首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prion diseases are transmissible neurodegenerative diseases of humans and animals. The prion agent consists of a misfolded protein, PrPSc (prion protein, scrapie form), of a glycosylphosphatidylinositol-anchored host protein, PrPC (PrP cellular form) of unknown function. During prion replication, PrPSc induces host PrPC to adopt its pathogenic conformation. Some PrPSc may aggregate to microscopically visible, extracellular prion plaques that stain for amyloid. The development of antiprion vaccines presents some challenges. While there is strong self-tolerance to an endogenous antibody response to PrPC and PrPSc, highly potent monoclonal antibodies (mAbs) have been raised in mice in which the prion protein gene has been deleted by gene targeting. These mAbs have been demonstrated to be antiprion-active in permanently scrapie-infected neuroblastoma (ScN2a) cells, primarily when bound to one of four epitopes (the octarepeat region, the region around codons 90-110, helix 1 region codons 145-160, and the extreme C-terminal codons 210-220). The mAbs directed against codon regions 90-110 or 145-160 are also antiprion-active in vivo, but only after intraperitoneal infection with prions, not intracerebral infection, suggesting their blood-brain barrier (BBB) impermeability. The challenge will be to make antibodies, or recombinant derivatives thereof, BBB permeable; this is preferably achieved by monovalent antibody fragments since divalent ones were found to be neurotoxic. Self-tolerance of wild-type animals to PrP immunizations was found to be of extrathymic origin. Even though antibodies raised in wild-type mice were found to display antiprion activity in ScN2a cells, these mice did not have significant extensions of incubation times when challenged intraperitoneally with prions. A general low affinity of these antibody responses to native surface-bound PrPC may account for this. Since wild-type mice were found to develop sufficient T-cell responses to codon regions 145-160 and 210-220, we believe that there is a theoretical chance of a successful vaccination therapy. The influence of the way the immunogen is presented has already been shown to be of major importance for the ensuing immune response, in that presentation of PrP with CpG oligodeoxynucleotides as adjuvant or viral packaging improved antibody responses. Major progress for active immunizations may therefore be expected in this field. Eradication programs will be one of the most important uses of active immunization protocols. For this purpose, vaccines will have to be inexpensive, easy to handle, and effective. In the short term, passive immunizations will likely be most promising for therapy of prion disease, including for human medical interventions. Active immunization protocols are less likely to succeed quickly, and will take years if not decades to be validated for domestic or free-ranging animals.  相似文献   

2.
Monoclonal antibodies to the prion protein (PrP) have been of critical importance in the neuropathological characterization of PrP-related disease in men and animals. To determine the influence of species-specific amino-acid substitutions recognized by monoclonal antibodies, and to investigate the immunohistochemical reactivity of the latter, analyses were carried out on brain sections of cattle with bovine spongiform encephalopathy, sheep with scrapie, mice infected with scrapie, and human beings with Creutzfeldt-Jakob disease (CJD) or Gerstmann-Str?ussler-Sheinker disease (GSS). Immunoreactivity varied between the antibodies, probably as the result of differences in the amino-acid sequence of the prion protein in the various species. Some monoclonal antibodies against mouse recombinant PrP gave strong signals with bovine, ovine and human PrP(Sc), in addition to murine PrP(Sc), even though the amino-acid sequences determined by the antibody epitope are not fully identical with the amino-acid sequences proper to the species. On the other hand, in certain regions of the PrP sequence, when the species-specificity of the antibodies is defined by one amino-acid substitution, the antibodies revealed no reactivity with other animal species. In the region corresponding to positions 134-159 of murine PrP, immunohistochemical reactivity or species-specificity recognized by the antibodies may be determined by one amino acid corresponding to position 144 of murine PrP. Not all epitopes recognized by a monoclonal antibody play an important role in antigen-antibody reactions in immunohistochemistry. The presence of the core epitope is therefore vital in understanding antibody binding ability.  相似文献   

3.
Prion diseases are closely linked to the conversion of host-encoded cellular prion protein (PrPC) into its pathological isoform (PrPSc). PrP conversion experiments in scrapie infected tissue culture cells, transgenic mice, and cell-free systems usually require unique epitopes and corresponding monoclonal antibodies (MAbs) for the immunological discrimination of exogenously introduced and endogenous PrP compounds (e.g., MAb 3F4, which is directed to an epitope on hamster and human but not on murine PrP). In the current work, we characterize a novel MAb designated L42 that reacts to PrP of a variety of species, including cattle, sheep, goat, dog, human, cat, mink, rabbit, and guinea pig, but does not bind to mouse, hamster, and rat PrP. Therefore, MAb L42 may allow future in vitro conversion and transgenic studies on PrPs of the former species. The MAb L42 epitope on PrPC includes a tyrosine residue at position 144, whereas mouse, rat, and hamster PrPs incorporate tryptophane at this site. To verify this observation, we generated PrP expression vectors coding for authentic or mutated murine PrPCs (i.e., codon 144 encoding tyrosine instead of tryptophan). After transfection into neuroblastoma cells, MAb L42 did not react with immunoblotted wild-type murine PrPC, whereas L42 epitope-tagged murine PrPC was strongly recognized. Immunoblot and fluorescence-activated cell sorting data revealed that tagged PrPC was correctly posttranslationally processed and translocated to the cell surface.  相似文献   

4.
The prion was defined by Stanley B. Prusiner as the infectious agent that causes transmissible spongiform encephalopathies. A pathological protein accumulating in the brain of scrapie-infected hamsters was isolated in 1982 and termed prion protein (PrPSc). Its cognate gene Prnp was identified more than a decade ago by Charles Weissmann, and shown to encode the host protein PrP(C). Since the latter discovery, transgenic mice have contributed many important insights into the field of prion biology, including the understanding of the molecular basis of the species barrier for prions. By disrupting the Prnp gene, it was shown that an organism that lacks PrP(C) is resistant to infection by prions. Introduction of mutant PrP genes into PrP-deficient mice was used to investigate the structure-activity relationship of the PrP gene with regard to scrapie susceptibility. Ectopic expression of PrP in PrP knockout mice proved a useful tool for the identification of host cells competent for prion replication. Finally, the availability of PrP knockout mice and transgenic mice overexpressing PrP allows selective reconstitution experiments aimed at expressing PrP in neurografts or in specific populations of haemato- and lymphopoietic cells. The latter studies have allowed us to clarify some of the mechanisms of prion spread and disease pathogenesis.  相似文献   

5.
Prion diseases are characterized by conversion of the cellular prion protein (PrP(C)) to a protease-resistant conformer, the srapie form of PrP (PrP(Sc)). Humoral immune responses to nondenatured forms of PrP(Sc) have never been fully characterized. We investigated whether production of antibodies to PrP(Sc) could occur in PrP null (Prnp(-/-)) mice and further, whether innate immune stimulation with the TLR9 agonist CpG oligodeoxynucleotide (ODN) 1826 could enhance this process. Whether such stimulation could raise anti-PrP(Sc) antibody levels in wild-type (Prnp(+/+)) mice was also investigated. Prnp(-/-) and Prnp(+/+) mice were immunized with nondenatured 139A scrapie-associated fibrils (SAF), with or without ODN 1826, and were tested for titers of PrP-specific antibodies. In Prnp(-/-) mice, inclusion of ODN 1826 in the immunization regime increased anti-PrP titers more than 13-fold after two immunizations and induced, among others, antibodies to an N-terminal epitope, which were only present in the immune repertoire of mice receiving ODN 1826. mAb 6D11, derived from such a mouse, reacts with the N-terminal epitope QWNK in native and denatured forms of PrP(Sc) and recombinant PrP and exhibits a K(d) in the 10(-)(11) M range. In Prnp(+/+) mice, ODN 1826 increased anti-PrP levels as much as 84% after a single immunization. Thus, ODN 1826 potentiates adaptive immune responses to PrP(Sc) in 139A SAF-immunized mice. These results represent the first characterization of humoral immune responses to nondenatured, infectious PrP(Sc) and suggest methods for optimizing the generation of mAbs to PrP(Sc), many of which could be used for diagnosis and treatment of prion diseases.  相似文献   

6.
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, belong to a group of neurodegenerative disorders affecting humans and animals. To date, definite diagnosis of prion disease can only be made by analysis of tissue samples for the presence of protease-resistant misfolded prion protein (PrP(Sc)). Monoclonal antibodies (MAbs) to the prion protein provide valuable tools for TSE diagnosis, as well as for basic research on these diseases. In this communication, the development of antibodies against recombinant bovine prion protein (brecPrP) in four strains of mice (BALB/c, ND4, SJL, and NZB/NZW F(1)) is described. Immunization of autoimmunity-prone NZB/NZW F(1) and SJL mice with brecPrP was applied to overcome self-tolerance against the prion protein. ND4 and SJL mice did not develop an immune response to brecPrP. BALB/c mice produced antibody titers of 1:1,000 to 1:1,500 in an enzyme-linked immunosorbent assay (ELISA), while NZB/NZW F(1) mice responded with titers of 1:7,000 to 1:11,000. A panel of 71 anti-brecPrP MAbs recognizing continuous and discontinuous epitopes was established from BALB/c and NZB/NZW F(1) mice. Seven anti-brecPrP MAbs reacted with both the cellular form of PrP and protease K-resistant PrP(Sc) from sheep brain in Western blot assays. The epitope specificity of these MAbs was determined, and applicability to immunohistochemical detection of prions was studied. The MAbs generated will be useful tools in the development of TSE immunochemical diagnosis and for research. This is the first report of the development of anti-PrP MAbs by use of autoimmune NZB/NZW F(1) mice as an alternative approach for the generation of PrP-specific MAbs.  相似文献   

7.
Vaccination approaches that may provide protection against the abnormal form of prion protein (PrPSc) have recently focused on the ability of antibodies to prevent PrPSc propagation. Progress has been hampered due to the difficulty in generating antibody responses in wild type mice, which is believed to be a consequence of T cell tolerance to the normal form of prion protein (PrPC). The problem of tolerance can be avoided using transgenic mice unable to express PrPC. This study examines active PrP specific T cell responses that can be produced in PrP null (PrP 0/0) mice using simple peptide vaccination procedures. Spleenocytes recovered from vaccinated PrP 0/0 mice were tested in vitro for their specificity with T cell recognition demonstrated through a proliferative response to the peptide. Analysis of mRNA also indicates the stimulation of a heterogenous population of T cells with an increase in cytokines and cytotoxicity associated mRNA. Responsive T cells were expanded using a T cell cloning procedure and demonstrated an ability to recognize the mature human prion protein. These clones may potentially be used to negate the problem of T cell tolerance in wild type mice.  相似文献   

8.
The locations of the epitopes of a panel of mouse monoclonal antibodies directed against the Plasmodium falciparum merozoite surface antigen MSA 1 were mapped by using naturally occurring processed fragments, by chemical cleavage of the protein and by comparison of the isolate-specificity of binding with known sequence variation. By these criteria, the most antigenic region occurs in the cysteine-rich, invariant 19-kDa carboxyl terminal domain with 12/19 monoclonal antibodies (mAbs) binding to this region. One of these mAbs recognized an epitope near the C-terminal putative glycosylphosphatidylinositol anchor site. This was the only mAb which significantly inhibited parasite growth in vitro. The other mAbs recognized conformational epitopes involving the cysteine residues located throughout this fragment. This study has identified further naturally occurring processing sites and a consensus processing site sequence is now emerging.  相似文献   

9.
Scrapie prions are composed largely, if not entirely, of PrPSc molecules. The prion isolates Sc237 and 139H exhibit markedly different incubation times in Syrian, Armenian, and Chinese hamsters, as well as in transgenic (Tg) 81 mice expressing Syrian hamster PrP (SHaPrP). Repassage of prions from transgenic mice or Chinese hamsters into Syrian hamsters revealed that the original properties of the prion isolates are retained. When Syrian hamsters were first inoculated with 139H prions and subsequently challenged with Sc237 prions, the incubation period was determined by the faster Sc237 isolate. Regional mapping studies demonstrated different kinetics and patterns of PrPSc accumulation for Sc237 and 139H prions in the brains of Syrian hamsters as well as Tg(SHaPrP)7 mice. That distinct prion isolates induce different region-specific accumulations of PrPSc in brain suggests a novel mechanism for propagation of isolates whereby they replicate in particular sets of neurons. The prion isolates could be targeted to specific CNS cells by differing conformations of PrPSc, post-translational modifications of PrPSc such as Asn-linked glycosylation, or an as yet undetected macromolecule complexed with PrPSc in the prion.  相似文献   

10.
Epitopic characterization of native bovine beta-lactoglobulin   总被引:1,自引:0,他引:1  
Two monoclonal antibodies (mAbs) (mAb 97 and mAb 117) selected from a panel of 52 mAbs directed against beta-lactoglobulin (BLG) have previously been used to develop a two-site enzyme immunometric assay (EIA) specific for the native form of the protein [J. Immunol. Methods 220 (1998) 25]. In the present work, the conformational epitopes recognized by these two mAbs and by the 50 others have been studied. Firstly, an epitope map was drawn using a surface plasmon resonance (SPR) biosensor: the epitopes were organized in a circle of 11 overlapping and 1 nonoverlapping antigenic regions. Secondly, 55 site-directed BLGA mutants were prepared and tested by ELISA and competitive immunoassay to localize these 12 antigenic regions on the protein molecule. Among them, 20 mutants showed a 10- to 7500-fold decrease in relative affinity for the mAbs of one or several neighbouring regions: their circular dichroism (CD) spectra were identical to the spectrum of wild-type (WT) BLGA. At least one mutant was found for each of the 11 overlapping antigenic regions which circled the molecule and for the nonoverlapping one which was localized near the entrance of the calyx. The two mAbs initially chosen were each directed towards very conformation-dependent epitopes and were thus suitable for monitoring native BLG in food products and manufacturing processes. Other mAb pairs could be used to follow the fate of specific regions of the molecule during denaturation or proteolytic digestion.  相似文献   

11.
Antibodies to the prion protein (PrP) have been critical to the neuropathological and biochemical characterization of PrP-related degenerative diseases in humans and animals. Although PrP is highly conserved evolutionarily, there is some sequence divergence among species; as a consequence, anti-PrP antibodies have a wide spectrum of reactivity (from strong immunopositivity to lack of reactivity) when challenged with PrP from diverse species. We have produced an antibody (anti-PrP95-108) raised against a synthetic peptide corresponding to residues 95 to 108 of human PrP and have characterized it by epitope mapping, Western immunoblot analysis, and immunohistochemistry. The antibody recognizes not only human PrP isoforms but also pathological PrP from all species tested (ie, cattle, sheep, hamsters, and mice). This is probably due to the fact that the epitope recognized by this antibody includes residues 100 to 108 of human PrP, a sequence that is also present in PrP of several other species. Thus, this reagent is valuable not only for the study of human prion diseases but also for analysis of the possible relationship between human and animal disorders.  相似文献   

12.
Synthetic peptides, anti-idiotypic antibodies (anti-Id) and human and murine monoclonal antibodies (mAbs) were used to further define a major antigenic domain on the outer membrane P1 protein (OMP) of Haemophilus influenzae type b (Hib). Synthetic peptides were elaborated from the known primary sequences of the P1 protein of prototype Hib strains MinnA (OMP subtype 1H) and 8358 (OMP subtype 6U). By peptide mapping, antibodies are categorized into three groups: A, B and C. A first epitope on the P1 from strain MinnA was identified by the reactivity of one set of murine anti-P1 mAbs with the two overlapping peptides 11H and 13H, corresponding to amino acid residues 384-412 and 400-437, respectively. On the basis of their reactivity with both peptides, these mAbs were designated as group A. Anti-Id obtained from mice immunized with two group A mAbs reacted specifically with all group A mAbs. A second epitope on the same P1 protein was identified by the reactivity of the peptide 13H with another distinct set of murine anti-P1 mAbs assigned to group B. This group of mAbs did not recognize the peptide 11H. Murine anti-Id which were prepared against one group B mAb inhibited the attachment of this mAb to outer membrane preparations, whereas the binding of the other group B mAbs was not affected, suggesting that these mAbs represent a heterologous group of mAbs. The epitope(s) recognized by two human anti-P1 mAbs was (were) distinct from the ones recognized by murine mAbs since no reactivity with the peptides was observed. Similarly, the binding of the two human mAbs to the P1 antigen was not inhibited by anti-Id raised against group A or B mAbs. Interestingly, an epitope on a different P1 protein recovered from strain 8358 was identified by the reactivity of group C murine mAbs with the peptide 13U, which occupies the same position on the P1 protein as 13H but differs from the latter by 10 amino acid residues. Our studies demonstrated the presence of several distinct surface-exposed B-cell epitopes within the antigenic domain which was defined previously on the P1 protein of Hib MinnA. Furthermore, we showed the immunodominance of this region on two different P1 proteins. None of the mAbs, however, had a bacteriolytic or protective activity against Hib strains. We suggest that the surface-exposed immunodominant region on the OMP P1 of Hib do not induce protective antibodies against Hib infection.  相似文献   

13.
Recently, anti-nucleosome antibodies, which do not bind to DNA or to individual histones, have been identified in longitudinal studies in lupus mice. These anti-nucleosome antibodies occur early in spontaneous SLE and are formed prior to other anti-nuclear specificities. However, nucleosomal epitopes are yet to be fully characterized. We selected a panel of six monoclonal anti-nucleosome antibodies (mAbs) (#2, #32, #34, PL2-6, LG8-1 and LG10-1) derived from lupus mice. These mAbs were tested in ELISA on subnucleosome structures and on a panel of 53 histone peptides, covering the entire sequence of the five histones. Two mAbs reacted with one of these peptides, but the reactivity hardly exceeded the background reactivity. Based on the nucleosome and subnucleosome ELISA we identified different recognition patterns. Three mAbs showed the highest reactivity towards the intact nucleosome. For two of them (#32 and LG8-1) the nucleosomal epitope was primarily located on H2A-H2B/DNA, whereas for mAb #34 this primary epitope was located on H3/H4/DNA. Two mAbs (#2 and PL2-6) showed the highest reactivity with H2A-H2B/DNA and one mAb (LG10-1) recognized H3-H4/DNA. In the subnucleosome ELISA all but one (mAb #32) recognized more than one epitope, including DNA complexed to a variety of cationic molecules. Comparing these reactivities we identified for all mAbs one specific nucleosomal epitope, whereas reactivity with other subnucleosomes was comparable to the reactivity towards DNA complexed with cationic molecules. In inhibition experiments both in ELISA and in immunofluorescence it was found that only one of the mAbs (i.e. PL2-6), recognizing an epitope on H2A-H2B/DNA as primary epitope, could be inhibited by H2A-H2B/DNA in fluid phase. The two mAbs recognizing an epitope on H3-H4/DNA as primary epitope could be inhibited by H3-H4/DNA in fluid phase. From these analyses, we conclude first that for these nucleosome specific mAbs linear histone peptides are not very important. Second, that these mAbs all recognize different epitopes on both H2A/H2B-DNA and H3/H4-DNA and third that some solid phase H2A/H2B-DNA epitopes are not expressed on fluid phase H2A/H2B-DNA. Our findings suggest that in SLE the nucleosome can act as auto-antigen and that there is no immunodominant β cell epitope within the nucleosome.  相似文献   

14.
Post-mortem diagnosis of transmissible spongiform encephalopathies (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrP(Sc)) of the prion protein (PrP(C)) on neuronal cells. These methods depend on antibodies directed against PrP(C) and capable of reacting with PrP(Sc)in situ (immunohistochemistry on nervous tissue sections) or with the unfolded form of the protein (western and paraffin embedded tissue (PET) blotting). Here, high-affinity monoclonal antibodies (mAbs 1.5D7, 1.6F4) were produced against synthetic PrP peptides in wild-type mice and used for western blotting and immunohistochemistry to detect several types of human prion-disease associated PrP(Sc), including sporadic Creutzfeldt-Jakob Disease (CJD) (subtypes MM1 and VV2), familial CJD and Gerstmann-Str?ussler-Scheinker (GSS) disease PrP(Sc) as well as PrP(Sc) of bovine spongiform encephalopathy (bovine brain), scrapie (ovine brain) and experimental scrapie in hamster and in mice. The antibodies were also used for PET-blotting in which PrP(Sc) blotted from brain tissue sections onto a nitrocellulose membrane is visualized with antibodies after protease and denaturant treatment allowing the detection of protease resistant PrP forms (PrP(RES)) in situ. Monoclonal antibodies 1.5D7 and 1.6F4 were raised against the reported epitope (PrP153-165) of the commercial antibody 6H4. While 1.5D7 and 1.6F4 were completely inhibitable by PrP153-165, 6H4 was not, indicating that the specificity of 6H4 is not defined completely by PrP153-165. The two antibodies performed similarly to 6H4 in western blotting with human samples, but showed less reactivity and enhanced background staining with animal samples in this method. In immunohistochemistry 1.5D7 and 1.6F4 performed better than 6H4 suggesting that the binding affinity of 1.5D7 and 1.6F4 with native (aggregated) PrP(Sc)in situ was higher than that of 6H4. On the other hand in PET-blotting, 6H4 reached the same level of reactivity as 1.5D7 and 1.6F4. This shows that 6H4 needs denatured PrP(RES) to reach maximal reactivity, confirming earlier results. As an exception, human PrP(RES) still reacted relatively poorly with 6H4 in PET-blotting, while 1.5D7 and 1.6F4 reacted well with PrP(RES) from most human CJD types. Taken together this implies that the binding epitope of 1.5D7 and 1.6F4 is accessible in the aggregates of undenatured PrP(Sc) (IHC) while the binding site of 6H4 is at least partly inaccessible. In techniques incorporating a denaturing and/or disaggregating step 6H4 showed good binding indicating increased accessibility of the binding site. An exception to this is human samples in PET-blotting suggesting that huPrP(RES) might not be as easily unfolded by denaturation as BSE and scrapie PrP(RES). Also of interest was the ability of 1.5D7 and 1.6F4 to discriminate between two allelic variants of PrP CJD(Sc) (VV vs. MM) in immunohistochemistry as opposed to the normally used antibody 3F4.  相似文献   

15.
Several lines of evidence suggest that immunisations may be helpful in the prophylaxis and treatment of neurodegenerative amyloidoses like Alzheimer's disease and prion infections. We used a synthetic prion protein-derived peptide (PrP105–125) and a recombinant PrP fragment (PrP90–230) as antigens for the active immunisation of mice, which were subsequently infected by dietary exposure to the scrapie agent. Immunisation with PrP105–125 prolonged the survival times significantly. In contrast, immunisation with PrP90–230 or adjuvants alone had no effect on the disease development. An epitope mapping of the antibodies raised against PrP90–230 revealed that reactivities against previously defined protective epitopes were either underrepresented or absent. These results point towards the possibility to prevent prion spread via the food chain by vaccinating humans or other species at risk to contract prion diseases.  相似文献   

16.
Infectious scrapie prions are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrP) designated PrPSc. In scrapie-infected mouse neuroblastoma (ScN2a) and hamster brain (ScHaB) cells, PrPSc accumulates primarily within the cell cytoplasm, whereas cellular PrP (PrPC) is anchored to the external surface of the plasma membrane by a glycoinositol phospholipid moiety. To determine the subcellular localization of PrPSc, scrapie-infected cells were grown to approximately 75% confluency, fixed briefly, and then incubated with guanidine thiocyanate before antibody staining and examination by electron microscopy. PrPSc immunoreactivity was enhanced by denaturation with guanidine isothiocyanate which also permeabilized cells (Taraboulos et al., J Cell Biol 110:2117, 1990). As judged both by deposition of immunoperoxidase reaction product (diaminobenzidine) and by presence of immunogold particles, PrPSc was identified in discrete vesicular foci and some large bodies in the cytoplasm of scrapie-infected cells. Some vesicles with PrPSc staining also contained myelin figures resembling those found in autophagic vacuoles forming secondary lysosomes. The presence of PrPSc in secondary lysosomes is inferred from colocalization of guanidine isothiocyanate enhanced PrP immunoreactivity and acid phosphatase. Neither the diaminobenzidine reaction product nor immunogold particles were observed in association with the nucleus, endoplasmic reticulum, or Golgi stacks. Exposure of scrapie-infected cells to the brefeldin A dispersed the Golgi apparatus but did not alter the morphologic distribution of PrPSc, indicating that no detectable PrPSc was associated with Golgi stacks. It remains to be established whether secondary lysosomes are involved in the post-translational formation of PrPSc.  相似文献   

17.
The main cause for the development of transmissible spongiform encephalopathies (TSE) is the conformational change of prion protein from the normal cellular isoform (PrP(C)) into the abnormal isoform, named prion (PrP(Sc)). The two isoforms have the same primary structure, and with PrP being highly conserved among different species, no immune response to PrP(Sc) has been observed in infected humans or other mammals so far. The problem of inducing immune response was encountered when producing monoclonal antibodies against PrP, therefore mice lacking a functional Prnp gene were predominantly used for the immunization. In the present paper we report that by immunizing wild-type BALB/c mice with chemically unmodified recombinant bovine PrP a potent humoral immune response was achieved. Furthermore, we were able to isolate the monoclonal antibody (mAb) E12/2 and few other mAbs, all reacting specifically with bovine and human PrP, but not with PrP from several other mammals. The epitope of mAb E12/2 is located at the C-terminal end of helix 1, with His155 being crucial for binding. It has been proven that mAb E12/2 is useful for human and bovine TSE research as well as for diagnostics. Our results show that there are sufficient structural differences between mouse and bovine PrP to provoke a prominent humoral immune response.  相似文献   

18.
Bee venom phospholipase A2 (bvPLA2) is a prototypic group III enzyme which consists of unique N-terminal and C-terminal domains and a central secretory PLA2 (sPLA2) domain. This sPLA2 domain is highly homologous with human group III sPLA2. Current evidence suggests that group III sPLA2 may affect some neuronal functions, such as neuritogenesis, neurotransmitter release and neuronal survival. The prion diseases are neurodegenerative disorders characterized by the conversion of the normal cellular prion (PrPC) to the misfolded isoform scrapie prion protein (PrPSc). PrPSc accumulation in the central nervous system (CNS) leads to neurotoxicity by inhibition of the PI3K/AKT pathway or activation of p38 mitogen-activated protein kinase (MAPK) pathways. In the present study, we found that bvPLA2 inhibited prion protein (PrP) fragment (106-126)-induced neuronal cell death. PrP(106-126)-mediated increase of p-p38 MAPK and cleaved caspases and decrease of p-AKT were blocked by bvPLA2 treatment. These results indicate that increasing PLA2, including the group III sPLA2 is key to regulating PrP(106-126)-mediated neurotoxicity. Taken together, the results of this study suggest that specific modulation of PLA2 appears to prevent neuronal cell death caused by prion peptides.  相似文献   

19.
As the scrapie prion protein PrP(Sc) is rich in beta-sheets it aggregates into prion rods, which show infectivity and proteinase K (PK) resistance. Consequently, dissociation of prion rods and breakdown of beta-sheets in PrP(Sc) by denaturation results in loss of both infectivity and PK-sensitivity. In this study, the effects of guanidine (Gdn), which solubilizes and denatures proteins by breaking down their higher structure, on the solubility, the PK-resistance in vitro and the infectivity of PrP(Sc) of scrapie strain 263K was examined. The infectivity was assayed by intracerebral inoculation into hamsters. Brain tissues of scrapie-infected hamsters were used for preparation of homogenates and crude extracts of PrP(Sc). A treatment of PrP(Sc) with Gdn enhanced its PK-sensitivity in a dose-dependent manner. The PK-resistance in vitro of PrP(Sc) denatured with lower concentrations of Gdn (<2.5 mol/l) could partially resume by renaturation. Gdn markedly reduced or, at higher concentrations, even destroyed the infectivity of PrP(Sc). On the other hand, the infectivity of PrP(Sc) inactivated by denaturation could be partially restored by renaturation. These results confirmed our assumption that all the alternations in the PK-resistance and the infectivity of PrP(Sc) caused by Gdn resulted from changes in its higher structure. However, it should be emphasized that a complete loss of PK-resistance of PrP(Sc) may not necessarily mean its full non-infectivity.  相似文献   

20.
The prion protein, and an increasing number of other cellular proteins, can undergo conformational transitions leading to soluble oligomers and insoluble aggregates. We have previously shown that the transition of the prion protein from its native form to its infectious (PrPSc) conformation can be monitored with epitope specific antibodies while the protein is immobilized on the surface of a Biacore surface plasmon resonance sensor chip. (Leclerc et al EMBO J 20:1547–1554 2001). The folding pathways leading to insoluble aggregates (amyloids) and soluble oligomers are believed to be distinct. We report here the use of epitope-specific antibody Fab fragments and surface plasmon resonance measurements on immobilized PrP to investigate the conditions leading to either folding pathway. We found that full-length SHaPrP(29-231) and truncated SHaPrP(90-231) prion protein can be induced to undergo the transition to proteinase K-resistant PrPSc aggregates on a sensor chip. This transition is temperature and buffer dependent and can be blocked by the presence of antibody Fab fragments binding to epitopes important for the conformational change. We demonstrate that the use of monoclonal antibodies combined with surface plasmon resonance technology is suitable to monitor the environmental conditions leading to conformational changes in the prion protein. The methodology is applicable to other amyloid- and oligomer-forming proteins and should be useful for the evaluation of antibodies or small molecules preventing protein misfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号