首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The therapeutic efficacy of KP-103, a novel topical triazole, in a guinea pig tinea unguium model was investigated. Experimental tinea unguium and tinea pedis were produced by inoculation of Trichophyton mentagrophytes SM-110 between the toes of the hind paw of guinea pigs. One percent solution (0.1 ml) of KP-103, amorolfine, or terbinafine was topically applied to the nails and whole sole of an infected foot once daily for 30 consecutive days, and terbinafine was also orally administered at a daily dose of 40 mg/kg of body weight for 30 consecutive days, starting on day 60 postinfection. The fungal burdens of nails and plantar skin were assessed using a new method, which makes it possible to recover infecting fungi by removing a carryover of the drug remaining in the treated tissues into the culture medium. Topically applied KP-103 inhibited the development of nail collapse, significantly reduced the fungal burden of the nails, and sterilized the infected plantar skin. On the other hand, topical amorolfine and topical or oral terbinafine were ineffective for tinea unguium, although these drugs eradicated or reduced the fungal burden of plantar skin. The in vitro activities of amorolfine and terbinafine against T. mentagrophytes SM-110 were 8- and 32-fold, respectively, decreased by the addition of 5% keratin to Sabouraud dextrose broth medium. In contrast, the activity of KP-103 was not affected by keratin because its keratin affinity is lower than those of the reference drugs, suggesting that KP-103 largely exists in the nails as an active form that was not bound to keratin and diffuses in the nail without being trapped by keratin. The effectiveness of KP-103 against tinea unguium is probably due to its favorable pharmacokinetic properties in the nails together with its potent antifungal activity.  相似文献   

2.
The caspofungin clinical trial database offers an opportunity to assess susceptibility results for Candida pathogens obtained from patients with candidiasis and allows for correlations between efficacy outcomes and MICs. Candida isolates have been identified from patients enrolled in four studies of esophageal candidiasis and two studies of invasive candidiasis. The MICs of caspofungin for all baseline isolates were measured at a central laboratory using NCCLS criteria (document M-27A); MICs for caspofungin were defined as the lowest concentration inhibiting prominent growth at 24 h. MICs were then compared to clinical and microbiological outcomes across the two diseases. Susceptibility testing for caspofungin was performed on 515 unique baseline isolates of Candida spp. obtained from patients with esophageal candidiasis. MICs for caspofungin ranged from 0.008 to 4 microg/ml; the MIC50 and MIC90 were 0.5 and 1.0 microg/ml, respectively. Susceptibility testing was also performed on 231 unique baseline isolates of Candida spp. from patients with invasive candidiasis. The majority (approximately 96%) of MICs were between 0.125 and 2 microg/ml, with MIC50 and MIC90 for caspofungin being 0.5 and 2.0 microg/ml, respectively. Overall, caspofungin demonstrated potent in vitro activity against clinical isolates of Candida species. A relationship between MIC for caspofungin and treatment outcome was not seen for patients with either esophageal candidiasis or invasive candidiasis. Patients with isolates for which the MICs were highest (>2 microg/ml) had better outcomes than patients with isolates for which the MICs were lower (<1 microg/ml). Additionally, no correlation between MIC and outcome was identified for specific Candida species.  相似文献   

3.
Butenafine hydrochloride, N-4-tert-butylbenzyl-N-methyl-1-naphthalenemethylamine hydrochloride (butenafine), is a novel antifungal agent of the class of benzylamine derivatives. Butenafine was investigated for its activity against guinea pig dermatophytosis caused by Trichophyton mentagrophytes or Microsporum canis in comparison with those of naftifine, tolnaftate, clotrimazole, and bifonazole. Topical butenafine showed excellent efficacy against dermatophytosis when it was applied once daily, and the effect was superior to those of all four reference drugs. When applied once at 24 or 48 h before infection, the drug exhibited excellent prophylactic efficacy against experimental T. mentagrophytes infection. The concentrations of butenafine in animal skin at 24 and 48 h after application of 0.2 ml of a 1% solution were several hundred times higher than those required to kill T. mentagrophytes and M. canis. The good efficacy of butenafine against dermatophytosis may be attributable to its fungicidal activity and long retention in the skin after topical application.  相似文献   

4.
OBJECTIVES: This study was designed to characterize the role of the human cathelicidin LL-37 in fungal skin infections such as dermatophytosis and tinea versicolor. METHODS: The in vitro antimicrobial activity of synthetic antimicrobial peptides including the human cathelicidin LL-37 against Malassezia furfur and several dermatophytes was determined. Immunostaining was performed to determine expression of cathelicidin in skin biopsies from patients with tinea pedis, tinea corporis and tinea versicolor. Cathelicidin peptide expression was evaluated by western blotting and mRNA expression was studied in keratinocytes exposed to M. furfur or Trichophyton rubrum. RESULTS: LL-37 inhibits the growth of fungi with an MIC of 20-30 microM for M. furfur and 12.5 microM for Trichophyton mentagrophytes and T. rubrum. LL-37 also shows fungicidal activity with a minimum fungicidal concentration (MFC) of 12.5 and 25 microM for T. mentagrophytes and T. rubrum, respectively. An increase in cathelicidin expression was observed in human skin tissue infected with fungi compared with healthy skin. Western blotting of skin scrapings demonstrated that human cathelicidin is processed from its precursor into an active peptide in both healthy and infected plantar skin. CONCLUSIONS: These findings support a hypothesis that antimicrobial peptides such as cathelicidins can play a role in skin defence against dermatophytes and M. furfur.  相似文献   

5.
We examined anti-Trichophyton mentagrophytes activity, cutaneous penetration, and skin localization of butenafine, a novel benzylamine antifungal agent. The following results were obtained. (i) In the guinea pig dorsal skin trichophytosis model, butenafine produced complete eradication of fungi from infected sites. Clotrimazole was active when animals were infected with 10(4) or 10(5) cells but was almost inactive when the inoculum size was 10(6) cells. (ii) The MICs of butenafine and clotrimazole against arthrospores of T. mentagrophytes KD-04 were 0.025 and 0.39 microgram/ml, respectively. (iii) When 0.2 ml of a 1% 14C-butenafine solution was applied for 23 h/day for 7 days, high radioactivity corresponding to 250 to 500 micrograms of butenafine per g of skin in the epidermis, including the horny layer, was observed. (iv) Butenafine penetrates through transepidermal and transfollicular routes. The excellent therapeutic efficacy of butenafine on experimental dermatophytosis may be attributed to its low MIC and good penetration and distribution in the horny layer and hair follicles, where fungi reside.  相似文献   

6.
Studies were conducted to assess the bioequivalence of a new antimycotic formulation, ciclopirox olamine lotion 1%, to an established compound, ciclopirox olamine cream 1%. Results of in vitro studies, using skin samples from human cadavers and domestic pigs, demonstrated that the two formulations equally penetrate all layers of the stratum corneum and inhibit the growth of Trichophyton mentagrophytes and Candida albicans. In vivo studies in guinea pigs and in human volunteers demonstrated the comparable therapeutic efficacy of the lotion and the cream in experimental trichophytosis. In addition, a multicenter, double-blind clinical trial was undertaken to compare ciclopirox olamine lotion 1% with the vehicle alone in the treatment of patients with tinea pedis. Patients with plantar, interdigital, or vesicular tinea pedis were enrolled in the studies. Patients were treated for 28 days. Clinical and mycological responses were determined during treatment and two weeks posttreatment. Ciclopirox olamine lotion 1% was found to be significantly more effective than its vehicle in the treatment of patients with common tinea pedis. Minor localized side effects (pruritus, burning sensation) were reported in 2% of 89 patients treated with ciclopirox olamine lotion 1%. The results demonstrate the bioequivalence of ciclopirox olamine lotion 1% and ciclopirox olamine cream 1% and confirm the clinical effectiveness and safety of the lotion in the treatment of tinea pedis, a generally recalcitrant fungal infection. It is concluded that ciclopirox olamine lotion 1% can be used as an alternative to ciclopirox olamine cream 1% for treatment of tinea pedis, tinea versicolor, tinea cruris, tinea corporis, and cutaneous candidiasis when the convenience and/or cosmetic elegance of a lotion is desired.  相似文献   

7.
Posaconazole is a new investigational triazole with broad-spectrum antifungal activity. The in vitro activities of posaconazole were compared with those of itraconazole and fluconazole against 3,685 isolates of Candida spp. (3,312 isolates) and C. neoformans (373 isolates) obtained from over 70 different medical centers worldwide. The MICs of the antifungal drugs were determined by broth microdilution tests performed according to the National Committee for Clinical Laboratory Standards method using RPMI 1640 as the test medium. Posaconazole was very active against all Candida spp. (MIC at which 90% of the isolates were inhibited [MIC(90)], 0.5 microg/ml; 97% of MICs were < or =1 microg/ml) and C. neoformans (MIC(90), 0.5 microg/ml; 100% of MICs were < or =1 microg/ml). Candida albicans was the most susceptible species of Candida (MIC(90), 0.06 microg/ml), and Candida glabrata was the least susceptible (MIC(90), 4 microg/ml). Posaconazole was more active than itraconazole and fluconazole against all Candida spp. and C. neoformans. These results provide further evidence for the spectrum and potency of posaconazole against a large and geographically diverse collection of clinically important fungal pathogens.  相似文献   

8.
We examined the in vitro activities of voriconazole, posaconazole, and fluconazole against 3,932 isolates of Candida spp. and 237 isolates of Cryptococcus neoformans obtained from over 100 medical centers worldwide during 2001 and 2002. The MICs of the antifungal drugs were determined by broth microdilution tests performed according to the National Committee for Clinical Laboratory Standards (NCCLS) methods using RPMI 1640 as the test medium. Voriconazole and posaconazole were very active against Candida spp. (97-98% susceptible at MICs < or =1 microg/ml) and C. neoformans (98-100% susceptible at MICs < or =1 microg/mL). C. albicans (MIC90, 0.015-0.03 microg/ml) was the most susceptible species of Candida to both agents and C. glabrata (MIC90, 1-2 microg/mL) was the least susceptible. Both voriconazole and posaconazole were more active than fluconazole against all Candida spp. and C. neoformans. These results provide further evidence for the increased spectrum and potency of the new triazoles against a large and geographically diverse collection of opportunistic fungal pathogens.  相似文献   

9.
The in vitro activities of LY-303366, a new semisynthetic echinocandin, and comparators amphotericin B, 5-fluorocytosine, fluconazole, and ketoconazole against 205 systemic isolates of Candida species, Cryptococcus neoformans, Blastomyces dermatitidis, and Aspergillus species were determined. LY-303366 had MICs of < or = 0.32 microg/ml for all Candida albicans (n = 99), Candida glabrata (n = 18), and Candida tropicalis (n = 10) isolates tested. LY-303366 was also active against Aspergillus species (minimum effective concentration at which 90% of the isolates are inhibited, 0.02 microg/ml) (n = 20), was less active against Candida parapsilosis (MIC at which 90% of the isolates are inhibited [MIC90], 5.12 microg/ml) (n = 10), and was inactive against C. neoformans (MIC90, >10.24 microg/ml) (n = 15) and B. dermatitidis (MIC90, 16 microg/ml) (n = 29).  相似文献   

10.
Dermatophytosis is the most common skin infection caused by dermatophytic fungi, such as Trichophyton spp. We studied the in vitro and in vivo antifungal effects of lactoferrin against Trichophyton. Human and bovine lactoferrin, and a bovine lactoferrin-derived peptide, lactoferricin B, showed in vitro antifungal activity that was dependent on the test strain and medium used. In guinea pigs infected on the back with Trichophyton mentagrophytes (i.e. those with tinea corporis), consecutive daily po administration of bovine lactoferrin did not prevent development of symptoms during the early phase of infection, but facilitated clinical improvement of skin lesions after the peak of the symptoms. The fungal burden in lesions was less in guinea pigs that had been given lactoferrin than in untreated controls 21 days after infection. In guinea pigs infected on the foot with T. mentagrophytes (i.e. those with tinea pedis), the fungal burden of the skin on the heel portion of the infected foot 35 days after infection was lower in animals fed lactoferrin than in controls. These results suggest the potential usefulness of lactoferrin as a food component for promoting dermatophytosis cure.  相似文献   

11.
We investigated the in vitro activities of posaconazole (POS), fluconazole (FLC), amphotericin B (AMB), and caspofungin (CAS) against four clinical isolates of Candida glabrata with various susceptibilities to FLC (FLC MICs ranging from 1.0 to >64 microg/ml). POS MICs ranged from < or =0.03 to 0.5 microg/ml; AMB MICs ranged from 0.25 to 2.0 microg/ml, while CAS MICs ranged from 0.03 to 0.25 microg/ml. When FLC MICs increased, so did POS MICs, although we did not observe any isolate with a POS MIC greater than 0.5 mug/ml. Time-kill experiments showed that POS, FLC, and CAS were fungistatic against all isolates, while AMB at eight times the MIC was fungicidal against three out of four isolates of C. glabrata tested. Then, we investigated the activity of POS in an experimental model of disseminated candidiasis using three different isolates of C. glabrata: one susceptible to FLC (S; FLC MICs ranging from 1.0 to 4.0 microg/ml; POS MIC of < or =0.03 microg/ml), one susceptible in a dose-dependent manner (SDD; FLC MICs ranging from 32 to 64 microg/ml; POS MICs ranging from 0.125 to 0.25 microg/ml), and another one resistant to FLC (R; FLC MIC of >64 microg/ml; POS MIC of 0.5 microg/ml). FLC significantly reduced the kidney burden of mice infected with the S strain (P = 0.0070) but not of those infected with the S-DD and R strains. POS was significantly effective against all three isolates at reducing the kidney fungal burden with respect to the controls (P ranging from 0.0003 to 0.029). In conclusion, our data suggest that POS may be a useful option in the management of systemic infections caused by C. glabrata. Additionally, the new triazole may be a therapeutic option in those cases where an FLC-resistant isolate is found to retain a relatively low POS MIC.  相似文献   

12.
The fungistatic and fungicidal activities of sertaconazole against dermatophytes were evaluated by testing 150 clinical isolates of causative agents of tinea pedis, Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum. The overall geometric means for fungistatic and fungicidal activities of sertaconazole against these isolates were 0.26 and 2.26 μg/ml, respectively, although values were higher for T. mentagrophytes than for the others. This is the first comprehensive demonstration of the fungicidal activity of sertaconazole against dermatophytes.  相似文献   

13.
The in vitro and in vivo antifungal activities of T-2307, a novel arylamidine, were evaluated and compared with those of fluconazole, voriconazole, micafungin, and amphotericin B. T-2307 exhibited broad-spectrum activity against clinically significant pathogens, including Candida species (MIC range, 0.00025 to 0.0078 microg/ml), Cryptococcus neoformans (MIC range, 0.0039 to 0.0625 microg/ml), and Aspergillus species (MIC range, 0.0156 to 4 microg/ml). Furthermore, T-2307 exhibited potent activity against fluconazole-resistant and fluconazole-susceptible-dose-dependent Candida albicans strains as well as against azole-susceptible strains. T-2307 exhibited fungicidal activity against some Candida and Aspergillus species and against Cryptococcus neoformans. In mouse models of disseminated candidiasis, cryptococcosis, and aspergillosis, the 50% effective doses of T-2307 were 0.00755, 0.117, and 0.391 mg.kg(-1).dose(-1), respectively. This agent was considerably more active than micafungin and amphotericin B against candidiasis and than amphotericin B against cryptococcosis, and its activity was comparable to the activities of micafungin and amphotericin B against aspergillosis. The results of preclinical in vitro and in vivo evaluations performed thus far indicate that T-2307 could represent a potent injectable agent for the treatment of candidiasis, cryptococcosis, and aspergillosis.  相似文献   

14.
The allylamine derivative terbinafine is the first antifungal agent with primary fungicidal properties against dermatophytes which acts systemically after oral application as well as locally after topical application. Comparative oral studies carried out with griseofulvin and ketoconazole in model infections such as guinea pig trichophytosis and microsporosis revealed terbinafine to be superior to the reference compounds both clinically and mycologically. An excellent antimycotic activity of terbinafine was also demonstrable after topical treatment of guinea pig dermatophytoses caused by Trichophyton mentagrophytes or Microsporum canis. Results of comparative chemotherapeutic studies carried out with econazole and tolnaftate demonstrated superior efficacy of terbinafine in the treatment of both trichophytosis and microsporosis. Skin infections of guinea pigs caused by Candida albicans and vaginal candidiasis in rats proved to be responsive to a topical application of terbinafine also. However, the reference compounds, clotrimazole and miconazole, exhibited activity superior to that of terbinafine in both models.  相似文献   

15.
Butenafine is a new antifungal benzylamine. The efficacy of butenafine was investigated in an experimental tinea pedis model in guinea pigs, which is pathologically similar to natural infections in humans. Butenafine (0.1 ml) in 0.2 to 1.0% solutions was applied to the site of infection. Treatment was started on day 10 postinfection and was continued for 20 days. Butenafine applied once daily exhibited excellent dose-related therapeutic efficacy. The efficacy of butenafine was significantly superior to those tolnaftate, clotrimazole, and bifonazole.  相似文献   

16.
The in vitro activity of the novel triazole antifungal agent posaconazole (Noxafil; SCH 56592) was assessed in 45 laboratories against approximately 19,000 clinically important strains of yeasts and molds. The activity of posaconazole was compared with those of itraconazole, fluconazole, voriconazole, and amphotericin B against subsets of the isolates. Strains were tested utilizing Clinical and Laboratory Standards Institute broth microdilution methods using RPMI 1640 medium (except for amphotericin B, which was frequently tested in antibiotic medium 3). MICs were determined at the recommended endpoints and time intervals. Against all fungi in the database (22,850 MICs), the MIC(50) and MIC(90) values for posaconazole were 0.063 microg/ml and 1 mug/ml, respectively. MIC(90) values against all yeasts (18,351 MICs) and molds (4,499 MICs) were both 1 mug/ml. In comparative studies against subsets of the isolates, posaconazole was more active than, or within 1 dilution of, the comparator drugs itraconazole, fluconazole, voriconazole, and amphotericin B against approximately 7,000 isolates of Candida and Cryptococcus spp. Against all molds (1,702 MICs, including 1,423 MICs for Aspergillus isolates), posaconazole was more active than or equal to the comparator drugs in almost every category. Posaconazole was active against isolates of Candida and Aspergillus spp. that exhibit resistance to fluconazole, voriconazole, and amphotericin B and was much more active than the other triazoles against zygomycetes. Posaconazole exhibited potent antifungal activity against a wide variety of clinically important fungal pathogens and was frequently more active than other azoles and amphotericin B.  相似文献   

17.
Voriconazole is a promising azole effective against a variety of fungi, including yeasts. In this study, we tested in vitro activities of voriconazole, fluconazole, itraconazole and amphotericin B against some ATCC and reference strains and 250 clinical yeast isolates. We also evaluated the effect of time of reading on MIC results. Voriconazole was the most active agent against Candida and Trichosporon isolates, including the putatively fluconazole-resistant C. krusei (MIC(90) 0.25 microg/ml) and C. glabrata (MIC(90) 0.5 microg/ml). Amphotericin B MICs were scattered in a considerably narrow range in both RPMI 1640 and Antibiotic Medium 3. MICs at 24 hours and 48 hours were similar in general for all antifungals tested. The highest percentage of strains that showed 24-hour and 48-hour MICs within +/-1-log(2) dilution was observed for amphotericin B tested in RPMI (99%), and the lowest for amphotericin B tested in Antibiotic Medium 3 (80%). In conclusion, voriconazole is very effective against a wide spectrum of Candida species and 24-hour readings could substitute 48-hour MIC evaluation.  相似文献   

18.
The in vitro activities of ravuconazole and voriconazole were compared with those of amphotericin B, flucytosine (5FC), itraconazole, and fluconazole against 6,970 isolates of Candida spp. obtained from over 200 medical centers worldwide. Both ravuconazole and voriconazole were very active against all Candida spp. (MIC at which 90% of the isolates tested are inhibited [MIC(90)], 0.25 microg/ml; 98% of MICs were < or 1 microg/ml); however, a decrease in the activities of both of these agents was noted among isolates that were susceptible-dose dependent (fluconazole MIC, 16 to 32 microg/ml) and resistant (MIC, > or = 64 microg/ml) to fluconazole. Candida albicans was the most susceptible species (MIC(90) of both ravuconazole and voriconazole, 0.03 microg/ml), and C. glabrata was the least susceptible species (MIC(90), 1 to 2 microg/ml). Ravuconazole and voriconazole were each more active in vitro than amphotericin B, 5FC, itraconazole, and fluconazole against all Candida spp. and were the only agents with good in vitro activity against C. krusei. These results provide further evidence for the spectrum and potency of ravuconazole and voriconazole against a large and geographically diverse collection of Candida spp.  相似文献   

19.
The in vitro susceptibility of Sporothrix schenckii to antifungal drugs has been determined with three different methods. Nineteen Peruvian clinical isolates of S. schenckii were tested against amphotericin B (AB), flucytosine (FC), fluconazole (FZ), itraconazole (IZ), voriconazole (VZ), and ketoconazole (KZ). Modified NCCLS M38-A, Sensititre YeastOne (SYO), and ATB Fungus 2 (ATBF2) methods were used to determine the MICs. ATCC isolates of Candida parapsilosis, Candida krusei, and Aspergillus flavus were used for quality control. Sporothrix inocula were prepared with the mycelial form growing on potato dextrose agar at 28 +/- 2 degrees C. MICs of AB, FC, FZ, and IZ were determined with all three methods, VZ with M38-A and SYO, and KZ with only SYO. The three methods showed high MICs of FZ and FC (MIC(90) of 0.5 microg/ml), being homogeneously lower than those of IZ and KZ. The M38-A method showed a variable MIC range of VZ (4.0 to 16 microg/ml); the geometric mean (GM) was 9.3 mug/ml. The MIC range of AB was wide (0.06 to 16 microg/ml), but the GM was 1.2 microg/ml, suggesting that the MIC is strain dependent. Agreement (two log(2) dilutions) between commercial techniques and the modified M38-A method was very high with FZ, IZ, and FC. In AB and VZ, the agreement was lower, being related to the antifungal concentrations of each method. The highest activity against S. schenckii was found with IZ and KZ. Lack of activity was observed with FZ, VZ, and FC. When AB is indicated for sporotrichosis, the susceptibility of the strain must be analyzed. Commercial quantitative antifungal methods have a limited usefulness in S. schenckii.  相似文献   

20.
Isavuconazole (BAL4815) is a promising novel broad-spectrum triazole in late-stage clinical development that has proven active in vitro against Aspergillus and Candida species. We compared the in vitro activities of this agent with those of voriconazole and fluconazole by the CLSI (formerly NCCLS) M38-A and M27-A2 procedures against a large collection of 1,007 relevant opportunistic fungi collected from 1986 to 2007: Aspergillus spp. (n = 702), Candida spp. (n = 218), Zygomycetes (n = 45), Scedosporium spp. (n = 22), and Fusarium spp. (n = 20). All Candida isolates were from patients with candidemia. For isavuconazole, these techniques were also compared with the Etest. Isavuconazole and voriconazole had MICs at which 50% and 90% of isolates were inhibited (MIC50 and MIC90), respectively, of 1 and 1 microg/ml and 0.5 and 1 microg/ml against Aspergillus spp. and of 0.015 and 0.03 microg/ml and 0.25 and 0.125 microg/ml against Candida spp. (including fluconazole-resistant strains). The MIC50 partial and complete inhibition end points of isavuconazole and voriconazole against the non-Aspergillus molds were as follows: 1 and 2 microg/ml and 16 and >16 mug/ml against Zygomycetes; 1 and 4 microg/ml and 0.25 and 0.5 microg/ml against Scedosporium apiospermum; 4 to 16 and >16 microg/ml and 4 to 8 and 16 to >16 microg/ml (ranges) against Scedosporium prolificans; and 16 and 16 microg/ml and 4 and 4 microg/ml against Fusarium spp. Isavuconazole showed minimal fungicidal concentrations for 50% and 90% of the isolates of 1 and 1 microg/ml against Aspergillus, 16 and >16 microg/ml against Candida, and 4 and >16 microg/ml against Zygomycetes, respectively, and >16 microg/ml against the remaining molds. The Etest proved to be a suitable alternative method for determining the antifungal activities of isavuconazole against Aspergillus and Candida; the Etest results showed 96% and 93% agreement with the results of the CLSI M38-A and M27-A2 methods, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号