首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine the modulation of tau phosphorylation mediated by protein kinase A, a kinase with low intrinsic activity, and by the constitutively active glycogen synthase kinase, as well as to examine the subsequent effects on tau-microtubule association in differentiated human SH-SY5Y neuroblastoma cells. Activation of protein kinase A with forskolin and rolipram significantly increased tau phosphorylation at Ser262/356 only in the presence of okadaic acid, indicating that phosphates at these sites are normally turned over rapidly. In contrast, glycogen synthase kinase appears to maintain tau phosphorylation at Thr181 and Ser396/404 since inhibition of glycogen synthase kinase with lithium reduced phosphorylation at these sites. Lithium treatment also significantly decreased tau and tyrosinated α-tubulin levels. Perturbation of microtubules with nocodazole or taxol induced tau dephosphorylation at Tau-1 sites, Thr181 and Ser396/404, indicating that both constitutive kinase activity and microtubule state modulate tau phosphorylation at these sites. Nocodazole- or taxol-induced tau dephosphorylation was blocked by the protein phosphatase 2A/1 inhibitor okadaic acid, but not by the protein phosphatase 2B inhibitor cyclosporin A. In addition, osmotic stress, such as treatment with 20 mM NaCl, selectively increased tau phosphorylation at the Tau-1 epitope. To investigate the effect of phosphorylation on tau association with microtubules and microtubule stability in situ, a Triton X-100 extraction assay was utilized to separate the detergent-soluble cytosolic components from the detergent-insoluble cytoskeletal components. In control cells or cells treated with lithium very little tau was detected in the cytosolic fraction. Activation of protein kinase A in the presence of okadaic acid elevated tau levels in the detergent-soluble fraction, which contained all the tau phosphorylated at Ser262/356, and also decreased microtubule stability, as indicated by decreased acetylated α-tubulin levels. In conclusion, the phosphorylation state of tau in differentiated SH-SY5Y cells is regulated by glycogen synthase kinase, microtubule dynamics and osmotic stress at overlapping sites which apparently have little influence on tau-microtubule association. In contrast, phosphorylation of tau at Ser262/356 within the microtubule-binding, which was mediated in part by protein kinase A, prevented the association of tau with microtubules in situ.  相似文献   

2.
Cyclin-dependent kinase-5 (CDK5), a unique CDK family member, is active primarily in the central nervous system (CNS). Previous studies suggest that CDK5 is proapoptotic and contributes to tau hyperphosphorylation and neurodegeneration in Alzheimer's disease. The objective of this study was to examine CDK5 effects on apoptotic progression and tau phosphorylation. Immortalized embryonic mouse brain cortical cells were used to establish a stable cell line that overexpressed wild-type human tau. In these studies, thapsigargin, which induces endoplasmic reticulum stress and can cause accumulation of misfolded proteins, was used to induce apoptosis. Caspase-3 activity and poly-(ADP-ribose)-polymerase (PARP) cleavage, as measures of apoptosis, were significantly increased 24 and 48 hr after thapsigargin treatment, and these events were unaffected by tau expression. Although transient coexpression of CDK5 and its activator, p25, increased CDK5 activity greater than tenfold, increases in caspase-3 activity in response to thapsigargin treatment were unaffected by the presence of CDK5/p25. Tau phosphorylation at the PHF-1 epitope, but not the Tau-1 epitope, was increased significantly in CDK5/p25-transfected cells compared to cells transfected with dominant negative CDK5 (DNCDK5). The PHF-1 epitope remained phosphorylated until 48 hr after thapsigargin treatment in the CDK5/p25-transfected cells. Over the course of apoptosis in this model, phosphorylation of the Tau-1 epitope was unaffected in cells transfected with DNCDK5, vector, or CDK5/p25. In summary, these results demonstrate that CDK5 does not have a significant impact on tau phosphorylation and thapsigargin-induced apoptosis in this neuronal cell model.  相似文献   

3.
J G?tz  R M Nitsch 《Neuroreport》2001,12(9):2007-2016
The formation of neurofibrillary tangles in Alzheimer's disease is preceded by a pretangle stage of hyperphosphorylated tau. To characterize pretangle tau in vivo, we correlated, in human tau transgenic mice, levels of kinases known to phosphorylate tau in vitro with the phosphorylation of tau at specific epitopes. Levels of cyclin-dependent kinase-5 were increased in axons of CA1 pyramidal neurons, where tau was phosphorylated specifically at the AD2 epitope Ser396/Ser404. The 12E8 epitope serine262/serine356 and the AT180 epitope threonine231/serine235 were phosphorylated in dendrites, and colocalized with increased levels of glycogen synthase kinase-3. CA1 neurons phosphorylated tau at more epitopes than dentate gyrus neurons, suggesting that tau phosphorylation is cell type-specific, a possible explanation for the spatial distribution of neurofibrillary tangles.  相似文献   

4.
Summary. It has been pointed out that hyperphosphorylation of microtubule-associated protein tau caused by stress might participate in the early stages of Alzheimer’s disease pathogenesis. In the present study, we investigated the effects of cold water stress (CWS) on tau phosphorylation in the mouse hippocampus and the effects of GSK-3β inhibitor, LiCl, on CWS-induced changes in tau phosphorylation levels by immunoblot analyses. CWS exposure caused an increase in tau phosphorylation at the Tau-1 (Ser199/202), AT8 (Ser202/Thr205) and Ser396 sites. CWS-induced changes in tau phosphorylation at the Ser199/202 and Ser396, but not at Ser202/Thr205, were significantly attenuated by LiCl pretreatment. Total tau levels also showed a decided tendency to increase after CWS, which tendency was also countered by LiCl. Finally, we showed that CWS increased the active form of GSK-3β that was phosphorylated at Tyr216. These results suggest that a CWS-induced increase in phosphorylated tau in the hippocampus is mediated, at least partly, by the activation of GSK-3β.  相似文献   

5.
Hyperphosphorylated neurofilaments are a part of neurofibrillary tangles in Alzheimer's disease brains. Zinc has been shown to be increased in the brain areas heavily affected by Alzheimer pathologies. Zinc could induce tau hyperphosphorylation in SH-SY5Y and N2a cells, and tau phosphorylation may be mediated by p70 S6 kinase activation. Many of the tau kinases can also phosphorylate neurofilaments, and in this study we wanted to see whether neurofilament phosphorylation is regulated by p70 S6 kinase in N2a cells. We found that zinc induces rapamycin-dependent p70 S6 kinase phosphorylation at Thr421/Ser424 and Thr389, and rapamycin-independent phosphorylation of neurofilaments at the SMI34 epitope. Although zinc could induce cell proliferation and cell growth, and increased phosphorylation of neurofilaments, only cell growth appeared to be related to p7056kinase activation.  相似文献   

6.
Tau phosphorylation during apoptosis of human SH-SY5Y neuroblastoma cells   总被引:2,自引:0,他引:2  
In Alzheimer's Disease brain, the microtubule-associated protein tau is hyperphosphorylated at specific epitopes and abnormally aggregates into filamentous structures. In addition, there is significant neurodegeneration in Alzheimer's disease brain, and there is data to suggest that apoptotic-like processes may contribute to the neurodegeneration. It has been demonstrated that in PC12 cells undergoing apoptosis due trophic factor removal, tau is hyperphosphorylated prior to chromatin condensation. To establish that increased tau phosphorylation is a generalized outcome of the apoptotic process, and to examine the involvement of the protein kinase in these events, apoptosis was induced in retinoic-acid differentiated human SH-SY5Y neuroblastoma cells using the topoisomerase-1 inhibitor camptothecin. Treatment of the differentiated SH-SY5Y cells with camptothecin resulted in a time and concentration dependent activation of caspase-3 with a concomitant increase in the presence of apoptotic nuclei. Immunoblotting revealed that camptothecin treatment resulted in a significant increase in tau phosphorylation. Addition of a cyclin-dependent kinase inhibitor reduced camptothecin-induced cell death in the differentiated SH-SY5Y cells and decreased the effects of camptothecin on tau phosphorylation. In contrast, a general caspase inhibitor decreased camptothecin-induced cell death, but did not significantly decrease the increases in tau phosphorylation. These results suggest that increased tau phosphorylation is likely a generalized outcome of apoptotic processes in neuron-related cells, and that cyclin-dependent kinases probably play a role in this process.  相似文献   

7.
A phosphorylated tau epitope specific for paired helical filaments in Alzheimer's disease is recognized by monoclonal antibody PHF-1. Healthy adult brains lack the PHF-1 epitope (PHF-1 tau), but it is transiently expressed by immature neurons during development. We have found that proliferating SH-SY5Y human neuroblastoma cells also express PHF-1 tau. Consistent with the recent finding that cell-cycle-dependent kinases can phosphorylate tau in vitro, flow cytometry showed that mitotic SH-SY5Y cells were up to 18-fold more PHF-1 immunoreactive than nonmitotic cells. On immunoblots, PHF-1 tau in mitotic and nonmitotic cells also was strikingly different. First, mitosis induced a prominent PHF-1 reactive band at 120 kDa, which likely accounted for the large increase in PHF-1 signal seen at mitosis. Although the size of the 120-kDa band is consistent with it being the high-molecular-weight form of tau, other antibodies to tau did not recognize it. Second, mitosis caused a hyperphosphorylation of the PHF-1 immunoreactive tau band normally seen at 50 kDa. In mitotic cells this band had an increased intensity and molecular weight. Alkaline phosphatase treatment abolished tau Mr heterogeneity, verifying that the variations in mobility were due to phosphorylation. These data show that cell-cycle-dependent hyperphosphorylation of tau occurs in intact cells, and they support the hypothesis that aberrant activity of cell-cycle-dependent kinases may contribute to tau phosphorylation and PHF formation in Alzheimer's disease.  相似文献   

8.
Summary. Formation of neurofibrillary tangle from hyperphosphorylated tau is one of the hallmark lesions seen in Alzheimer’s disease (AD) brain, and neuronal deregulation of glycogen synthase kinase-3 (GSK-3) activity plays key role in tau hyperphosphorylation. In the present study, the role of GSK-3 on tau phosphorylation in hippocampus slice culture was examined by incubating the slice with wortmannin (WT), an inhibitor of phosphatidylinositol 3-kinase (PI3K) and GF-109203X (GFX), an inhibitor of protein kinase C (PKC). It was found that treatment of the slices with GFX or WT separately induced tau hyperphosphorylation both at Ser396/Ser404 (PHF-1) and Ser199/Ser202 (Tau-1) sites. The phosphorylation rate of tau at PHF-1 and Tau-1 epitopes was further increased when GFX and WT were used in combination, and at this condition, AD-like tau accumulation was observed. GSK-3 activity was significantly increased with a concurrently decreased level of inactivated form of GSK-3. Lithium chloride (LiCl), a GSK-3 inhibitor, prevented tau from WT- and GFX-induced hyperphosphorylation. It suggests that GSK-3 is regulated through PI3K and PKC pathway, and activation of GSK-3 not only induces hyperphosphorylation of tau but also leads to accumulation of tau in cultured rat brain slice. Authors contributed equally to the paper  相似文献   

9.
L-3-n-butylphthalide (L-NBP), an extract from seeds of Apium graveolens Linn (Chinese celery), has been shown to have neuroprotective effects on cerebral ischemic, vascular dementia and amyloid-β (Aβ)-induced animal models by inhibiting oxidative injury, neuronal apoptosis and glial activation, regulating amyloid-β protein precursor (AβPP) processing and reducing Aβ generation. The aim of the present study was to examine the effect of L-NBP on learning and memory in AβPP and presenilin 1 (PS1) double-transgenic AD mouse model (AβPP/PS1) and the mechanisms of L-NBP in reducing Aβ accumulation and tau phosphorylation. Twelve-month old AβPP/PS1 mice were given 15 mg/kg L-NBP by oral gavage for 3 months. L-NBP treatment significantly improved the spatial learning and memory deficits compared to the vehicle-treated AβPP/PS1 mice, whereas L-NBP treatment had no effect on cerebral Aβ plaque deposition and Aβ levels in brain homogenates. However, we found an L-NBP-induced reduction of tau hyperphosphorylation at Ser199, Thr205, Ser396, and Ser404 sites in AβPP/PS1 mice. Additionally, the expressions of cyclin-dependent kinase and glycogen synthase kinase 3β, the most important kinases involved in tau phosphorylation, were markedly decreased by L-NBP treatment. The effects of L-NBP on decreasing tau phosphorylation and kinases activations were further confirmed in neuroblastoma SK-N-SH cells overexpressing wild-type human AβPP695 (SK-N-SH AβPPwt). L-NBP shows promising candidate of multi-target neuronal protective agent for the treatment of Alzheimer's disease.  相似文献   

10.
The relationship between Alzheimer's disease (AD) and expression of fetal proteins was examined by: (i) determining the phosphate content of tau prepared from fetal brains (F-tau); (ii) comparing F-tau, tau from normal adult human brains (N-tau) and tau from paired helical filaments in AD brains (PHF-tau) for phosphate content; and (iii) testing the reactivity of F-tau with five antibodies known to recognize PHF-tau. The antibodies have been reported to recognize phosphate dependent epitopes at the carboxy-terminal half of the tau molecule. Our data shows that on the average, F-tau contains 7 mol phosphate/mol protein, which is comparable to the phosphate content of PHF-tau, but is 3–4 times higher than that of N-tau. Immunoblotting shows that all of the tested antibodies reacted with F-tau on immunoblots, indicating that F-tau and PHF-tau are phosphorylated at similar sites. A difference between PHF-tau and F-tau is the state of phosphorylation in the Tau-1 epitope, an epitope reactive with a monoclonal anti-tau antibody, Tau-1. This epitope, which is phosphorylated in all PHF-tau, is phosphorylated only in some of the F-tau. The sharing of phosphorylated sites between F-tau and PHF-tau has also been reported by others in studies with antibodies to different and similar phosphorylated epitopes. Together these observations indicate that the extent and the site of phosphorylation in F-tau and PHF-tau tau are similar. Although hyperphosphorylation of tau proteins may be an important step for PHF formation, the absence of AD type pathology in fetal brains containing hyperphosphorylated tau suggests that the transformation of soluble forms of normal tau to AD type cytoskeletal abnormalities may require the presence of other factors.  相似文献   

11.
Phosphorylated tau protein is the major component of paired helical filaments in Alzheimer disease (AD). We have previously shown that abnormal tau phosphorylation was induced in neuroblastoma SK-N-SH cells by the anticancer drug, paclitaxel, during apoptosis [Guise et al., 1999: Apoptosis 4:47-58]. In the present study, we first demonstrated a shift from fetal tau to hyperphosphorylated tau after incubation with paclitaxel, that showed some similarities with the hyperphosphorylated tau in AD, by using several tau antibodies, N-Term, Tau-1 and AT-8. Tau phosphorylation occurred independently of caspase-3 activation. We next showed that a sustained activation of ERK (extracellular signal-regulated kinase) induced both tau phosphorylation and apoptosis during paclitaxel treatment (1 microM). The inhibition of ERK activation by using the pharmacological MEK1/2 inhibitor, PD98059 (50 microM), or an antisense strategy, reduced tau phosphorylation and neuronal apoptosis (P < 0.001), indicating a link between ERK activation, tau phosphorylation and apoptosis. Doxorubicin (0.2 microM), an anticancer drug whose mechanism of action is independent of microtubules, also induced ERK activation, tau phosphorylation and apoptosis. Moreover, doxorubicin induced some morphological features of neurodegeneration such as loss of neurites and disorganization of the cytoskeleton in apoptotic neuroblastoma cells. Altogether, our results suggest that tau phosphorylation plays a significant role in apoptosis enhancing disruption of microtubules that in turn leads to formation of apoptotic bodies, suggesting that neurodegeneration and apoptosis are related.  相似文献   

12.
The hallmarks of Alzheimer's disease include extracellular plaques primarily consisting of amyloid-beta peptide and intracellular neurofibrillary tangles composed of highly phosphorylated tau protein. We report that exposure of organotypic hippocampal cultures to synthetic amyloid-beta peptide(25-35) (50 microM, 96 h) causes neurodegeneration concomitant with a significant increase in tau phosphorylation at the Ser epitope (+60%). Furthermore, the level of active glycogen synthase kinase-3beta (GSK-3beta [pTyr]) was increased (+55%) after amyloid-beta peptide(25-35) exposure. These findings support the role of amyloid-beta peptide as a mediator of tau phosphorylation and demonstrate the usefulness of organotypic cultures for investigating the link between amyloid-beta peptide-induced neurotoxicity and tau phosphorylation. Our results also confirm that amyloid-beta peptide induces activation of glycogen synthase kinase-3beta.  相似文献   

13.
Clinical studies suggest that exposure to stress can increase risk for Alzheimer's disease (AD). Although the precise links between stress and vulnerability to develop AD remain uncertain, recent animal work suggests that stress may promote susceptibility to AD pathology by activating tau kinases and inducing tau phosphorylation (tau-P). Our previous findings indicate the differential involvement of corticotropin-releasing factor receptor (CRFR) types 1 and 2 in regulating tau-P in the hippocampus induced by acute restraint, an emotional stressor. To assess the generality of CRFR involvement in stress-induced tau-P and tau kinase activity, the present study extends our investigation to a well-characterized physiological stressor, i.e. immune challenge induced by bacterial lipopolysaccharide (LPS). Acute systemic administration of LPS (100 μg/kg) robustly increased hippocampal (but not isocortical or cerebellar) tau-P, peaking at 40-120 min postinjection and abating thereafter. Assessments of the genotype dependence of this effect yielded results that were distinct from the restraint model. Treatment with LPS increased phosphorylation in wild-type, single and double CRFR knockouts with only subtle variation, which included a reliable exaggeration of tau-P responses in CRFR1-deficient mice. Parallel analyses implicated glycogen synthase kinase-3 and cyclin-dependent kinase-5 as likely cellular mediators of LPS-induced tau-P. Conversely, our data suggest that temperature-dependent fluctuations in tau protein phosphatase 2A (PP2A) may not play a role in this context. Thus, neither the strict CRFR1 dependence of restraint-induced tau-P nor the exaggeration of these responses in CRFR2 null mice generalize to the LPS model. CRFR mediation of stress-induced hippocampal tau-P may be limited to emotional stressors.  相似文献   

14.
Neuropathological and biochemical findings are reported in a patient who had suffered from frontotemporal dementia associated with a P310L mutation in the tau gene and included in the H1 haplotype. Tau accumulation, as revealed with phospho-specific anti-tau antibodies Thr181, Ser199, Ser202, Ser214, Ser262, Ser396, Ser422 and AT8 (Ser202 and Thr205), was found in neurons with pre-tangles, and astrocytes and oligodendrocytes through the brain. The most characteristic feature was tau immunoreactivity decorating the perinuclear region and small cytoplasmic aggregates designed as mini-Pick-like bodies, mainly in the dentate gyrus. Inclusions were not stained with anti-ubiquitin antibodies and did not recruit tubulins. Tau accumulation in individual cells was associated with increased expression of kinases linked with tau phosphorylation, mainly active (phosphorylated) stress kinases SAPK/JNK and p38 (SAPK/JNK-P and p38-P). Phosphorylated GSK-3 beta at Ser9 (GSK-3 beta-P), that inactivates the kinase, was particularly abundant in mini-Pick-like bodies, thus suggesting alternative roles of GSK-3 probably involved in cell survival. Western blots of sarkosyl-insoluble fractions revealed a double band pattern of phospho-tau of 68/66 kDa and 64 kDa in the hippocampus and white matter in the P310L mutation. Sarkosyl-insoluble fractions of the hippocampus were enriched in p38-P and GSK-3 beta-P in Alzheimer's disease (AD) cases, processed in parallel for comparative purposes, but not in the P310L mutation. In addition, no bands of high molecular weight were found in P310L in contrast with AD in these fractions. These findings indicate that the major sites of tau phosphorylation, and the expression of kinases involved in tau phosphorylation are active in P310L mutation as in AD and other tauopathies. Yet the P310L mutation has particular phospho-tau inclusions that are not tag with ubiquitin and appear to be rather soluble when compared with AD.  相似文献   

15.
Neuronal protein inclusions are a common feature in Alzheimer disease (AD) and Pick disease. Even though the inclusions are morphologically different, flame-shape structure for AD vs. spherical structure for Pick disease, both have filaments mainly composed of tau protein. In AD, a well-defined pattern of conformational changes and truncation has been described. In this study, we used laser scanning confocal microscopy to characterize and compare the processing of tau protein during Pick disease with that found in AD. We found that tau protein of Pick disease preserves most of the relevant epitopes found in AD, the conformational foldings labelled by Alz-50 and Tau-66, the cleavage sites D(421) and E(391), as well as many phosphorylated sites, such as Ser(199/202), Thr(205) and Ser(396/404). We found a strong pattern of association between phosphorylation and cleavage at site D(421), as well as the phosphorylation and the conformational Alz-50 epitope. When we used late AD markers such as the conformational Tau-66 epitope and MN423 (cleavage at site E(391)) in Pick bodies (PBs), the overlap was significantly less. Furthermore, following morphological quantification, we found significantly higher numbers of phosphorylated tau in PBs. Overall, our findings suggest that phosphorylation is an early event, likely preceding the cleavage of tau at D(421). Despite this consistency with AD, we found a major distinction, namely that PBs lack beta-sheet conformation. We propose a scheme of early tau processing in these structures, similar to neurofibrillary tangles of AD.  相似文献   

16.
The Chinese herb berberine has versatile health effects. Recent reports indicate that berberine has the potential to prevent and treat Alzheimer's disease (AD). In the present study, we employed tau-expressing HEK293 cells (HEK293/tau) treated with calyculin-A as a cellular model to investigate the roles of berberine in cell viability, tau phosphorylation, and oxidative stress. We found a significant reduction of calyculin A-induced tau hyperphosphorylation at Ser198/199/202, Ser396, Ser404, Thr205, and Thr231 24 h after treatment with 20 μg/ml berberine. Berberine also restored protein phosphates 2A activity and reversed glycogen synthase kinase-3β (GSK-3β) activation, as determined by phosphatase activity assay and GSK-3β phosphorylation at Tyr216 and Ser9, respectively. Furthermore, berberine reversed both the increase of malondialdehyde and the decrease of superoxide dismutase activity induced by calyculin A, indicating its role in anti-oxidative stress. Our findings suggest that berberine may be a potential therapeutic drug for AD.  相似文献   

17.
Administration of Abeta(1-42) into the rabbit brain induces apoptosis and phosphorylation of tau. These Abeta effects correlate with the activation of JNK and ERK, but not of p38. Treatment with 7 mM lithium inhibits apoptosis, modulates JNK and ERK and does not affect the phosphorylation of tau. Our results demonstrate that lithium, at this dose, effectively inhibits the Abeta-induced apoptosis but has no effect on tau phosphorylation, and that MAP kinases are not involved in the phosphorylation of tau.  相似文献   

18.
Kim I  Park EJ  Seo J  Ko SJ  Lee J  Kim CH 《Neuroreport》2011,22(16):839-844
Hyperphosphorylated tau is a main component of neurofibrillary tangles, a pathological hallmark of Alzheimer's disease (AD). There is evidence that various protein kinases are involved in tau hyperphosphorylation. However, little is known about AD-related stimuli that activates tau kinases. We investigated the role of zinc, a metal involved in AD pathology, in tau phosphorylation. Zinc increased the phosphorylation of serine 214 (S214) in tau protein in human wild-type tau1-441-expressing SH-SY5Y cells. The phosphorylation was inhibited by suppressing the Ras-Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) pathway. Mutation of serine to alanine at residue 214 of tau reduced microtubule polymerization impairment by ERK phosphorylation. These data suggest that zinc induces S214 phosphorylation in tau through ERK activation and interferes with microtubule polymerization.  相似文献   

19.
Neurofibrillary tangles (NFTs), comprising human intracellular microtubule-associated protein tau, are one of the hallmarks of tauopathies, including Alzheimer's disease. Recently, a report that caspase-cleaved tau is present in NFTs has led to the hypothesis that the mechanisms underlying NFT formation may involve the apoptosis cascade. Here, we show that adenoviral infection of tau into COS-7 cells induces activation of c-jun N-terminal kinase (JNK), followed by excessive phosphorylation of tau and its cleavage by caspase. However, JNK activation alone was insufficient to induce sodium dodecyl sulfate (SDS)-insoluble tau aggregation and additional phosphorylation by GSK-3β was required. In SH-SY5Y neuroblastoma cells, overexpression of active JNK and GSK-3β increased caspase-3 activation and cytotoxicity more than overexpression of tau alone. Taken together, these results indicate that, although JNK activation may be a primary inducing factor, further phosphorylation of tau is required for neuronal death and NFT formation in neurodegenerative diseases, including those characterized by tauopathy.  相似文献   

20.
Tungstate treatment increases the phosphorylation of glycogen synthase kinase-3beta (GSK3beta) at serine 9, which triggers its inactivation both in cultured neural cells and in vivo. GSK3 phosphorylation is dependent on the activation of extracellular signal-regulated kinases 1/2 (ERK1/2) induced by tungstate. As a consequence of GSK3 inactivation, the phosphorylation of several GSK3-dependent sites of the microtubule-associated protein tau decreases. Tungstate reduces tau phosphorylation only in primed sequences, namely, those prephosphorylated by other kinases before GSK3beta modification, which are serines 198, 199, or 202 and threonine 231. The phosphorylation at these sites is involved in reduction of the interaction of tau with microtubules that occurs in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号