首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify a novel susceptibility gene for colorectal cancer (CRC), we conducted a genome-wide linkage analysis of 69 pedigrees segregating colorectal neoplasia in which involvement of known loci had been excluded, using a high-density single nucleotide polymorphism (SNP) array containing 10,204 markers. Multipoint linkage analyses were undertaken using both non-parametric (model-free) and parametric (model-based) methods. After the removal of SNPs in strong linkage disequilibrium, we obtained a maximum non-parametric linkage statistic of 3.40 (P=0.0003) at chromosomal region 3q21-q24. The same genomic position also yielded the highest multipoint heterogeneity LOD (HLOD) score under a dominant model (HLOD=3.10, genome-wide P=0.038) with 62% of families linked to the locus. We provide evidence for a novel CRC susceptibility gene. Further studies are needed to confirm this localization and to evaluate the contribution of this locus to disease incidence.  相似文献   

2.
To date four prostate cancer predisposing loci have been mapped: HPC1 (Hereditary Prostate Cancer 1) on 1q24-25, PCaP (Predisposing for Cancer Prostate) on 1q42.2-43, CAPB (Cancer Prostate and Brain) on 1p36, and HPCX on Xq27-28. We examined evidence for linkage to those loci in 64 families from south and west Europe. Genotyping of three (six for PCaP) markers encompassing the candidate regions were performed on 221 individuals including 159 affected patients. The resulting data were analysed using both parametric and non parametric linkage methods. No significant evidence of linkage to HPC1, CAPB, or HPCX was found either in the whole population or when pedigrees were stratified according to criteria specific to each locus. By contrast, results in favour of linkage to PCaP locus were observed with maximum multipoint NPL and HLOD scores of 2.8 (P = 0.0026) and 2.65 respectively. Homogeneity analysis performed with multipoint LOD scores gave an estimated proportion of families with linkage to this locus up to 50%. Particularly, families with an earlier age at diagnosis (< or = 65-years-old) contributed significantly to the evidence of linkage with a maximum multipoint NPL score of 2.03 (P = 0.024). Those results suggest that PCaP is the most frequent known locus predisposing to hereditary prostate cancer cases from families from south and west Europe.  相似文献   

3.
Benign recurrent vertigo (BRV) is a common disorder affecting up to 2% of the adult population and may be etiologically related to migraine because of similarities in the clinical spectrum of the phenotypes and a high co-morbidity within families. Many families have multiple-affected genetically related individuals suggesting familial transmission of the disorder with moderate to high penetrance. While clinically similar to episodic ataxias, there are currently no genes identified that contribute to BRV and no systematic linkage studies performed. In an initial effort to genetically define BRV, we have selected from our Neurology Clinic population a subset of 20 multigenerational families with apparent autosomal dominant transmission, and performed genetic linkage mapping using both parametric and non-parametric linkage (NPL) approaches. The Affymetrix 10K SNP Mapping Assay was used for the genotyping. Heterogeneity LOD (HLOD) analysis reveals the evidence of genetic heterogeneity for BRV and evidence of linkage in a subset of the families to 22q12 (HLOD = 4.02). An additional region was identified by NPL analysis at 5p15 (LOD = 2.63). As migraine is observed substantially more commonly both within the BRV-affected individuals and the related family members, it is possible that a form of migraine is allelic to the BRV locus at 22q12. However, testing linkage or the chromosome 22q12 region to a broader migraine/vertigo phenotype by defining affectation status as either migrainous headaches or BRV greatly weakened the linkage signal, and no significant other peaks were detected. Thus, BRV and migraine does not appear to be allelic disorders within these families. We conclude that BRV is a heterogeneous genetic disorder, appears genetically distinct from migraine with aura and is linked to 22q12. Additional family and population-based linkage and association studies will be needed to determine the causative alleles.  相似文献   

4.
We have previously mapped a locus controlling Plasmodium falciparum blood infection levels (PFBI) to chromosome 5q31-q33. We genotyped 19 microsatellite markers on chromosome 5q31-q33 in a new sample of 44 pedigrees comprising 84 nuclear families and 292 individuals living in a P. falciparum endemic area. Using a nonparametric multipoint variance-component approach (by GENEHUNTER), we evidenced a peak of linkage close to D5S636 (P=0.0069), with a heritability of 0.46. Using a variance-component method for linkage-disequilibrium mapping of quantitative traits (by QTDT) and the Bonferroni correction for multiple testing, we further detected allelic association in the presence of linkage between blood infection levels and D5S487 (P=6 x 10(-5); P(c)=0.0011), which is located on the distal part of the peak. These results confirm the importance of chromosome 5q31-q33 in the genetic control of PFBI levels.  相似文献   

5.
In order to identify genes or regions involved in nonsyndromic cleft lip with or without cleft palate (CL/P) in families from India, we analyzed 38 multiplex families (DNA from 272 individuals, 82 affected with CL/P, 190 unaffected) for 285 genome-wide markers (average spacing 12.6 cM), including markers in six candidate loci or regions on chromosomes 2, 4, 6, 14, 17, and 19 that have been implicated in other studies of CL/P. LOD scores (two-point and multipoint), and model-free association (TDT) and linkage (NPL) statistics, were calculated between each of the markers and a hypothetical CL/P susceptibility locus. The most statistically significant two-point linkage results were with markers on chromosome 7 (LOD = 1.89 with D7S435, 7p15, 47 cM), chromosome 5 (LOD = 1.76 with D5S407, 5q11, 65 cM), chromosome 15 (LOD = 1.55 with D15S652, 15q26, 90 cM), and chromosome 20 (LOD = 1.46 with STS155130, 20q13, 54 cM). The most significant multipoint linkage result was on chromosome 5q, again near D5S407 (HLOD = 1.40). Regions on chromosomes 1p, 1q, 7q, 12q, 16q, 18q, and Xp also had a LOD or HLOD > or = 1.0. Of seven candidate markers and regions with previous positive reports in the literature (TGFA, MSX1, D4S175, F13A1, TGFB3, D17S250, and APOC2), none had a significant linkage result, but one (the APOC2 region) had a significant association result and three others (TGFA, MSX1, F13A1) had suggestive results. The results are consistent with the involvement of multiple loci in CL/P expression in this West Bengal population, which concurs with results found in other CL/P study populations.  相似文献   

6.
Photoparoxysmal response (PPR) is an abnormal visual sensitivity of the brain in reaction to intermittent photic stimulation. It is an epilepsy-related electroencephalographic trait with high prevalence in idiopathic epilepsies, especially in common idiopathic generalized epilepsies (IGEs), such as childhood absence epilepsy and juvenile myoclonic epilepsy. This degree of co-morbidity suggests that PPR may be involved in the predisposition to IGE. The identification of genes for PPR would, therefore, aid the dissection of the genetic basis of IGE. Sixteen PPR-multiplex families were collected to conduct a genome-wide linkage scan using broad (all PPR types) and narrow (exclusion of PPR types I and II and the occipital epilepsy cases) models of affectedness for PPR. We found an empirical genome-wide significance for parametric (HLOD) and non-parametric (NPL) linkage (Pgw(HLOD)=0.004 and Pgw(NPL)=0.01) for two respective chromosomal regions, 7q32 at D7S1804 (HLOD=3.47 with alpha=1, P(NPL)=3.39x10(-5)) and 16p13 at D16S3395 (HLOD=2.44 with alpha=1, P(NPL)=7.91x10(-5)). These two genomic regions contain genes that are important for the neuromodulation of cortical dynamics and may represent good targets for candidate-gene studies. Our study identified two susceptibility loci for PPR, which may be related to the underlying myoclonic epilepsy phenotype present in the families studied.  相似文献   

7.
Familial combined hyperlipidemia (FCHL) is the most common familial dyslipidemia, with a prevalence of 1‐2% in the general population. A major locus for FCHL has been mapped to chromosome 1q21‐q23 in Finnish, Chinese, German and US families. We studied seven extended Mexican families with 153 members, including 64 affected subjects. A total of 11 markers were genotyped, including D1S104 which has been linked to FCHL in other studies. Two point linkage analysis for the FCHL phenotype, and for the elevated triglyceride (TG) trait, allowing for heterogeneity, gave a maximum HLOD of 1.67 (α= 0.49) and 1.93 (α= 0.43) at D1S2768 (2.69 cM proximal to D1S104) respectively. Heterogeneity and non‐parametric (NPL) multipoint analyses for the FCHL phenotype and the TG trait showed maximum HLODs of 1.27 (α= 0.46) and 1.64 (α= 0.38), and NPLs of 4.00 (P = 0.0001) and 3.68 (P = 0.0003) near D1S2768, respectively. In addition, analysis of four candidate genes putatively involved in the expression of FCHL showed no evidence of linkage for the LCAT gene or the APOA1/C3/A4/A5 gene cluster. However, we cannot exclude the participation of these genes, or the LIPC and LPL genes, as minor susceptibility loci in the expression of FCHL, or the TG or elevated total cholesterol (TC) traits in our families. In conclusion, our data confirm the involvement of a major susceptibility locus on chromosome 1q21‐q23 in FCHL Mexican families, consistent with findings in other populations.  相似文献   

8.
Non-syndromic cleft lip with or without cleft palate (CL/P) is a genetically complex birth defect, with a prevalence from 1/500 to 1/1,000 live births. Evidence from linkage and linkage disequilibrium studies is contradictory suggesting that heterogeneity between study populations may exist. A recent report of a genome widescan in 92 sib pairs from the United Kingdom revealed suggestive linkage to 10 loci [Prescott et al., 2000]. The purpose of this study is to replicate those results and evaluate additional candidate genes in 49 Colombian and 13 Ohio families. Genotypes were obtained for STRPs at 1p36, 2p13 (TGFA), 4p16 (MSX1), 6p23-25, 6q25-27, 8q23-24, 11p12-q13, 12q13, 14q24 (TGFB3), 16q22-24, 17q12-21 (RARA), and Xcen-q21. Linkage was performed using parametric (dominant and recessive models) and non-parametric (GenehunterNPL and SimIBD) analyses. In addition, heterogeneity was analyzed using GenehunterHLOD, and association determined by the TDT. The Colombian families showed significant SimIBD results for 11p12-q13 (P = 0.034), 12q13 (P = 0.015), 16q22-24 (0.01), and 17q12-21 (0.009), while the Ohio families showed significant SimIBD results for 1p36 (P = 0.02), TGFA (P = 0.005), 6p23 (P = 0.004), 11p12-q13 (P = 0.048) and significant NPL results for TGFA (NPL = 3.01, P = 0.009), 4p16 (MNPL = 2.07, P = 0.03) and 12q13 (SNPL = 3.55, P = 0.007). Significant association results were obtained only for the Colombian families in the regions 1p36 (P = 0.046), 6p23-25 (P = 0.020), and 12q13 (P = 0.046). In addition several families yielded LOD scores ranging from 1.09 to 1.73, for loci at 4p16, 6p23-25, 16q22-24, and 17q13. These results confirm previous reports for these loci. However, the differences between the two populations suggest that population specific locus heterogeneity exists. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/0148-7299/suppmat/index.html.  相似文献   

9.
Celiac disease (CD) is a common autoimmune disease caused by exposure to the protein gliadin in wheat, and related prolamins in barley and rye. The prevalence of the disease in the US is 1:133. The aim of this study was to identify non-human leukocyte antigen (HLA) loci that predispose to CD. A genome-wide search of 405 microsatellite markers was performed on DNA samples from 160 families with a minimum of two cases of CD. Multipoint, parametric and non-parametric linkage (NPL) analyses were performed. Locations on chromosomes 1q, 3q, 6p, 6q, 7q, 9q and 10q showed linkage statistics (NPL scores or heterogeneity logarithm of the odds (HLOD) scores) of approximately 2.0 or larger. The greatest evidence for linkage outside of chromosome 6 was on 7q and 9q. An NPL score of 2.60 occurred at position 151.0 on 7q and a HLOD score of 2.47 occurred at position 144.8 on 9q under a recessive model. As expected, there was highly significant linkage to the HLA region on 6p, with NPL and HLOD scores exceeding 5.50. In conclusion, this genome-wide linkage analysis represents one of the largest such studies of CD. The most promising region is a putative locus on 7q, a region reported independently in previous genome-wide searches.  相似文献   

10.
A linkage study of 96 dyslexia families containing at least two affected siblings (totaling 877 individuals) has found evidence for a dyslexia susceptibility gene on chromosome 6q11.2-q12 (assigned the name DYX4). Using a qualitative phonological coding dyslexia (PCD) phenotype (affected, unaffected, or uncertain diagnoses), two-point parametric analyses found highly suggestive evidence for linkage between PCD and markers D6S254, D6S965, D6S280, and D6S251 (LOD(max) scores = 2.4 to 2.8) across an 11 cM region. Multipoint parametric analysis supported linkage of PCD to this region (peak HLOD = 1.6), as did multipoint nonparametric linkage analysis (P = 0.012). Quantitative trait linkage analyses of four reading measures (phonological awareness, phonological coding, spelling, and rapid automatized naming speed) also provided evidence for a dyslexia susceptibility locus on chromosome 6q. Using a variance-component approach, analysis of phonological coding and spelling measures resulted in peak LOD scores at D6S965 of 2.1 and 3.3, respectively, under 2 degrees of freedom. Furthermore, multipoint nonparametric quantitative trait sibpair analyses suggested linkage between the 6q region and phonological awareness, phonological coding, and spelling (P = 0.018, 0.017, 0.0005, respectively, for unweighted sibpairs < 18 years of age). Although conventional significance thresholds were not reached in the linkage analyses, the chromosome 6q11.2-q12 region clearly warrants investigation in other dyslexia family samples to attempt replication and confirmation of a dyslexia susceptibility gene in this region.  相似文献   

11.
Breast cancer accounts for over 20% of all female cancers. A positive family history remains one of the most important risk factors for the disease, with first-degree relatives of patients having a twofold elevated risk. Known breast cancer susceptibility genes such as BRCA1 and BRCA2 explain only 20-25% of this risk, suggesting the existence of other breast cancer susceptibility genes. Here, we report the results of a genome-wide linkage scan in 55 high-risk Dutch breast cancer families with no mutations in BRCA1 and BRCA2. Twenty-two of these families were also part of a previous linkage study by the Breast Cancer Linkage Consortium. In addition, we performed CGH analyses in 61 tumors of these families and 31 sporadic tumors. Three regions were identified with parametric HLOD scores >1, and three with nonparametric LOD scores >1.5. Upon further marker genotyping for the candidate loci, and the addition of another 30 families to the analysis, only the locus on chromosome 9 (9q21-22, marker D9S167) remained significant, with a nonparametric multipoint LOD score of 3.96 (parametric HLOD 0.56, alpha = 0.18). With CGH analyses we observed preferential copy number loss at BAC RP11-276H19, containing D9S167 in familial tumors as compared to sporadic tumors (P < 0.001). Five candidate genes were selected from the region around D9S167 and their coding regions subjected to direct sequence analysis in 16 probands. No clear pathogenic mutations were found in any of these genes.  相似文献   

12.
Benign Adult Familial Myoclonic Epilepsy (BAFME) is an autosomal dominant disorder characterized by adult-onset cortical tremor or action myoclonus predominantly in the upper limbs, and generalized seizures. We investigated a Thai BAFME family. Clinical and electrophysiological studies revealed that 13 were affected with BAFME. There were a total of 24 individuals studied. Genetic analysis by genome-wide linkage study (GWLS) was performed using 400 microsatellite markers and excluded linkage of the previous BAFME loci, 8q23.3-q24.1, and 2p11.1-q12.2. GWLS showed that the disease-associated region in our Thai family was linked to a newly identified locus on chromosome 3q26.32-3q28. This locus represents the fourth chromosomal region for BAFME.  相似文献   

13.
Celiac disease (CD) is a common small intestinal injury caused by sensitivity to gliadin in genetically-predisposed individuals. The only susceptibility locus established is the HLA-DQ. We tested whether the chromosomal region of the CD28/CTLA4 genes on 2q33 is linked to CD. These genes encode receptors regulating the T-lymphocyte activation. Recently, this gene region was reported to be linked to the susceptibility to many autoimmune diseases, including insulin-dependent diabetes (IDDM12locus). It is thus an obvious candidate locus also for CD, since the intestinal injury is mediated by the immune system. Genetic linkage between seven marker loci in this gene region and CD was studied in 69 Finnish families. In the multipoint linkage analysis, the highest non-pararametric linkage score (NPL) was 1.75 (P=0.04) for D2S116, suggesting weak linkage for this candidate locus. To evaluate this finding, an additional 31 families were typed for all markers. In the combined set of 100 families the NPL score for marker D2S116 was 2.55 (P=0.006) and for other markers 1.90-2.47 (P=0.029-0.007), supporting genuine linkage at this region. Significantly, locus D2S116 also showed a clear allelic association in these 100 families (P=0.0001). The transmission/disequilibrium test (TDT) for locus D2S116 gave preliminary evidence for preferential maternal non-transmission of allele *136 to patients (TDTmax=8.3; P<0.05). No paternal deviation was found suggesting that the effect of the locus might be mediated by a sex-dependent factor protective against CD. Our results indicate that the CD28/CTLA4 gene region can contain a novel susceptibility locus for CD and support the hypothesis that CD has an immune system-mediated component. Like the HLA, the CD28/CTLA4 genes appear to be associated with genetic susceptibility to various autoimmune diseases.  相似文献   

14.
To identify novel late-onset Alzheimer disease (LOAD) risk genes, we have analysed Amish populations of Ohio and Indiana. We performed genome-wide SNP linkage and association studies on 798 individuals (109 with LOAD). We tested association using the Modified Quasi-Likelihood Score test and also performed two-point and multipoint linkage analyses. We found that LOAD was significantly associated with APOE (P= 9.0 × 10-6) in all our ascertainment regions except for the Adams County, Indiana, community (P= 0.55). Genome-wide, the most strongly associated SNP was rs12361953 (P= 7.92 × 10-7). A very strong, genome-wide significant multipoint peak [recessive heterogeneity multipoint LOD (HLOD) = 6.14, dominant HLOD = 6.05] was detected on 2p12. Three additional loci with multipoint HLOD scores >3 were detected on 3q26, 9q31 and 18p11. Converging linkage and association results, the most significantly associated SNP under the 2p12 peak was at rs2974151 (P= 1.29 × 10-4). This SNP is located in CTNNA2, which encodes catenin alpha 2, a neuronal-specific catenin known to have function in the developing brain. These results identify CTNNA2 as a novel candidate LOAD gene, and implicate three other regions of the genome as novel LOAD loci. These results underscore the utility of using family-based linkage and association analyses in isolated populations to identify novel loci for traits with complex genetic architecture.  相似文献   

15.
Family and twin studies have suggested a genetic component in autism. We performed a genome-wide screen with 264 microsatellites markers in 51 multiplex families, using non-parametric linkage methods. Families were recruited by a collaborative group including clinicians from Sweden, France, Norway, the USA, Italy, Austria and Belgium. Using two-point and multipoint affected sib-pair analyses, 11 regions gave nominal P -values of 0.05 or lower. Four of these regions overlapped with regions on chromosomes 2q, 7q, 16p and 19p identified by the first genome-wide scan of autism performed by the International Molecular Genetic Study of Autism Consortium. Another of our potential susceptibility regions overlapped with the 15q11-q13 region identified in previous candidate gene studies. Our study revealed six additional regions on chromosomes 4q, 5p, 6q, 10q, 18q and Xp. We found that the most significant multipoint linkage was close to marker D6S283 (maximum lod score = 2.23, P = 0.0013).  相似文献   

16.
We report on a multigenerational family with isolated Hirschsprung's disease (HSCR). Five patients were affected by either short segment or long segment HSCR. The family consists of two main branches: one with four patients (three siblings and one maternal uncle) and one with one patient. Analysis of the RET gene, the major gene involved in HSCR susceptibility, revealed neither linkage nor mutations. A genome wide linkage analysis was performed, revealing suggestive linkage to a region on 4q31-q32 with a maximum parametric multipoint LOD score of 2.7. Furthermore, non-parametric linkage (NPL) analysis of the genome wide scan data revealed a NPL score of 2.54 (p = 0.003) for the same region on chromosome 4q (D4S413-D4S3351). The minimum linkage interval spans a region of 11.7 cM (12.2 Mb). No genes within this chromosomal interval have previously been implicated in HSCR. Considering the low penetrance of disease in this family, the 4q locus may be necessary but not sufficient to cause HSCR in the absence of modifying loci elsewhere in the genome. Our results suggest the existence of a new susceptibility locus for HSCR at 4q31.3-q32.3.  相似文献   

17.
Genetic factors play a major role in the aetiology of idiopathic generalised epilepsies (IGEs). The present genome scan was designed to identify susceptibility loci that predispose to a spectrum of common IGE syndromes. Our collaborative study included 130 IGE-multiplex families ascertained through a proband with either an idiopathic absence epilepsy or juvenile myoclonic epilepsy, and one or more siblings affected by an IGE trait. In total, 413 microsatellite polymorphisms were genotyped in 617 family members. Non-parametric multipoint linkage analysis, using the GeneHunter program, provided significant evidence for a novel IGE susceptibility locus on chromosome 3q26 (Z(NPL) = 4.19 at D3S3725; P = 0.000017) and suggestive evidence for two IGE loci on chromosome 14q23 (Z(NPL) = 3.28 at D14S63; P = 0.000566), and chromosome 2q36 (Z(NPL) = 2.98 at D2S1371; P = 0.000535). The present linkage findings provide suggestive evidence that at least three genetic factors confer susceptibility to generalised seizures in a broad spectrum of IGE syndromes. The chromosomal segments identified harbour several genes involved in the regulation of neuronal ion influx which are plausible candidates for mutation screening.  相似文献   

18.
Celiac disease (CD) is an autoimmune disease caused by sensitivity to the dietary protein gluten. It has a prevalence of 1 in 250 in the United States. Multiple-case families are common with a risk to siblings from 10-12%. Previous linkage studies have found no significant evidence for linkage other than to HLA. In this study, we performed a genome-wide search on 62 families with at least two cases of CD to identify non-HLA loci for CD. Two-point and multipoint parametric and nonparametric analyses were performed on the entire set of families and on sets stratified by the HLA genotype. Accounting for multiple testing, we found genome-wide intermediate linkage evidence at 18q (heterogeneity LOD (HLOD) = 3.6) and at 3p (HLOD = 3.2) and suggestive evidence at 5p (HLOD = 2.7). Good consensus between two-point and multipoint evidence was not found, and after genotyping with new markers in these regions, our results were inconclusive. The 18q region had intermediate two-point evidence, but weak multipoint evidence. At 3p and 5p, the addition of follow-up markers added flanking support, yet multipoint evidence was still lacking. Our results indicate that multipoint analyses may be hindered by the complexity of CD. Multipoint analyses are not robust to model misspecification, and further development of models is needed. Additional study of these and other families is necessary to validate or rule out the regions implicated in this study.  相似文献   

19.
A genome-wide scan was conducted for visceral leishmaniasis (VL) in Brazil. Initially, 405 markers were typed in 22 multicase pedigrees (28 nuclear families; 174 individuals; 66 affected). Non-parametric multipoint analysis detected nine chromosomal regions with provisional evidence (logarithm of the odds (LOD) scores 0.95-1.66; 0.003相似文献   

20.
Idiopathic generalized epilepsy (IGE) has evidence of a strong genetic etiology. We conducted genomewide linkage analysis for genes responsible for familial IGE in French-Canadian pedigrees. Twenty families segregating autosomal dominant epilepsy were collected. Four larger IGE families sufficiently powerful for independent linkage analysis were genome-scanned and follow-up fine mapping was performed over regions with LOD scores >3.0. The genotyping of 16 smaller families was carried out at significantly linked loci for supportive linkage analysis and haplotype comparisons. One of the four families provided a significant linkage result at marker D10S1426 on chromosome 10 (two-point LOD score = 3.05, theta = 0, multipoint LOD score = 3.18). Fine mapping revealed a segregating haplotype and key recombination breakpoints, suggesting a candidate gene interval of 6.5 Mb. Multipoint linkage analyses using the additional 16 families yielded a maximum LOD score under heterogeneity of 4.23 (alpha = 0.34) at this locus. Evaluation of recombination breakpoints in these families narrowed the candidate region to 1.7 Mb. Sequencing of the two known genes in this region, NRP1 and PARD3, was negative for mutation. Replication of linkage to this locus in other cohorts of IGE families is essential to characterize the underlying genetic mechanism for the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号