首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase detection in fully refocused SSFP imaging has recently allowed fat/water separation without preparing the magnetization or using multiple acquisitions. Instead, it exploits the phase difference between fat and water at an echo time at the midpoint of the TR. To minimize the TR for improved robustness to B0 inhomogeneity, a 3D projection acquisition collecting two half echoes at the beginning and end of each excitation was previously implemented. Since echoes are not formed at the midpoint of the TR, this method still requires two passes of k-space for fat/water separation. A new method is presented to linearly combine the half echoes to separate fat and water in a single acquisition. Separation using phase detection provides superior contrast between fat and water voxels. Results from high resolution angiography and musculoskeletal studies with improved robustness to inhomogeneity and a 50% scan time reduction compared to the two pass method are presented.  相似文献   

2.
A new synthesis algorithm, based on the Shinnar-Le Roux (SLR) transform, can be used to generate fully refocused steady-state pulse sequences with arbitrary magnetization profiles as a function of off-resonant precession. This is accomplished by appropriate periodic oscillation of the RF excitation magnitude and phase from echo to echo. The technique is applied to the design of refocused steady-state free precession (SSFP) sequences with flat profiles, providing the opportunity for banding-artifact-free imaging with steady-state contrast. The algorithm is also used to generate refocused-SSFP sequences with an arbitrarily broad region of attenuated signal. These sequences are implemented and applied to the problem of steady-state fat suppression. Preliminary results show signal levels that agree well with theory, and a broad region of suppressed signal at each echo. Total imaging time is kept identical to that of a standard refocused-SSFP experiment through echo equalization and interleaving. 3D images from the leg of a normal volunteer acquired in 44 s demonstrate the applicability of the technique to fat-suppressed imaging.  相似文献   

3.
PURPOSE: To evaluate the potential of fully-balanced steady-state free-precession (SSFP) sequences in in vivo high-resolution (HR) MRI of trabecular bone at field strengths of 1.5 and 3 T by simulation and experimental methods. MATERIALS AND METHODS: Using simulation studies, refocused SSFP acquisition was optimized for our imaging purposes with a focus on signal-to-noise ratio (SNR) and SNR efficiency. The signal behavior in trabecular bone was estimated using a magnetostatic model of the trabecular bone and marrow. Eight normal volunteers were imaged at the proximal femur, calcaneus, and the distal tibia on a GE Signa scanner at 1.5 and at 3 T with an optimized single-acquisition SSFP sequence (three-dimensional FIESTA) and an optimized multiple-acquisition SSFP sequence (three-dimensional FIESTA-c). Images were also acquired with a fast gradient echo (FGRE) sequence for evaluation of the SNR performance of SSFP methods. RESULTS: Refocused SSFP images outperformed FGRE acquisitions in both SNR and SNR efficiency at both field strengths. At 3 T, susceptibility effects were visible in FIESTA and FGRE images and much reduced in FIESTA-c images. The magnitude of SNR boost at 3 T was closely predicted by simulations. CONCLUSION: Single-acquisition SSFP (at 1.5 T) and multiple-acquisition SSFP (at 3 T) hold great potential for HR-MRI of trabecular bone.  相似文献   

4.
Variable nutation SSFP (DESPOT2) permits rapid, high-resolution determination of the transverse (T2) relaxation constant. A limitation of DESPOT2, however, is the presence of T2 voids due to off-resonance banding artifacts associated with SSFP images. These artifacts typically occur in images acquired with long repetition times (TR) in the presence of B0 inhomogeneities, or near areas of magnetic susceptibility difference, such that the transverse magnetization experiences a net phase shift during the TR interval. This places constraints on the maximum spatial resolution that can be achieved without artifact. Here, a novel implementation of DESPOT2 is presented incorporating RF phase-cycling which acts to shift the spatial location of the bands, allowing reconstruction of a single, reduced artifact-image. The method is demonstrated in vivo with the acquisition of a 0.34 mm3 isotropic resolution T2 map of the brain with high precision and accuracy and significantly reduced artifact.  相似文献   

5.
Imaging single mammalian cells with a 1.5 T clinical MRI scanner.   总被引:1,自引:0,他引:1  
In the present work, we demonstrate that the steady-state free precession (SSFP) imaging pulse sequence FIESTA (fast imaging employing steady state acquisition) used in conjunction with a custom-built insertable gradient coil and customized RF coils can be used to detect individual SPIO-labeled cells using a commonly available 1.5 T clinical MRI scanner. This work provides the first evidence that single-cell tracking will be possible using clinical MRI scanners, opening up new possibilities for cell tracking and monitoring of cellular therapeutics in vivo in humans.  相似文献   

6.
PURPOSE: To investigate a rapid flow-suppression method for improving the contrast-to-noise ratio (CNR) between the vessel wall and the lumen for cardiovascular imaging applications. MATERIALS AND METHODS: In this study a new dark-blood steady-state free precession (SSFP) sequence utilizing two excitation pulses per TR was developed. The first pulse is applied immediately adjacent to the slice of interest, while the second is a conventional slice-selective pulse designed to excite an SSFP signal for the static spins in the slice of interest. The slice-selective pulse is followed by fully refocused gradients along all three imaging axes over each TR. The signal amplitude (SA) from the moving spins excited by the "saturation" pulse is attenuated since they are not fully refocused at the TE. RESULTS: This work provides confirmation, by both simulation and experiments, that modest adaptations of the basic True-FISP structure can limit unwanted "bright blood" signal within the vessels while simultaneously preserving the contrast and speed advantages of this well-established rapid imaging method. CONCLUSION: Animal imaging trials confirm that dark-blood contrast is achieved with the BASS sequence, which substantially reverses the lumen-to-muscle CNR of a conventional True-FISP "bright blood" acquisition from 14.77 (bright blood) to -13.96 (dark blood) with a modest increase (24.2% of regular TR of SSFP for this implementation) in acquisition time to accommodate the additional slab-selective excitation pulse and gradient pulses.  相似文献   

7.
Resolution enhanced T(1)-insensitive steady-state imaging (RE-TOSSI) is a new MRI pulse sequence for the generation of rapid T(2) contrast with high spatial resolution. TOSSI provides T(2) contrast by using nonequally spaced inversion pulses throughout a balanced steady-state free precession (SSFP) acquisition. In RE-TOSSI, these energy and time intensive adiabatic inversion pulses and associated magnetization preparation are removed from TOSSI after acquisition of the data around the center of k-space. Magnetization evolution simulations demonstrate T(2) contrast in TOSSI as well as reduction in the widening of the point spread function width (by up to a factor of 4) to a near ideal case for RE-TOSSI. Phantom experimentation is used to characterize and compare the contrast and spatial resolution properties of TOSSI, RE-TOSSI, balanced SSFP, Half-Fourier Acquisition Single-Shot Turbo Spin Echo (HASTE), and turbo spin echo and to optimize the fraction of k-space acquired using TOSSI. Comparison images in the abdomen and brain demonstrate similar contrast and improved spatial resolution in RE-TOSSI compared with TOSSI; comparison balanced SSFP, HASTE, and turbo spin echo images are provided. RE-TOSSI is capable of providing high spatial resolution T(2)-weighted images in 1 s or less per image.  相似文献   

8.
RASER: a new ultrafast magnetic resonance imaging method.   总被引:1,自引:0,他引:1  
A new MRI method is described to acquire a T(2)-weighted image from a single slice in a single shot. The technique is based on rapid acquisition by sequential excitation and refocusing (RASER). RASER avoids relaxation-related blurring because the magnetization is sequentially refocused in a manner that effectively creates a series of spin echoes with a constant echo time. RASER uses the quadratic phase produced by a frequency-swept chirp pulse to time-encode one dimension of the image. In another implementation the pulse can be used to excite multiple slices with phase-encoding and frequency-encoding in the other two dimensions. The RASER imaging sequence is presented along with single-shot and multislice images, and is compared to conventional spin-echo and echo-planar imaging sequences. A theoretical and empirical analysis of the spatial resolution is presented, and factors in choosing the spatial resolution for different applications are discussed. RASER produces high-quality single-shot images that are expected to be advantageous for a wide range of applications.  相似文献   

9.
Three-dimensional projection reconstruction (3D PR)-based techniques are advantageous for steady-state free precession (SSFP) imaging for several reasons, including the capability to achieve short repetition times (TRs). In this paper, a multi-half-echo technique is presented that dramatically improves the data-sampling efficiency of 3D PR sequences while it retains this short-TR capability. The k-space trajectory deviations are measured quickly and corrected on a per-sample point basis. A two-pass RF cycling technique is then applied to the dual-half-echo implementation to generate fat/water-separated images. The resultant improvement in the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) was demonstrated in volunteer studies. Volumetric images with excellent spatial resolution, coverage, and contrast were obtained with high speed. The non-contrast-enhanced SSFP studies show that this technique has promising potential for MR angiography (MRA).  相似文献   

10.
Balanced steady-state free precession (SSFP) sequences are useful in cardiac imaging because they achieve high signal efficiency and excellent blood-myocardium contrast. Spiral imaging enables the efficient acquisition of cardiac images with reduced flow and motion artifacts. Balanced SSFP has been combined with spiral imaging for real-time interactive cardiac MRI. New features of this method to enable scanning in a clinical setting include short, first-moment nulled spiral trajectories and interactive control over the spatial location of banding artifacts (SSFP-specific signal variations). The feasibility of spiral balanced SSFP cardiac imaging at 1.5 T is demonstrated. In observations from over 40 volunteer and patient studies, spiral balanced SSFP imaging shows significantly improved contrast compared to spiral gradient-spoiled imaging, producing better visualization of cardiac function, improved localization, and reduced flow artifacts from blood.  相似文献   

11.
PURPOSE: To assess the feasibility of using a two-dimensional partial Fourier (PF) reconstruction scheme to reduce the acquisition time of magnetic resonance imaging (MRI) of coronary arteries. MATERIALS AND METHODS: Symmetric k-space data sets of coronary arteries were collected in seven volunteers using a three-dimensional breath-hold steady-state free precession (SSFP) sequence. Partial, asymmetric k-space data sets were generated by removing 25% of the data in the readout direction and 25% of the data in the phase encoding direction. The missing data were then estimated using a two-dimensional projection-onto-convex-sets (POCS) algorithm or filled with zeroes. Images were reconstructed from the full data set, the PF data set, and the zero-filled (ZF) data set, respectively. Coronary artery sharpness was evaluated quantitatively and qualitatively. RESULTS: Coronary artery sharpness in PF images was comparable to that in full k-space images and significantly better than that in ZF images. CONCLUSION: Two-dimensional POCS PF reconstruction is a potentially useful technique for reducing acquisition time or improving spatial resolution for breath-hold coronary MR angiography.  相似文献   

12.
This work presents the first implementation of myocardial tagging with refocused steady-state free precession (SSFP) and magnetization preparation. The combination of myocardial tagging (a noninvasive method for quantitative measurement of regional and global cardiac function) with the high tissue signal-to-noise ratio (SNR) obtained with SSFP is shown to yield improvements in terms of the myocardium-tag contrast-to-noise ratio (CNR) and tag persistence when compared to the current standard fast gradient-echo (FGRE) tagging protocol. Myocardium-tag CNR and tag persistence were studied using numerical simulations as well as phantom and human experiments. Both quantities were found to decrease with increasing imaging flip angle (alpha) due to an increased tag decay rate and a decrease in myocardial steady-state signal. However, higher alpha yielded better blood-myocardium contrast, indicating that optimal alpha is dependent on the application: higher alpha for better blood-myocardium boundary visualization, and lower alpha for better tag persistence. SSFP tagging provided the same myocardium-tag CNR as FGRE tagging when acquired at four times the bandwidth and better tag- and blood-myocardium CNRs than FGRE tagging when acquired at equal or twice the receiver bandwidth (RBW). The increased acquisition efficiency of SSFP allowed decreases in breath-hold duration, or increases in temporal resolution, as compared to FGRE.  相似文献   

13.
Measurement of brain perfusion using arterial spin labeling (ASL) or dynamic susceptibility contrast (DSC) based MRI has many potential important clinical applications. However, the clinical application of perfusion MRI has been limited by a number of factors, including a relatively poor spatial resolution, limited volume coverage, and low signal-to-noise ratio (SNR). It is difficult to improve any of these aspects because both ASL and DSC methods require rapid image acquisition. In this report, recent methodological developments are discussed that alleviate some of these limitations and make perfusion MRI more suitable for clinical application. In particular, the availability of high magnetic field strength systems, increased gradient performance, the use of RF coil arrays and parallel imaging, and increasing pulse sequence efficiency allow for increased image acquisition speed and improved SNR. The use of parallel imaging facilitates the trade-off of SNR for increases in spatial resolution. As a demonstration, we obtained DSC and ASL perfusion images at 3.0 T and 7.0 T with multichannel RF coils and parallel imaging, which allowed us to obtain high-quality images with in-plane voxel sizes of 1.5 x 1.5 mm(2).  相似文献   

14.
Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits.  相似文献   

15.
Segmented cine MRI generally requires breath-holding, which can be problematic for many patients. Navigator echo techniques, particularly successful for free-breathing coronary MRA, are incompatible with the acquisition strategies and SSFP pulse sequences commonly used for cine MRI. The purpose of this work is to introduce a new self-gating technique deriving respiratory gating information directly from the raw imaging data acquired for segmented cine MRI. The respiratory self-gating technique uses interleaved radial k-space sampling to provide low-resolution images in real time during the free-breathing acquisition that are compared to target expiration images. Only the raw data-producing images with high correlation to the target images are included in the final high-resolution reconstruction. The self-gating technique produced cine series with no significant differences in quantitative image sharpness to series produced using comparable breath-held techniques. Because of the difficulties associated with breath-holding, the respiratory self-gating technique represents an important practical advance for cardiac MRI. , Inc.  相似文献   

16.
A novel, fully 3D, high-resolution T(1) and T(2) relaxation time mapping method is presented. The method is based on steady-state imaging with T(1) and T(2) information derived from either spoiling or fully refocusing the transverse magnetization following each excitation pulse. T(1) is extracted from a pair of spoiled gradient recalled echo (SPGR) images acquired at optimized flip angles. This T(1) information is combined with two refocused steady-state free precession (SSFP) images to determine T(2). T(1) and T(2) accuracy was evaluated against inversion recovery (IR) and spin-echo (SE) results, respectively. Error within the T(1) and T(2) maps, determined from both phantom and in vivo measurements, is approximately 7% for T(1) between 300 and 2000 ms and 7% for T(2) between 30 and 150 ms. The efficiency of the method, defined as the signal-to-noise ratio (SNR) of the final map per voxel volume per square root scan time, was evaluated against alternative mapping methods. With an efficiency of three times that of multipoint IR and three times that of multiecho SE, our combined approach represents the most efficient of those examined. Acquisition time for a whole brain T(1) map (25 x 25 x 10 cm) is less than 8 min with 1 mm(3) isotropic voxels. An additional 7 min is required for an identically sized T(2) map and postprocessing time is less than 1 min on a 1 GHz PIII PC. The method therefore permits real-time clinical acquisition and display of whole brain T(1) and T(2) maps for the first time.  相似文献   

17.
A small resonant circuit was investigated for its potential for producing hyperthermia to treat cancer. Implant hyperthermia has been performed using tiny elements implanted inside the body that are heated by an external energy source. We assessed the effect on heat generation of a resonant circuit used as an implant hyperthermia device by MRI unit radiofrequency (RF) pulses with different imaging sequences. The resonant circuit used as a heating device consisted of a closed connection between a coil and a capacitor. The resonant frequency was set to 63.9 MHz so that the circuit would react and generate heat in response to the RF pulses of a 1.5 T MRI unit. The resonant circuit was placed in the MRI unit with an optical thermometer enclosed by insulating material, and the temperature rise was monitored during imaging sequences. Standard imaging MRI sequences--fast low angle shot gradient echo (FLASH), T1 weighted spin echo image (T1WI) and rapid acquisition with refocused echoes (RARE)--were used to produce RF pulses that affected the resonant circuit. This circuit was gradually heated during all MRI sequences. The temperature rise ranged from 7.2 degrees C to 12.6 degrees C. The highest temperature rise was obtained with RARE, followed by FLASH and T1WI. Thus, this apparatus may have potential for implant hyperthermia, which could provide minimally invasive anticancer therapy.  相似文献   

18.
A new technique to avoid the initial signal fluctuations in steady-state free precession (SSFP)-sequences, such as trueFISP, FIESTA, and refocused FFE, is presented. The "transition into driven equilibrium" (TIDE) sequence uses modified flip angles over the initialization phase of a SSFP experiment, which not only avoids image artifacts but also improves the signal-to-noise ratio (SNR) and contrast behavior compared to conventional approaches. TIDE is demonstrated to be robust against variations of T(1) and T(2), and leads to a monotonous signal evolution for off-resonance spins. The basic principles can also be applied repetitively to optimize continuous 3D acquisitions.  相似文献   

19.
A 64-channel array coil for magnetic resonance imaging (MRI) has been designed and constructed. The coil was built to enable the testing of a new imaging method, single echo acquisition (SEA) MRI, in which an independent full image is acquired with every echo. This is accomplished by entirely eliminating phase encoding and instead using the spatial information obtained from an array of very narrow, long, parallel coils. The planar pair element design proved to be key in achieving well-localized field sensitivity patterns and isolated elements, the crucial requirements for performing SEA. The matching and tuning of the array elements were accomplished on the coil array printed circuit board using varactor diodes biased over the RF lines. The array was successfully used to obtain SEA images as well as conventional partially parallel images at unprecedented acceleration factors.  相似文献   

20.
Coronary artery data acquisition with steady-state free precession (SSFP) is typically performed in a single frame in mid-diastole with a spectrally selective pulse to suppress epicardial fat signal. Data are acquired while the signal approaches steady state, which may lead to artifacts from the SSFP transient response. To avoid sensitivity to cardiac motion, an accurate trigger delay and data acquisition window must be determined. Cine data acquisition is an alternative approach for resolving these limitations. However, it is challenging to use conventional fat saturation with cine imaging because it interrupts the steady-state condition. The purpose of this study was to develop a 4D coronary artery imaging technique, termed "cine angiography with phase-sensitive fat suppression" (CAPS), that would result in high temporal and spatial resolution simultaneously. A 3D radial stacked k-space was acquired over the entire cardiac cycle and then interleaved with a sliding window. Sensitivity-encoded (SENSE) reconstruction with rescaling was developed to reduce streak artifact and noise. Phase-sensitive SSFP was employed for fat suppression using phase detection. Experimental studies were performed on volunteers. The proposed technique provides high-resolution coronary artery imaging for all cardiac phases, and allows multiple images at mid-diastole to be averaged, thus enhancing the signal-to-noise ratio (SNR) and vessel delineation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号