other liver cell types that have been implicated in induction of immunological tolerance, our data identify Ito cells as professional intrahepatic APCs activating T cells and eliciting a multitude of T cell responses specific for protein and lipid antigens.  相似文献   

5.
Keratocytes express MHC class I molecules constitutively, and keratocytes stimulated with IFN-gamma express MHC class II molecules. Unstimulated keratocytes constitutively express B7-1 and ICAM-1, as well as low levels of CD40 and 4-1BBL. These findings indicate that keratocytes may deliver both antigen-specific and costimulatory signals to CD4(+) and CD8(+) T cells. To demonstrate that keratocytes expressing B7-1 provide a costimulatory signal to T cells, CD4(+) or CD8(+) mouse T cells were incubated with anti-CD3 mAb and irradiated keratocytes. Enhanced proliferation of both CD4(+) and CD8(+) T cells occurred, and could be inhibited by anti-B7-1 mAb, indicating T cell costimulatory activity by B7-1 on the keratocytes. To demonstrate that keratocytes can deliver an antigen-specific signal, CD4(+) and CD8(+) T cells from herpes-infected mice were incubated with HSV-1-infected, irradiated keratocytes. The resulting T cell proliferation and production of Th1 cytokines (IL-2, IFN-gamma) indicated T cell activation by antigens presented by the infected keratocytes. These results show that keratocytes in the corneal stroma of the mouse can function as antigen-presenting cells and, thus, may play a role in immune-mediated stromal inflammation such as herpetic stromal keratitis.  相似文献   

6.
Functional analysis of antigen-specific CD8(+) T cells is important for understanding the immune response in various immunological disorders. To analyze CD8(+) T cell responses to a variety of antigens with no readily defined peptides available, we developed a system using CD4(+) phytohemagglutinin (PHA) blasts transduced with mRNA for antigen molecules. CD4(+) PHA blasts express MHC class I and II, and also CD80 and CD86 and are thus expected to serve as potent antigen presenting cells. EGFP mRNA could be transduced into and the protein expressed by more than 90% of either LCL or CD4(+) PHA blasts. Its expression stably persisted for more than 2 weeks after transduction. In experiments with HLA-A*2402 restricted CD8(+) CTL clones for either EBNA3A or a cancer-testis antigen, SAGE, mRNA-transduced lymphoid cells were appropriate target cells in ELISPOT assays or (51)Cr releasing assays. Finally, using CD4(+) PHA blasts transduced with mRNA of a cancer-testis antigen MAGE-A4, we successfully generated specific CTL clones that recognized a novel HLA-B*4002 restricted epitope, MAGE-A4(223-231). Messenger RNA-transduced CD4(+) PHA blasts are thus useful antigen presenting cells for analysis of CD8(+) T cell responses and induction of specific T cells for potential immunotherapy.  相似文献   

7.
Interactions between MHC class II (MHC II)-positive APCs and CD4(+) T cells are central to adaptive immune responses. Using an Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell line (LCL) as MHC II-positive APCs and CD4(+) T-cell clones specific for two endogenously expressed EBV antigens, we found that shRNA knockdown of the tetraspanin protein CD63 in LCL cells consistently led to increased CD4(+) T-cell recognition. This effect was not due to enhanced antigen processing nor to changes in MHC II expression since CD63 knockdown did not influence the amount or dimerization of MHC II in LCL cells. We therefore investigated the possible involvement of exosomes, small MHC II- and tetraspanin-abundant vesicles which are secreted by LCL cells and which we found could themselves activate the CD4(+) T-cell clones in an MHC II-dependent manner. While equal loadings of exosomes purified from the control and CD63(low) LCLs stimulated T cells to a comparable degree, we found that exosome production significantly increased following CD63-knockdown, suggesting that this may underlie the greater T-cell stimulatory capacity of the CD63(low) LCLs. Taken together, our data reveal a new insight into the mechanisms by which tetraspanins are involved in the regulation of MHC II-dependent T-cell stimulation.  相似文献   

8.
MHC class II tetramers are attractive tools to study antigen-specific CD4(+) T cell responses in various clinical situations in humans. HLA-DRA1*0101/DRB1*0401 MHC class II heterodimers were produced as empty molecules using the Drosophila melanogaster expression system. Peptide binding experiments revealed that these molecules could be loaded efficiently with appropriate MHC class II tumor epitopes. Interestingly, MHC class II tetramer staining was influenced by modifications in membrane lipid rafts, and could in itself induce activation changes of stained CD4(+) T cells at 37 degrees C. In order to increase the threshold of detection of poorly represented peripheral antigen-specific CD4(+) T cells, we combined cell sorting using MHC class II multimer beads together with TCR analysis using the immunoscope technology. This strategy greatly increased the sensitivity of detection of specific CD4(+) T cells to frequencies as low as 4 x 10(-6) among peripheral blood mononuclear cells. Such a combined approach may have promising applications in the immunomonitoring of patients under vaccination protocols to tightly follow induced antigen-specific CD4(+) T cells expressing previously identified TCR.  相似文献   

9.
It is well established that full activation of T cells to recognize a specific antigen requires additional signals. These secondary signals are generated by the interaction of costimulatory molecules expressed on APCs. Classical APCs include DCs, macrophages, Langerhans cells, and B cells. However, in recent years, several haematopoietic and nonhaematopoietic cells have been described to express MHC class II antigens and, in appropriate conditions, costimulatory molecules. In this issue, Suurmond et al. [Eur. J. Immunol. 2016. 46: 1132–1141] show, for the first time, that human mast cells not only express costimulatory molecules of the TNF‐receptor and CD28 families, but can also costimulate T cells through a yet‐to‐be‐defined CD28‐independent interaction.  相似文献   

10.
Major histocompatibility (MHC) class II heterodimers bind peptides generated by degradation of endocytosed antigens and display them on the surface of antigen presenting cells (APCs) for recognition by CD4+ T cells. Efficient loading of MHC class II molecules with peptides is catalyzed by the MHC class II-like molecule H2-M. The coordinate regulation of MHC class II and H2-M expression is a prerequisite for efficient MHC class II/peptide assembly in APCs determining both the generation of the T cell repertoire in the thymus and cellular immune responses in the periphery. Here we show that expression of H2-M and MHC class II genes is coordinately and cell type-specific regulated in splenic B cells, splenic dendritic cells (DCs) and peritoneal macrophages (Mphi) in response to proinflammatory and immunoregulatory cytokines, including GM-CSF, IFN-gamma, TGF-beta2, IL-4, IL-10 and viral IL-10. In addition, ratio-RT-PCR expression analysis of the duplicated H2-Mbeta-chain loci demonstrates for the first time that Mbl and Mb2 genes are differentially expressed in individual APC types. Mb2 is preferentially expressed in IL-4, GM-CSF, IL-10, vIL-10 and IFN-gamma stimulated splenic B cells, whereas splenic DCs express both Mb genes at almost equal levels. In contrast, peritoneal Mphi express predominantly Mb2 but stimulation with IFN-gamma induces a switch towards Mb1 expression. These data suggest a common mechanism that regulates coordinate expression of H2-M and MHC class II genes in professional APCs. Differential expression of Mb1 and Mb2, and by consequence alternative H2-M isoforms (Malphabeta1 or Malphabeta2), may influence the nature of the peptide repertoire presented by different APC types.  相似文献   

11.
12.
Adoptive transfer of in vitro generated antigen-specific T cells has been successfully used to treat viral infections in immunodeficient patients. Therefore, methods for the rapid in vitro expansion of antigen-specific T cells are needed. Influenza virus efficiently infects dendritic cells, and peptides derived from viral proteins are processed and presented to CD8(+) cytotoxic T cells. However, both, CD4(+) and CD8(+) T cells are necessary for the efficient control of viral infections, and it is becoming increasingly clear that a T helper cell response is very important for the maintenance and strength of the immune response. Here we show that recombinant influenza virus efficiently infects a wide range of professional antigen-presenting cells and does not interfere with antigen presentation pathways. Using T cell clones for three different MHC class II-restricted antigens we demonstrate that peptides derived from these antigens are efficiently presented on MHC class II molecules. Importantly, it was possible to generate and expand antigen-specific CD4(+) T cells following in vitro infection of professional antigen-presenting cells with recombinant influenza virus. These findings support the notion that recombinant influenza virus is a valuable tool for the expansion of antigen-specific CD4(+) T cells in vitro.  相似文献   

13.
Type 1 diabetes results from destruction of pancreatic beta cells by autoreactive T cells. Both CD4+ and CD8+ T cells have been shown to mediate beta‐cell killing. While CD8+ T cells can directly recognize MHC class I on beta cells, the interaction between CD4+ T cells and beta cells remains unclear. Genetic association studies have strongly implicated HLA‐DQ alleles in human type 1 diabetes. Here we studied MHC class II expression on beta cells in nonobese diabetic mice that were induced to develop diabetes by diabetogenic CD4+ T cells with T‐cell receptors that recognize beta‐cell antigens. Acute infiltration of CD4+ T cells in islets occurred with rapid onset of diabetes. Beta cells from islets with immune infiltration expressed MHC class II mRNA and protein. Exposure of beta cells to IFN‐γ increased MHC class II gene expression, and blocking IFN‐γ signaling in beta cells inhibited MHC class II upregulation. IFN‐γ also increased HLA‐DR expression in human islets. MHC class II+ beta cells stimulated the proliferation of beta‐cell‐specific CD4+ T cells. Our study indicates that MHC class II molecules may play an important role in beta‐cell interaction with CD4+ T cells in the development of type 1 diabetes.  相似文献   

14.
Since enteric microbial composition is a distinctive and stable individual trait, microbial heterogeneity may confer lifelong, non‐genetic differences between individuals. Here we report that C57BL/6 mice bearing restricted flora microbiota, a distinct but diverse resident enteric microbial community, are numerically and functionally deficient in marginal zone (MZ) B cells. Surprisingly, MZ B‐cell levels are minimally affected by germ‐free conditions or null mutations of various TLR signaling molecules. In contrast, MZ B‐cell depletion is exquisitely dependent on cytolytic CD8+ T cells, and includes targeting of a cross‐reactive microbial/endogenous MHC class 1B antigen. Thus, members of certain enteric microbial communities link with CD8+ T cells as a previously unappreciated mechanism that shapes innate immunity dependent on innate‐like B cells.  相似文献   

15.
Effective immune responses require antigen uptake by antigen-presenting cells (APC), followed by controlled endocytic proteolysis resulting in the generation of antigen-derived peptide fragments that associate with intracellular MHC class II molecules. The resultant peptide-MHC class II complexes then move to the APC surface where they activate CD4(+) T cells. Dendritic cells (DC), macrophages and B cells act as efficient APC. In many settings, including the T helper type 1 (Th1) -dependent, proteoglycan-induced arthritis model of rheumatoid arthritis, accumulating evidence demonstrates that antigen presentation by B cells is required for optimal CD4(+) T cell activation. The reasons behind this however, remain unclear. In this study we have compared the activation of CD4(+) T cells specific for the proteoglycan aggrecan following antigen presentation by DC, macrophages and B cells. We show that aggrecan-specific B cells are equally efficient APC as DC and macrophages and use similar intracellular antigen-processing pathways. Importantly, we also show that antigen presentation by aggrecan-specific B cells to TCR transgenic CD4(+) T cells results in enhanced CD4(+) T cell interferon-γ production and Th1 effector sub-set differentiation compared with that seen with DC. We conclude that preferential CD4(+) Th1 differentiation may define the requirement for B cell APC function in both proteoglycan-induced arthritis and rheumatoid arthritis.  相似文献   

16.
Schmid D  Pypaert M  Münz C 《Immunity》2007,26(1):79-92
Major histocompatibility complex (MHC) class II molecules present products of lysosomal proteolysis to CD4(+) T cells. Although extracellular antigen uptake is considered to be the main source of MHC class II ligands, a few intracellular antigens have been described to gain access to MHC class II loading after macroautophagy. However, the general relevance and efficacy of this pathway is unknown. Here we demonstrated constitutive autophagosome formation in MHC class II-positive cells, including dendritic, B, and epithelial cells. The autophagosomes continuously fuse with multivesicular MHC class II-loading compartments. This pathway was of functional relevance, because targeting of the influenza matrix protein 1 to autophagosomes via fusion to the autophagosome-associated protein Atg8/LC3 led to strongly enhanced MHC class II presentation to CD4(+) T cell clones. We suggest that macroautophagy constitutively and efficiently delivers cytosolic proteins for MHC class II presentation and can be harnessed for improved helper T cell stimulation.  相似文献   

17.
T cells compete against each other for access to molecules on APCs in addition to peptide/MHC complexes. However, the identity of cell surface molecules that influence T‐cell competition, other than peptide/MHC, have yet to be defined. Here, we identify CD70, a TNF ligand expressed on activated APCs, as an important mediator of T‐cell competition for APCs. Upon engagement of CD27 by CD70, CD27 is proteolytically cleaved from the surface of the interacting CD8+ T cell and captured by CD70 expressing dendritic cells. The capture of CD27 effectively masks CD70 on APCs, disallowing the interaction with CD27 on other competing T cells. Collectively, our data indicate that T cells compete against each other for access to the TNF‐ligand CD70, an interaction that affects the duration and potency of T cell/DC interactions, thus influencing the repertoire of responding CD8+ T cells to self or foreign antigens.  相似文献   

18.
MHC class II molecules are involved in the presentation of both exogenous and endogenous antigens to CD4 T cells. Using the trans-membrane hemagglutinin (HA) from measles virus and the secreted hen egg lysozyme (HEL) as antigen models, we have compared the efficiency of MHC class II presentation by naive antigen presenting cells (APCs) pulsed with exogenous antigen with that of their transfected counterparts synthesizing endogenous antigen. B cells expressing even a very low amount of trans-membrane HA were found to present endogenous HA to I-Ed restricted T cell hybridomas with a high efficiency whereas their naive counterparts required to be pulsed with a comparatively high amount of exogenous HA. Similarly, MHC class II presentation of endogenous secreted HEL was found to be much more efficient when compared with that of exogenous HEL. Biochemical studies did not reveal any enhanced intracellular degradation of endogenous HEL. As expected, HEL was released in the surrounding medium within < 1 h. MHC class II presentation of endogenous HEL could not be explained by re-uptake by bystander APCs of HEL secreted in the surrounding medium. No sensitization of naive APCs could be observed either when co-cultured with HEL secreting cells or when cultured for 10 days with a sub-threshold amount of exogenous HEL. At the cell surface, I-Ed molecules immunoprecipitated from HEL secreting cells were found to be slightly enriched in SDS-resistant forms. These data raised the question of how peptides derived from endogenous transmembrane and secreted antigens can so efficiently reach an MHC class II loading compartment.  相似文献   

19.
The lymphocyte activation gene-3 (LAG-3) product is an MHC class II ligand related to CD4. We investigated whether LAG-3 could be used in vivo to stimulate MHC class II(+) antigen-presenting cells (APC), such as resident macrophages or dendritic cells known to play a crucial role in processing and presenting of antigens to the immune system. We first introduced human (h) LAG-3 or mouse LAG-3 into three types of tumor cells (MCA 205, TS / A and RENCA) to evaluate its capacity to stimulate a tumor-specific immune response in vivo. In contrast to the progressive growth of wild-type cells in syngeneic mice, LAG-3-transfected tumors completely regressed or their growth was markedly reduced. Mice were significantly to completely protected against a rechallenge with parental tumor cells. Protection induced by hLAG-3(+) tumor cells involved recruitment of a CD8(+) T cell response since nu / nu mice and CD8-depleted mice did not reject tumors, and a systemic tumor-specific CTL activity was induced. Co-administration of soluble LAG-3 with wild-type tumor cells also markedly reduced primary tumor growth. Interestingly, immunization with LAG-3(+) tumor cells or co-administration of soluble LAG-3 with irradiated wild-type tumor cells reduced the growth of pre-established tumors. We therefore suggest that LAG-3 could be used as a vaccine adjuvant for its ability to trigger APC via MHC class II molecules.  相似文献   

20.
Immune surveillance of skin cancer involves the stimulation of effector T cells by tumor-derived antigens and antigen-presenting cells (APCs). An effective APC must not only display processed antigen in the context of MHC molecules but also express co-stimulatory molecules that are required to fully activate T cells. One of the most common cutaneous neoplasms is basal cell carcinoma. To investigate expression of the co-stimulatory molecules CD80 (B7-1) and CD86 (B7-2) on tumor-associated dendritic cells (TADCs), cryosections from basal cell carcinomas were immunostained. In basal cell carcinomas, only 1 to 2% of intratumor and 5 to 10% of peritumor APCs expressed CD80 or CD86. In contrast, biopsies of immunological/inflammatory dermatoses revealed that 38 to 73% of APCs expressed CD80 and CD86. To further evaluate their phenotype and function, TADCs were isolated from tissue samples of basal cell carcinomas; they were non-adherent to plastic, displayed a typical dendritic morphology, and expressed high levels of major histocompatibility class II molecules on their surface. When TADCs were compared with dendritic cells from blood for presentation of superantigens (staphylococcal enterotoxins A and B) to resting autologous T cells, TADCs were consistently weaker stimulators of T cell proliferation than blood dendritic cells. When analyzed by flow cytometry, TADCs expressed high levels of HLA-DR, but only 5 to 10% co-expressed CD80 or CD86. A 3-day culture in granulocyte/macrophage colony-stimulating factor-containing medium partially reconstituted the TADC expression of CD80 and CD86 as well as their immunostimulatory capacity. Thus, in this common skin cancer, although there are prominent collections of HLA-DR-positive APCs in and around tumor cells, the TADCs are deficient in important co-stimulatory molecules as well as being weak stimulators of T cell proliferation. The paucity of co-stimulatory molecule expression and functional activity of TADCs may explain why the local T lymphocytic infiltrate fails to become fully activated to eradicate adjacent tumor cells. From a clinical perspective, these findings suggest a novel immunotherapeutic strategy targeting T cell co-stimulatory molecules on professional APCs in cutaneous oncology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号