首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The central course and the projections of the first and the second cervical dorsal root ganglia and of suboccipital muscle primary afferent fibers in the guinea pig were studied by means of anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA/HRP) or aqueous solution of horseradish peroxidase (HRP). Injections of WGA/HRP into the second cervical dorsal root ganglion produced labeling in the dorsal and ventral horns. Within the spinal cord, the largest amount of HRP reaction product was found within the lateral third of the substantia gelatinosa and within the central cervical nucleus. The main area of termination in the medulla was the external cuneate nucleus. However, HRP reaction product was also found within the medial and inferior vestibular nuclei, cell group x, the perihypoglossal nuclei, the nucleus of the solitary tract, and the nucleus of the spinal trigeminal tract. Descending fibers could be detected as caudal as spinal segment T5. Injections of WGA/HRP into the first cervical dorsal root ganglion produced heavy terminal label within the central cervical nucleus but not within the substantia gelatinosa. Again, the external cuneate nucleus was the main area of termination within the medulla. Label could not be observed within the vestibular nuclear complex or within the spinal trigeminal nucleus. Injections of aqueous HRP into the suboccipital muscles produced heavy transganglionic label within the central cervical nucleus, whereas the substantia gelatinosa totally lacked terminal label. Ascending proprioceptive fibers reached the external cuneate nucleus and group x. Scanty projections could be detected within the vestibular nuclei as well as within the perihypoglossal nuclei except for the nucleus prepositus hypoglossi. Label was absent in the spinal trigeminal nucleus.  相似文献   

3.
Central projections of the Arnold's nerve (the auricular branch of the vagus nerve; ABV) of the cat were examined by the transganglionic HRP method. After applying HRP to the central cut end of the ABV, HRP-labeled neuronal somata were seen in the superior ganglion of the vagus nerve. Main terminal labeling was seen ipsilaterally in the solitary nucleus, in the lateral portions of the ventral division of the principal sensory trigeminal nucleus, in the marginal regions of the interpolar subnucleus of the spinal trigeminal nucleus, in the marginal and magnocellular zones of the caudal subnucleus of the spinal trigeminal nucleus, in the ventrolateral portions of the cuneate nucleus, and in the dorsal horn of the C1–C3 cord segments. In the solitary nucleus, labeled terminals were seen in the interstitial, dorsal, dorsolateral and commissural subnuclei; some of these terminals may be connected monosynaptically with solitary nucleus neurons which send their axons to the somatomotor and/or visceromotor centers in the brainstem and spinal cord.  相似文献   

4.
The projection of muscle afferent fibres to the medulla oblongata and upper spinal cord was studied in the cat by using transganglionic transport of wheat germ agglutinin-horseradish peroxidase conjugate. The results demonstrate a precise, musculotopic termination pattern in the external cuneate nucleus; thus, fibres from the intrinsic muscles of the paw terminate medially; those from forearm, arm, and shoulder muscles terminate progressively more laterally; and those from neck and thoracic muscles terminate in the ventrolateral and dorsolateral parts, respectively. Muscle afferent fibres to the main cuneate nucleus terminate in the ventral "reticular" region of the nucleus, with a sparse projection also to the ventral part of the rostral and caudal regions, including the base of the dorsal horn. Fibres from the neck muscles terminate slightly more laterally in the ventral region than do those from the limb muscles, but otherwise, and thus contrary to the case in the external cuneate nucleus, no topographic organization was detected. In the spinal cord, projection was found to laminae I and V, and from the musculature of the back of the neck to the central cervical nucleus.  相似文献   

5.
Scope of the present investigation was to look for the termination within the brain stem of the central process of the perikarya contained in the semilunar ganglion which provide the extraocular muscle spindles. Unitary responses to stretching single eye muscles were recorded by means of tungsten microelectrodes from the pars oralis of the ipsilateral descending trigeminal tract and nucleus in the lamb. The responses were characterized by a sudden increase in discharge rate of the units followed by a modest adaptation; the firing ceased as soon as the stretch was released. Single-pulse electrical stimulation of the cellular pool of the medial dorsolateral part of the semilunar ganglion which innervate the eye muscle proprioceptors elicited evoked potentials in the same ipsilateral pontine sites responsive to stretching the extraocular muscles. The latency of such evoked potentials was very short: 0.42–0.95 msec. We conclude that the afferent impulses from the eye muscles project to the descending trigeminal nucleus. Thus the central process of the semilunar ganglion cells concerned with the eye muscle proprioception enters the brain stem through the trigeminal sensory root, runs along the ipsilateral descending trigeminal tract, and terminates within the homonymous nucleus.  相似文献   

6.
Three to five microliters of 50% HRP in saline was injected along a central axis into one of the 6 extraocular muscles in each of 18 adult pigeons. The brain was fixed and serially sectioned 16-20 h postinjection and the HRP reacted with tetramethylbenzidine (TMB). HRP-labeled proprioceptive neurons were located in the ipsilateral nucleus descendens nervi trigemini (TTD) for all muscle injections. The labeled neurons were further subdivided into two groups based on size and shape. In each experiment the number of labeled proprioceptive cells relative to the number of labeled motoneurons ranged between 4.9 and 15.5%. There were no labeled cells in the trigeminal mesencephalic nucleus or contralateral TTD. The study suggests that at least partial afferent (proprioceptive) innervation of the extraocular muscles in the pigeon derived from neurons in the ipsilateral TTD.  相似文献   

7.
Corneal sensory pathway in the rat: a horseradish peroxidase tracing study   总被引:4,自引:0,他引:4  
The methods of transganglionic transport of horseradish peroxidase (HRP) and horseradish peroxidase--wheat germ agglutinin (HRP-WGA) were used to determine the location within the trigeminal ganglion of the primary afferent neurons that innervate the rat central cornea, and the brainstem and spinal cord termination sites of these cells. In each of 18 animals, solutions of HRP or HRP-WGA were applied to the scarified corneal surface and allowed to infiltrate into the corneal epithelium and stroma for 15 minutes. Postmortem examination of the corneal whole mounts from the experimental animals, and of corneas and neural tissues from several control animals, showed that the HRP/HRP-WGA remained confined to the central cornea with no spread into adjacent intra- or extraorbital tissues. HRP-labeled corneal afferent somata were located in the dorsal part of the ophthalmic region of the ipsilateral trigeminal ganglion. The central fibers of the corneal afferent neurons projected very heavily to interstitial nuclei of Cajal in the spinal tract of V at the level of caudal pars interpolaris and rostral pars caudalis, lightly to the pars caudalis/C1 transition zone, and sparsely to the dorsal horn of spinal cord segments C1-C3. The trigeminal main sensory nucleus, pars oralis, the rostral three-fourths of pars interpolaris, and an extensive midregion of pars caudalis were totally devoid of reaction product. Terminal fields in caudal pars caudalis and in the spinal cord dorsal horn were concentrated largely in the outer half of lamina II, with lesser accumulations in lamina I, the deeper half of lamina II, and in lamina III. The present study demonstrates for the first time by means of an anatomical tracing procedure the brainstem termination sites of corneal afferent neurons in the rat. The patchy, discontinuous nature of the corneal afferent projection to the caudal trigeminal brainstem nuclear complex (TBNC), and the total lack of corneal projections to rostral subdivisions of the TBNC, provide an exception to the general rule of trigeminal organization in which most areas of the head and face are represented as continuous columns throughout the rostrocaudal extent of the ipsilateral TBNC.  相似文献   

8.
Transganglionic transport of horseradish peroxidase (HRP) was used to study the patterns of termination of somatic afferent fibers innervating oral and facial structures within the principal nucleus (Vp), nucleus oralis (Vo), and nucleus interpolaris (Vi). The primary trigeminal afferent fibers that innervate the oral cavity supplied by the pterygopalatine, superior alveolar, lingual, buccal, and inferior alveolar branches, as well as the facial skin supplied by the frontal, corneal, zygomatic, infraorbital, auriculotemporal, mylohyoid, and mental branches, were traced in this experiment. The results show that trigeminal afferent nerves that innervate the oral cavity project mainly to the principal nucleus, the rostrodorsomedial part (Vo.r) and dorsomedial division (Vo.dm) of pars oralis, and the dorsomedial region of pars interpolaris, while an extensive overlap of projections is found in the Vo.r, Vo.dm, and rostral Vi. The central processes of fibers innervating the anterior face (i.e., mental, infraorbital, and frontal nerves) terminate in the ventral division of principalis (Vpv), caudal region pars oralis (Vo.c), and ventrolateral Vi, with the largest numbers of terminals being found in the Vpv and Vi. In contrast, the central projection patterns of the corneal, zygomatic, mylohyoid, and auriculotemporal afferents are different from those of other afferent nerves examined, and present a discrete projection to the trigeminal sensory nuclear complex (TSNC). The corneal, mylohyoid, and auriculotemporal afferents mainly project to the restricted regions of principalis and caudal Vi, while zygomatic afferent nerve fibers project to the caudal third of pars interpolaris. The typical somatotopic organization with the face of the mouth open inverted is represented in the rostrocaudal midlevels of the Vpv and caudal pars interpolaris. The Vpd receives topographical projection from primary afferent nerves that innervate the oral structure only, while this projection was organized in a complicated manner. The relationship between the functional segregation and the cytoarchitectonic differentiation of the TSNC is discussed, particularly with respect to this somatotopic organization, combined with the characteristics of projecting cells in the TSNC.  相似文献   

9.
The motor nuclei of the oculomotor, trochlear, and abducens nerves of the reptile Varanus exanthematicus and the neurons that subserve the sensory innervation of the extraocular muscles were identified and localized by retrograde and anterograde transport of horseradish peroxidase (HRP). The highly differentiated oculomotor nuclear complex, located dorsomedially in the tegmentum of the midbrain, consists of the accessory oculomotor nucleus and the dorsomedial, dorsolateral, intermediate, and ventral subnuclei. The accessory oculomotor nucleus projects ipsilaterally to the ciliary ganglion. The dorsomedial, dorsolateral, and intermediate subnuclei distribute their axons to the ipsilateral orbit, whereas the ventral subnucleus, which innervates the superior rectus muscle, has a bilateral, though predominantly contralateral projection. The trochlear nucleus, which rostrally overlaps the oculomotor nuclear complex, is for the greater part a comma-shaped cell group situated lateral, dorsal, and medial to the medial longitudinal fasciculus. Following HRP application to the trochlear nerve, almost all retrogradely labeled cells were found in the contralateral nucleus. The nuclear complex of the abducens nerve consists of the principal and accessory abducens nuclei, both of which project ipsilaterally. The principal abducens nucleus is located just beneath the fourth ventricle laterally adjacent to the medial longitudinal fasciculus and innervates the posterior rectus muscle. The accessory abducens nucleus has a ventrolateral position in the brainstem in close approximation to the ophthalmic fibers of the descending trigeminal tract. It innervates the retractor bulbi and bursalis muscles. The fibers arising in the accessory abducens muscles form a loop in or just beneath the principal abducens nucleus before they join the abducens nerve root. The afferent fibers conveying sensory information from the extraocular muscles course in the oculomotor nerve and have their perikarya in the ipsilateral trigeminal ganglion, almost exclusively in its ophthalmic portion.  相似文献   

10.
A double-label strategy was used to determine the distribution and central projections of primary afferent neurons that innervate the periodontium and muscles of mastication in cats. Central injections of either Fast Blue (FB) or a mixture of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) and HRP were made into one of three cytoarchitectonically distinct regions of the spinal trigeminal nucleus. These regions included the subnucleus oralis (Vo), the subnucleus interpolaris (Vi), and the medullary dorsal horn (MDH). In each case, injections were also made into the periodontium of the ipsilateral mandibular teeth or into the ipsilateral masseter muscle. FB injections preceded the peroxidase injections by at least 48 hours and total survival time ranged from 72 to 96 hours. Animals were perfused with phosphate-buffered paraformaldehyde (4%; pH 7.2). Serial frozen sections were made through the brainstem and trigeminal ganglion. Tetramethylbenzidine was used as a chromagen to demonstrate HRP and sections were viewed with brightfield and epifluorescent illumination. Cells containing peripherally injected tracer were observed in the lateral portion of the ganglion and in the mesencephalic nucleus (Vmes). Double-labeled ganglion cells were observed in most cats that received periodontal injections in combination with central injections in the dorsal part of spinal trigeminal nucleus regardless of the rostrocaudal level of the central injection. In the animals that received intramuscular injections, double-labeled ganglion cells were observed only in the animals that received central injections caudal to the Vo. Double-labeled Vmes perikarya were observed in cats that received either intramuscular or periodontal injections in combination with central injections into the MDH and Vo but not in animals that received injections into the Vi. These results demonstrate that ganglion cell periodontal afferents project to the three major rostrocaudal subdivisions of the spinal trigeminal nucleus while ganglion cell muscle afferents have more limited central projections to caudal regions of the nucleus. Masseter and periodontal Vmes afferents also project ot the spinal trigeminal nucleus--specifically, to the Vo and MDH. These findings are consistent with physiological observations regarding the role of periodontal and masseteric afferents in oral and facial reflexes and somesthetic mechanisms.  相似文献   

11.
Afferent and efferent central connections of the lingual-tonsillar branch of the glossopharyngeal nerve (LT-IX) and the superior laryngeal nerve (SLN) in the lamb were traced with horseradish peroxidase (HRP) histochemistry. After entering the brainstem, most LT-IX and SLN afferent fibers turned caudally in the solitary tract (ST). Some afferent fibers of LT-IX terminated in the medial nucleus of the solitary tract slightly caudal to their level of entry. The remaining fibers projected to the dorsolateral, ventrolateral, and interstitial areas of the nucleus of the solitary tract (NST) at the level of the area postrema. Superior laryngeal nerve afferent fibers terminated extensively in the medial and ventral NST at levels near the rostral pole of the area postrema. Further caudal, near the level of obex, SLN afferent terminations were concentrated in the region ventrolateral to the ST and in the interstitial NST. The caudal extent of LT-IX and the rostral extent of SLN terminals projected to similar levels of the NST, but only a relatively small proportion of the total projections overlapped. Lingual-tonsillar and SLN fibers also coursed rostrally to terminate in the caudal pons within and medial to the dorsomedial principal sensory trigeminal nucleus. Other labeled afferent fibers traveled caudally in the dorsal spinal trigeminal tract to terminate in the dorsal two-thirds of the spinal trigeminal nucleus at the level of obex. Large numbers of labeled cells with fibers in the LT-IX or SLN were located in the ipsilateral rostral nucleus ambiguus and surrounding reticular formation. Fewer labeled cells were observed in the inferior salivatory nucleus following HRP application to either the LT-IX or SLN. The LT-IX and SLN projections to areas of the NST associated with upper airway functions, like swallowing and respiration, suggest an important role for these two nerves in the initiation and control of airway reflexes.  相似文献   

12.
Retrograde and anterograde transport of horseradish peroxidase-wheat germ agglutinin (HRP-WGA) conjugate was used to study the organization of primary afferent neurons innervating the masticatory muscles. HRP applied to the nerves of jaw-closing muscles--the deep temporal (DT), masseter (Ma), and medial pterygoid (MP)--labeled cells in the trigeminal ganglion and the mesencephalic trigeminal nucleus (Vmes), whereas HRP applied to nerves of the jaw-opening muscles--anterior digastric (AD) and mylohyoid (My)--labeled cells only in the trigeminal ganglion. Cell bodies innervating the jaw-closing muscles were found with greater frequency in the intermediate region of the mandibular subdivision, while somata supplying the jaw-opening muscles were predominant posterolaterally. The distribution of their somatic sizes was unimodal and limited to a subpopulation of smaller cells. Projections of the muscle afferents of ganglionic origin to the trigeminal sensory nuclear complex (TSNC) were confined primarily to the caudal half of pars interpolaris (Vi), and the medullary and upper cervical dorsal horns. In the Vi, Ma, MP, AD, and My nerves terminated in the lateral-most part of the nucleus with an extensive overlap in projections, save for the DT nerve, which projected to the interstitial nucleus or paratrigeminal nucleus. In the medullary and upper cervical dorsal horns, the main terminal fields of individual branches were confined to laminae I/V, but the density of the terminals in lamina V was very sparse. The rostrocaudal extent of the terminal field in lamina I differed among the muscle afferents of origin, whereas in the mediolateral or dorsoventral axis, a remarkable overlap in projections was noted between or among muscle afferents. The terminals of DT afferents were most broadly extended from the rostral level of the pars caudalis to the C3 segment, whereas the MP nerve showed limited projection to the middle one-third of the pars caudalis. Terminal fields of the Ma, AD, and My nerves appeared in the caudal two-thirds of the pars caudalis including the first two cervical segments, the caudal half of the pars caudalis and the C1 segment, and in the caudal part of the pars caudalis including the rostral C1 segment, respectively. This rostrocaudal arrangement in the projections of muscle nerves, which corresponds to the anteroposterior length of the muscles and their positions, indicates that representation of the masticatory muscles in lamina I reflects an onion-skin organization. These results suggest that primary muscle afferent neurons of ganglionic origin primarily mediate muscle pain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Transganglionic transport of HRP has been used to trace the pathways and termination sites of cutaneous and muscle afferent axons entering from the C2 and C3 dorsal rami. The muscle afferent projection in the spinal cord is restricted and (apart from the ventral horn) largely confined to the intermediate gray matter. There is a muscle afferent projection to the ventrolateral main cuneate nucleus and a complex pattern of projection through the extent of the external cuneate nucleus. In contrast, the cutaneous spinal projection is abundant with extensive filling of axons in the tract of Lissauer and many termination sites in the lateral substantia gelatinosa. Axons enter the lateral gray matter of the cervical spinal cord from the dorsal columns and the dorsolateral funiculus and terminate in the lateral one-third of the dorsal horn as far rostral as the spinomedullary junction. Axons of the tract of Lissauer form a complex web around the dorsal horn and many penetrate rostrally to the region of the spinomedullary junction, where they terminate among clusters of interstitial cells on and close to the dorsal medullary surface. Cutaneous afferent axons from the dorsal columns turn into the main cuneate nucleus and enter a dense mass of HRP-reaction product which occupies the most ventrolateral part of the nucleus for its entire length.  相似文献   

14.
Previous studies have shown that sensory fibers of intermediate and vagal nerve origin are present in facial nerve branches to the mimetic muscles in the cat. In the present study the central course of these fibers has been examined by transganglionic transport of horseradish peroxidase (HRP). In some of these experiments the facial nerve proper was transected central to the site of HRP application. In this way, the central course of the vagal fibers could be studied separately. For comparison HRP-conjugated wheat germ agglutinin was injected into the geniculate ganglion, revealing the central course of the entire afferent component of the intermediate nerve. The results show that labeled sensory intermediate nerve fibers, at their level of entrance in the brainstem, form a tract at the dorsal margin of the spinal trigeminal tract (5T). While some fibers ascend from this level to terminate in the main sensory trigeminal nucleus, and a few fibers terminate in the rostral part of the solitary tract nucleus, the majority take a descending course. The main site of termination for these descending fibers is in the medial part of the C2 dorsal horn. Terminal labeling is also seen in the ventrolateral part of the cuneate nucleus (CUN) and in a small area of gray substance between CUN and trigeminal nucleus caudalis. After entering the brainstem some sensory vagal fibers project to the trigeminal nucleus interpolaris and to an interstitial nucleus within the 5T, but the larger part joins the descending tract of intermediate nerve fibers. These descending vagal fibers have a terminal distribution pattern similar to the intermediate nerve fibers.  相似文献   

15.
The corneal-VIth nerve reflex of the rabbit, involving retraction of the eyeball by the retractor bulbi muscle and the correlated extension of the nictitating membrane, has been suggested to be mediated by retractor bulbi motoneurons in the accessory abducens-(ACC) nucleus but not by those in the abducens (ABD) nucleus, and to consist of both a fast, disynaptic, component and a slower component mediated by the reticular formation (RF). We, therefore, employed the anterograde and retrograde transport of horseradish peroxidase (HRP) to examine the neural connections between anatomical structures proposed to be involved in the afferent limb of the corneal VIth nerve reflex. The transganglionic transport of HRP from cornea indicated a primary projection to the ventral half of pars oralis of the trigeminal sensory complex. The retrograde transport of HRP infused into ACC resulted in a bilateral labeling of cells in ventral pars oralis with 75% of the labeled cells being ipsilateral to the side of infusion. In contrast, there was no retrograde labeling of cells in the trigeminal sensory complex after HRP infusions into ABD. Infusion of HRP into ACC and ABD also revealed retrogradely labeled cells in the RF caudal to these two nuclei and infusion of HRP into this area of the RF resulted in both the retrograde labeling of cells in ventral pars oralis and anterograde-like labeling in both ACC and ABD. These data provide anatomical support for a direct relationship of the ACC, but not ABD, to the trigeminal sensory system and for the suggested existence of two components of the corneal-VIth nerve reflex: a disynaptic component from cornea to ventral pars oralis which in turn projects only to the ACC nucleus; and a multisynaptic component consisting of projections from the ventral pars oralis to RF cells which, in turn, are premotor to the ACC and ABD nuclei.  相似文献   

16.
Transganglionic transport of horseradish peroxidase (HRP) or horseradish peroxidase-wheat germ agglutinin conjugate (HRP-WGA) was used to map in detail the central projections of trigeminal primary afferent neurons that innervate the dental pulp organ of the rat. In each of ten animals, 0.5-2.0 microliters of enzyme solution was injected into the pulp chamber of the first maxillary molar tooth. Postmortem examination of the decalcified teeth in all cases showed that the HRP/HRP-WGA remained confined to the pulp chamber and pulp roots, with no spread of enzyme into periapical tissues. HRP-labeled tooth pulp afferent fibers projected to all four rostrocaudal subdivisions of the ipsilateral trigeminal brainstem nuclear complex (TBNC) and to the upper cervical spinal cord. The labeled terminal fields formed a column that stretched relatively uninterrupted from just caudal to the rostromedial tip of the trigeminal principal sensory nucleus to at least the C2 segment of the spinal cord. The density of the afferent projection varied markedly from one rostrocaudal level of the TBNC to the next but was heaviest in an area encompassing the caudal one-half of the principal sensory nucleus and the rostral two-thirds of pars oralis. Fibers projected only lightly to pars caudalis, where they terminated preferentially in laminae I, IIa, and the junctional zone between laminae IV and V. HRP-labeled terminals in C1 and C2 were located almost exclusively in laminae I. In the dorsoventral axis, the terminal fields in the TBNC were located in a surprisingly dorsal part of the complex, well within what has been shown by others to be largely an area of termination for mandibular division fibers. Most fibers ended in medial parts of the TBNC, with the exception of two modestly labeled terminal fields located in the lateral aspects of rostral pars oralis and rostral pars caudalis. No labeled fibers terminated in the contralateral TBNC or contralateral cervical spinal cord.  相似文献   

17.
Transganglionic transport of horseradish peroxidase--wheat germ agglutinin conjugate was used to study the pattern of termination of somatic afferent fibers innervating the masseter muscle within the trigeminal sensory nuclear complex (TSNC) of the cat. The central processes of the masseteric nerve terminated in the caudal third of the pars interpolaris, and laminae I/V through the caudal two-thirds of caudalis and rostral parts of the C1 spinal cord segment. The functional significance of the masseteric afferent projections to the TSNC with a preferential pattern was discussed, particularly with respect to muscle pain.  相似文献   

18.
The existence of afferent fibers in the cat hypoglossal nerve was studied by transganglionic transport of horseradish peroxidase (HRP). Injections of wheat germ agglutinin-conjugated HRP (WGA-HRP) into the hypoglossal nerve resulted in some retrograde labeling of cell bodies within the superior ganglia of the ipsilateral glossopharyngeal and vagal nerves. A few labeled cell bodies were also present ipsilaterally within the inferior ganglion of the vagal nerve and the spinal ganglion of the C1 segment. Some of the labeled glossopharyngeal and vagal fibers reached the nucleus of the solitary tract by crossing the dorsal portion of the spinal trigeminal tract. Others distributed to the spinal trigeminal nucleus pars interpolaris and to the ventrolateral part of the medial cuneate nucleus by descending through the dorsal portion of the spinal trigeminal tract. In the spinal cord these descending fibers, intermingling with labeled dorsal root fibers, distributed to laminae I, IV-V and VII-VIII of the C1 and C2 segments. Additional HRP experiments revealed that the fibers in laminae VII-VIII originate mainly from dorsal root of the C1 segment.  相似文献   

19.
The levator palpebrae superioris and orbicularis oculi are antagonistic muscles that function during movements of the eyelid. The levator also functions in conjunction with superior and inferior rectus muscles in coordinated eye/lid movements. The present study examined the innervation and morphology of these muscles in Cynomolgous monkeys (Macaca fascicularis) in order to provide a better understanding of the anatomical substrate for lid movements. Motoneurons innervating the levator and orbicularis muscles were identified and localized by retrograde transport of WGA/HRP and HRP. Retrogradely labelled levator motoneurons were distributed bilaterally throughout the caudal central division of the oculomotor nucleus. A few labelled cells were also present within the contralateral superior rectus division, possibly because of the spread of tracer at the injection site. The possibility that individual motoneurons collateralize to innervate the levator muscle bilaterally was tested by using double retrograde labelling techniques. Doubly labelled levator motoneurons could not be detected by using a combination of tracers (HRP and Fast Blue). Motoneurons innervating the upper lid portion of the orbicularis oculi muscle were distributed within the dorsal subdivision of the ipsilateral facial motor nucleus, with a few neurons in the corresponding locus of the contralateral facial nucleus. Species differences in levator motoneuron distribution, particularly distinctions in lateral-eyed versus frontal-eyed mammals, are discussed in relation to the neural control of lid movements. The levator palpebrae superioris contains three of the same ultrastructurally defined types of singly innervated muscle fiber found in the global layer of other extraocular muscles and an additional, unique slow-twitch fiber type. Moreover, the multiply innervated fiber types so characteristic of the other extraocular muscles are conspicuously absent from levator muscles. Unlike the rectus and oblique extraocular muscles, the levator lacks a layered distribution of fiber types. The morphological profiles of levator muscle fiber types are such that they generally do not respect traditional fiber classification schemes, but are consistent with a role for the levator in sustained elevation of the lid. The orbicularis oculi muscle, by contrast, exhibited three distinct fiber types that resembled categories of skeletal muscle twitch fibers. One slow-twitch and two fast-twitch fiber types were noted. On the basis of oxidative enzyme profiles and mitochondrial content, the majority of orbicularis oculi fibers would be fatigue-prone, an assessment consistent with their rapid onset/offset of acti  相似文献   

20.
Sakashi Nomura  Noboru Mizuno   《Brain research》1985,359(1-2):311-319
Distribution of cell bodies and central axons of mesencephalic trigeminal nucleus (MTN) neurons were examined in the cat by the method of transganglionic transport of horseradish peroxidase (HRP). Jaw-closing muscle afferent MTN neurons were distributed throughout the whole rostrocaudal extent of the MTN, and sent their axons ipsilaterally to the supratrigeminal and intertrigeminal regions, dorsolateral division of the motor trigeminal nucleus, lateral part of the medullary reticular formation, lamina VI of C1-C3 cord segments, and cerebellum. On the other hand, periodontal receptor afferent MTN neurons were located mainly in the caudal part of the MTN, and sent their axons ipsilaterally to the supratrigeminal region and cerebellum. The existence of multipolar MTN neurons with 1-9 smooth dendrites was also confirmed; most of them were jaw-closing muscle afferent neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号