首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endometrial cancer is the most common cancer in women with Lynch syndrome. The identification of individuals with Lynch syndrome is desirable because they can benefit from increased cancer surveillance. The purpose of this study was to determine the feasibility and desirability of molecular screening for Lynch syndrome in all endometrial cancer patients. Unselected endometrial cancer patients (N = 543) were studied. All tumors underwent microsatellite instability (MSI) testing. Patients with MSI-positive tumors underwent testing for germ line mutations in MLH1, MSH2, MSH6, and PMS2. Of 543 tumors studied, 118 (21.7%) were MSI positive (98 of 118 MSI high and 20 of 118 MSI low). All 118 patients with MSI-positive tumors had mutation testing, and nine of them had deleterious germ line mutations (one MLH1, three MSH2, and five MSH6). In addition, one case with an MSI-negative tumor had abnormal MSH6 immunohistochemical staining and was subsequently found to have a mutation in MSH6. Immunohistochemical staining was consistent with the mutation result in all seven truncating mutation-positive cases but was not consistent in two of the three missense mutation cases. We conclude that in central Ohio, at least 1.8% (95% confidence interval, 0.9-3.5%) of newly diagnosed endometrial cancer patients had Lynch syndrome. Seven of the 10 Lynch syndrome patients did not meet any published criteria for hereditary nonpolyposis colorectal cancer, and six of them were diagnosed at age >50. Studying all endometrial cancer patients for Lynch syndrome using a combination of MSI and immunohistochemistry for molecular prescreening followed by gene sequencing and deletion analysis is feasible and may be desirable.  相似文献   

2.
3.
Background: Lynch syndrome increases lifetime risk of endometrial cancer to 40-60%. Screening with molecular tumor testing for mismatch repair (MMR) proteins have been recommended. This study aims to evaluate the incidence of MMR deficiency and germline mutation in endometrial cancer Thai patients. Methods: Immunohistochemistry for MMR proteins, including MLH1, MSH2, MSH6 and PMS2 were tested in 166 surgical specimens. Patients who had MMR deficiencies were offered genetic counseling and a germline testing using gene-panel next generation sequencing. Results: Fifty-eight of 166 patients (34.9%) had one or more MMR deficiencies which were: MLH1 and PMS2 in 42 patients (25.3%), MSH2 and MSH6 in 11 patients (6.6%), and MSH6 in 5 patients (3.0%). Of the 40 patients (24.1%) who met the revised Bethesda guidelines, 19 patients (47.5%) had MMR deficiency. In contrast, MMR deficiency was found in 39 of the 126 patients (31.0%) who did not meet the revised Bethesda guidelines. A total of 27 patients with MMR deficiencies agreed to have germline genetic testing. Germline MMR mutations were detected in 5 patients (18.5%) including MSH6 (n=2), PMS2 (n=2), and MLH1 mutations (n=1). Incidental germline mutations in other genes were detected in 3 patients (1 BRCA1, 1 PTEN, and 1 BARD1). Among 5 Lynch syndrome patients, 2 patients (40%) did not meet the revised Bethesda guidelines. Eight patients who met the revised Bethesda Guidelines but having MMR proficiency had genetic testing, but no germline mutation was detected. Conclusion: MMR deficiencies were detected in 34.9% of the endometrial cancer patients. Germline mutations were diagnosed in 3.0% of this cohort (5/166 patients). Lynch syndrome screening with MMR immunohistochemistry should be considered in all patients regardless of personal or family history of Lynch syndrome-related cancers.  相似文献   

4.
Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.  相似文献   

5.
Endometrial cancer is the second most common cancer in hereditary nonpolyposis colorectal cancer (HNPCC). It has often been overlooked to explore the possibility of HNPCC in endometrial cancer patients. Our study was to investigate how many HNPCC patients existed among endometrial cancer patients. Among patients who underwent hysterectomy for endometrial cancer at Seoul National University Hospital from 1996 to 2004, 113 patients were included, whose family history and clinical data could be obtained and tumor specimens were available for microsatellite instability (MSI) testing and immunohistochemical (IHC) staining of MLH1, MSH2 and MSH6 proteins. There were 4 (3.5%) clinical HNPCC patients fulfilling the Amsterdam criteria II, and 2 (2/4, 50%) of them carried MSH2 germline mutations. There were also 8 (7.1%) suspected HNPCC (s-HNPCC) patients fulfilling the revised criteria for s-HNPCC, and one (1/8, 12.5%) of them revealed MLH1 germline mutation. In 101 patients, who were not clinical HNPCC or s-HNPCC, 11 patients showed both MSI-high and loss of expression of MLH1, MSH2 or MSH6 proteins, and 2 (2/11, 18.2%) of them showed MSH6 germline mutations. In 113 patients with endometrial cancer, we could find 5 (4.4%) HNPCC patients with MMR germline mutation and 2 (1.8%) clinical HNPCC patients without identified MMR gene mutation. Family history was critical in detecting 3 HNPCC patients with MMR germline mutation, and MSI testing with IHC staining for MLH1, MSH2 and MSH6 proteins was needed in the diagnosis of 2 HNPCC patients who were not clinical HNPCC or s-HNPCC, especially for MSH6 germline mutation.  相似文献   

6.
Primary and secondary immunodepressive conditions are associated with an increased incidence of sebaceous tumors. Microsatellite instability (MSI) and lack of expression of mismatch repair (MMR) proteins, typical markers of Muir–Torre/Lynch heredo-familial settings, can be recognized also in immunocompromised patients. We aimed to carry on a systematic examination of clinical, immunohistochemical, biomolecular features of sebaceous tumors arising in immunocompromised and immunocompetent patients between 1986 and 2012. Microsatellite screening, immunohistochemical analysis and genetic testing were performed for hMLH1, hMSH2 and hMSH6. Methylation status of MMR genes was checked in cases with immunohistochemistry (IHC) loss of MMR proteins expression and no germline mutations. Fifteen patients had a personal history of visceral carcinomas fulfilling diagnostic criteria for Muir–Torre syndrome. In this cohort, IHC analysis, MSI status and genetic testing were in agreement, showing eight MSH2 and two MLH1 germline mutations. Five patients were immunosuppressed and their sebaceous tumors showed a lack of MSH2/MSH6 expression, although just one case with positive family history for visceral cancer harbored a germline mutation. In immunosuppressed patients, loss of IHC for MMR proteins is not necessarily secondary to MMR germline mutations. IHC false positives are probably due to epigenetic alterations. MSI and lack of expression of MMR proteins can be recognized also in immunocompromised patients without MMR germline mutations.  相似文献   

7.
We assessed the molecular characteristics and the frequency of mutations in mismatch-repair genes among Bedouin patients with colorectal cancer (CRC) in Israel. Bedouin patients with a diagnosis of CRC at a major hospital in the southern part of Israel were deemed eligible for this study. The primary screening method was immunohistochemical staining for mismatch-repair proteins (MLH1, MSH2, MSH6, and PMS2). For subjects with abnormal immunohistochemical staining, we performed microsatellite instability (MSI) analyses, and for tumors with a loss of MLH1 expression we also performed BRAF testing. In MSI high cases we searched further for germline mutations. Of the 24 patients enrolled, four subjects (16.7%) had MSI high tumors: one subject was found to harbor a biallelic PMS2 mutation, one subject had Lynch syndrome (LS) with MSH6 mutation and two subjects had a loss of MLH1/PMS2 proteins/BRAF wild type/normal MLH1 sequence. Ten patients (41.7%) were younger than 50 at the time of diagnosis and none had first degree relatives with CRC. In conclusion, in this cohort of 24 consecutive Arab Bedouins with CRC, one patient was found to harbor a constitutional mismatch repair deficiency, one patient had LS with MSH6 mutation, and two patients had unresolved loss of MLH1/PMS2 proteins/BRAF wild type phenotype.  相似文献   

8.
Hereditary non-polyposis colorectal cancer (HNPCC) is caused by mutations in one of the mismatch repair genes MLH1, MSH2, MSH6, or PMS2 and results in high-level microsatellite instability (MSI-high) in tumours of HNPCC patients. The MSI test is considered reliable for indicating mutations in MLH1 and MSH2, but is questioned for MSH6. Germline mutation analysis was performed in 19 patients with an MSI-high tumour and absence of MSH2 and/or MSH6 protein as determined by immunohistochemistry (IHC), without an MLH1 or MSH2 mutation, and in 76 out of 295 patients suspected of HNPCC, with a non-MSI-high colorectal cancer (CRC). All 295 non-MSI-high CRCs were analysed for presence of MSH6 protein by IHC. In 10 patients with an MSI-high tumour without MSH2 and/or MSH6 expression, a pathogenic MSH6 mutation was detected, whereas no pathogenic MSH6 mutation was detected in 76 patients with a non-MSI-high CRC and normal MSH6 protein expression. In none of the 295 CRCs loss of MSH6 protein expression was detected. The prevalence of a germline MSH6 mutation is very low in HNPCC suspected patients with non-MSI-high CRC. Microsatellite instability analysis in CRCs is highly sensitive to select patients for MSH6 germline mutation analysis.  相似文献   

9.
PURPOSE: The relationships between mismatch repair (MMR) protein expression, microsatellite instability (MSI), family history, and germline MMR gene mutation status have not been studied on a population basis. METHODS: We studied 131 unselected patients with colorectal cancer diagnosed younger than age 45 years. For the 105 available tumors, MLH1, MSH2, MSH6, and PMS2 protein expression using immunohistochemistry (IHC) and MSI were measured. Germline DNA was screened for hMLH1, hMSH2, hMSH6, and hPMS2 mutations for the following patients: all from families fulfilling the Amsterdam Criteria for hereditary nonpolyposis colorectal cancer (HNPCC); all with tumors that were high MSI, low MSI, or that lacked expression of any MMR protein; and a random sample of 23 with MS-stable tumors expressing all MMR proteins. RESULTS: Germline mutations were found in 18 patients (nine hMLH1, four hMSH2, four hMSH6, and one hPMS2); all tumors exhibited loss of MMR protein expression, all but one were high MSI or low MSI, and nine were from a family fulfilling Amsterdam Criteria. Sensitivities of IHC testing, MSI (high or low), and Amsterdam Criteria for MMR gene mutation were 100%, 94%, and 50%, respectively. Corresponding positive predictive values were 69%, 50%, and 75%. CONCLUSIONS: Tumor IHC analysis of four MMR proteins and MSI testing provide a highly sensitive strategy for identifying MMR gene mutation-carrying, early-onset colorectal cancer patients, half of whom would have been missed using Amsterdam Criteria alone. Tumor-based approaches for triaging early-onset colorectal cancer patients for MMR gene mutation testing, irrespective of family history, appear to be an efficient screening strategy for HNPCC.  相似文献   

10.
Lynch syndrome is the predisposition to visceral malignancies that are associated with deleterious germline mutations in DNA mismatch repair genes, including MLH1, MSH2, MSH6, and PMS2. Muir-Torre syndrome is a variant of Lynch syndrome that includes a predisposition to certain skin tumors. We determined the frequency of Muir-Torre syndrome among 50 Lynch syndrome families that were ascertained from a population-based series of cancer patients who were newly diagnosed with colorectal or endometrial carcinoma. Histories of Muir-Torre syndrome-associated skin tumors were documented during counseling of family members. Muir-Torre syndrome was observed in 14 (28%) of 50 families and in 14 (9.2%) of 152 individuals with Lynch syndrome. Four (44%) of nine families with MLH1 mutations had a member with Muir-Torre syndrome compared with 10 (42%) of 24 families with MSH2 mutations (P = .302). Families who carried the c.942+3A>T MSH2 gene mutation had a higher frequency of Muir-Torre syndrome than families who carried other mutations in the MSH2 gene (75% vs 25%; P = .026). Muir-Torre syndrome was not found in families with mutations in the MSH6 or PMS2 genes. Our results suggest that Muir-Torre syndrome is simply a variant of Lynch syndrome. Screening for Muir-Torre syndrome-associated skin lesions among patients with Lynch syndrome is recommended.  相似文献   

11.
The identification of Lynch syndrome has been greatly assisted by the advent of tumour immunohistochemistry (IHC) for mismatch repair (MMR) proteins, and by the recognition of the role of acquired somatic BRAF mutation in sporadic MMR-deficient colorectal cancer (CRC). However, somatic BRAF mutation may also be present in the tumours in families with a predisposition to develop serrated polyps in the colorectum. In a subgroup of affected members in these families, CRCs emerge which demonstrate clear evidence of MMR deficiency with absent MLH1 staining and high-level microsatellite instability (MSI). This may result in these families being erroneously classified as Lynch syndrome, or conversely, an individual is considered “sporadic” due to the presence of a somatic BRAF mutation in a tumour. In this report, we describe two Lynch syndrome families who demonstrated several such inconsistencies. In one family, IHC deficiency of both MSH2 and MLH1 was demonstrated in tumours from different affected family members, presenting a confusing diagnostic picture. In the second family, MLH1 loss was observed in the lesions of both MLH1 mutation carriers and those who showed normal MLH1 germline sequence. Both families had Lynch syndrome complicated by an independently segregating serrated neoplasia phenotype, suggesting that in families such as these, tumour and germline studies of several key members, rather than of a single proband, are indicated to clarify the spectrum of risk.  相似文献   

12.
The predictive value of MLH1 or MSH2 protein expression for the presence of truncating germline mutations was examined in benign and (pre)malignant endometrial samples from 3 patient groups: (I) 10 endometrial cancer patients from hereditary non-polyposis colorectal cancer (HNPCC) families with (n = 6) or without (n = 4) a known germline mutation; (II) 15 women from HNPCC families with (n = 7) or without (n = 8) a known germline mutation, who underwent endometrial sampling for non-malignant reasons; (III) 38 endometrial cancer patients <50 years of age, without HNPCC family history. Immunostaining for MLH1 and MSH2 was performed on paraffin-embedded sections. In group III, tumor DNA was examined for microsatellite instability (MSI) and MLH1, MSH2 and MSH6 mutation analysis was carried out. In 6/6 MLH1/MSH2 mutation carriers with endometrial cancer (group I), concordance was found between protein loss in the tumor and the corresponding mutation. In 3 MLH1 mutation carriers, MLH1 protein loss was also observed in concurrent endometrial hyperplasia. In group II, no protein loss was detected in normal endometrial tissue samples; in 3/4 patients with endometrial hyperplasia, MLH1/MSH2 protein loss was observed. In group III, protein loss was detected in 12/38 patients (9 MLH1, 3 MSH2), while in 3/11 patients with concurrent endometrial hyperplasia protein loss was also observed in the hyperplasia. MSI analysis in group III revealed 26 MSI-low and 12 MSI-high tumors. Mutation analysis in 28/38 patients showed only 1 missense MSH6 and no MLH1 or MSH2 germline mutations. In group III, loss of MLH1/MSH2 protein expression was not related to the presence of MSI or MLH1/MSH2 germline mutations. In conclusion, MLH1 or MSH2 protein loss in HNPCC-related endometrial neoplasia is strongly related to corresponding germline mutations. This relation was not clearly present in young sporadic endometrial cancer patients. Immunohistochemical pre-screening of the MLH1 and MSH2 proteins in endometrial hyperplasia or cancer can thus be helpful in HNPCC families. Frequent loss of MLH1 or MSH2 protein in endometrial hyperplasia indicates that this loss is an early event in endometrial carcinogenesis.  相似文献   

13.
Hereditary non-polyposis colorectal cancer (HNPCC) represents 1-3% of all colorectal cancers. HNPCC is caused by a constitutional defect in a mismatch repair (MMR) gene, most commonly affecting the genes MLH1, MSH2 and MSH6. The MMR defect results in an increased cancer risk, with the greatest lifetime risk for colorectal cancer and other cancers associated to HNPCC. The HNPCC-associated tumor phenotype is generally characterized by microsatellite instability (MSI) and immunohistochemical loss of expression of the affected MMR protein. The aim of this study was to determine the sensitivity of IHC for MLH1, MSH2 and MSH6, and MSI analysis in tumors from known MMR gene mutation carriers. Fifty-eight paired normal and tumor samples from HNPCC families enrolled in our high-risk colorectal cancer registry were studied for the presence of germline mutations in MLH1, MSH2 and MSH6 by DGGE and direct sequencing. MSI analysis and immunostaining for MLH1, MSH2 and MSH6 were evaluated. Of the 28 patients with a real pathogenic mutation, loss of immunohistochemical expression for at least 1 of these MMR proteins was found, and all except 1 have MSI-H. Sensitivity by MSI analysis was 96%. IHC analysis had a sensitivity of 100% in detecting MMR deficiency in carriers of a pathogenic MMR mutation, and can be used to predict which gene is expected to harbor the mutation for MLH1, MSH2 and MSH6. This study suggests that both analyses are useful for selecting high-risk patients because most MLH1, MSH2 and MSH6 gene carriers will be detected by this 2-step approach. This practical method should have immediate application in the clinical work of patients with inherited colorectal cancer syndromes.  相似文献   

14.
Objective: We aimed to investigate the frequency of microsatellite instability (MSI) in endometrial carcinoma in ourpopulation and its association with clinico-pathologic features. Methods: A total of 126 cases of primary endometrialcarcinoma were included in the study that underwent surgical resections. All slides of these cases were reviewed andrepresentative paraffin fixed tissue blocks were selected for MLH1, MSH2, MSH6 and PMS2 IHC staining. IHCexpression was categorized into five groups: no loss of expression; loss of expression of all four antibodies; combinedloss of MLH1/PMS2; combined loss of MSH2/MSH6; and isolated loss of MLH1. Pathological records of all caseswere retrieved from patient files. Result: Abnormal expression of MSI was noted in 56 cases (44.4%) among which16 cases showed loss of nuclear expression of all markers, 34 cases showed loss of MLH1/PMS2 expression, 4 casesshowed loss of MSH2/MSH6 while only 2 cases revealed isolated loss of MLH. Personal and family history suggestiveof inherited cancer susceptibility was revealed in 11 cases most of which were associated with MSH2/MSH6 loss.Significant association of MSI expression was found with tumor stage and personal/family history of endometrial/colon cancer. Conclusion: A high frequency of endometrioid cancers in our study showed abnormal expression ofMSI markers, most of which depicted MLH1/PMS2 loss and were not associated with inherited cancer susceptibility.On the other hand, a minority of cases showed loss of all MSI markers or MSH2/MSH6 loss and were significantlyassociated with family/personal history of cancer. Therefore, we suggest that epigenetic changes in MLH1 locus maybe a predominant pathway of tumorigenesis in our population rather than inherited mutation of MSI genes; howevermore large scale studies with genetic testing are required to validate this observation.  相似文献   

15.
HNPCC is an autosomal dominantly inherited cancer-susceptibility syndrome that confers an increased risk for colorectal cancer and endometrial cancer at a young age. It also entails an increased risk of a variety of other tumors, such as ovarian, gastric, uroepithelial and biliary tract cancers. The underlying pathogenic mutation lies in 1 of the 5 known DNA MMR genes (MSH2, MLH1, PMS1, PMS2 and MSH6). We screened a total of 140 individuals from 56 Spanish families with suspected HNPCC for mutations in the DNA mismatch repair genes MLH1 and MSH2, using DGGE and direct DNA sequencing. Families were selected on the basis of a history of HNPCC-related tumors or the occurrence of other associated tumors in members besides the index case affected with colorectal cancer. We detected 14 definite pathogenic germline mutations, 9 in MLH1 and 5 in MSH2 in 13 unrelated families selected by the Amsterdam criteria and Bethesda guidelines (1 family carries 2 mutations) and 3 missense mutations in 3 unrelated families selected by the Amsterdam criteria. Among the 17 germline mutations noted in the Spanish cohort, 10 are novel, 7 in MLH1 and 3 in MSH2, perhaps demonstrating different mutational spectra in the Spanish population, where no founder mutation has been identified. Based on our results, we suggest that in the Spanish population not only HNPCC families fulfilling the Amsterdam criteria but also those following Bethesda guidelines should undergo genetic testing for MSH2 and MLH1 mutations.  相似文献   

16.
Lynch syndrome accounts for 3–5% of colorectal cancers and is due to a germline mutation in one of the mismatch repair genes MLH1, MSH2, MSH6, and PMS2. Somatic hypermethylation of the MLH1 promoter is commonly associated to sporadic cases. Strategies have been developed to identify patients with Lynch Syndrome based on clinical findings, tumoral phenotype, family history and immunohistochemistry analysis. However, there still are some pitfalls in this strategy, possibly responsible for an underdiagnosis of Lynch syndrome. Here we report the case of a 37 years-old man presenting with two concomitant tumors located in the rectosigmoid and in the ileocecal angle. Both tumors were microsatellites instability-high (MSI-H) and showed a loss of MLH1 and PMS2 protein expression, but only one had MLH1 promoter hypermethylation. Constitutional analysis of mismatch repair genes could not be performed from a blood sample, because of the early death of the patient. However, tumoral tissue analyses revealed in both tumors a pathogenic variant in the MLH1 gene. Further analysis of the surrounding tumor-free tissue also showed the presence of this alteration of the MHL1 gene. Finally, the same pathogenic variant was present constitutionally in one of the siblings of the patient, confirming its hereditary nature. This new case of concomitant presence of MLH1 promoter hypermethylation and MLH1 germline mutation demonstrates that the presence of MLH1 promoter hypermethylation should not rule out the diagnosis of Lynch Syndrome.  相似文献   

17.
Identification and characterization of the genetic background in patients with the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome is important since control programmes can in a cost-effective manner prevent cancer development in high-risk individuals. HNPCC is caused by germline mismatch repair (MMR) gene mutations and the genetic analysis of HNPCC therefore includes assessment of microsatellite instability (MSI) and immunohistochemical MMR protein expression in the tumor tissue. MSI is found in >95% of the HNPCC-associated tumors and immunostaining using antibodies against the MMR proteins MLH1, MSH2, and MSH6 has been found to correctly pinpoint the affected gene in about 90% of the cases. The PMS2 antibody was the most recently developed and we have in a clinical material assessed the added value of PMS2 immunostaining in 213 patients with suspected hereditary colorectal cancer. All 119 MSS tumors showed retained expression for all four antibodies and PMS2 did thus not identify any underlying MMR defect in these cases. However, PMS2 immunostaining contributed to the characterization of the MMR defect in a subset of the MSI tumors. Concomitant loss of MLH1 and PMS2, which functionally interact in the MutLα complex, was found in 98% of the tumors from patients with germline MLH1 mutations. Among the 12 MSI-high tumors with retained expression of MLH1, MSH2 and MSH6, 8 tumors showed loss of PMS2 staining, and mutations in MLH1 were identified in 2 and mutations in PMS2 in 3 of these individuals. In summary, isolated loss of PMS2 was found in 8% of the MSI-high tumors in our series, including 8/12 previously unexplained MSI-high tumors, in which mutations either in MLH1 or in PMS2 were identified in five cases.  相似文献   

18.
Microsatellite instability-high (MSI-H) and tumor mutational burden (TMB) are predictive biomarkers for immune-checkpoint inhibitors (ICIs). Still, the relationship between the underlying cause(s) of MSI and TMB in tumors remains poorly defined. We investigated associations of TMB to mismatch repair (MMR) protein expression patterns by immunohistochemistry (IHC) and MMR mutations in a diverse sample of tumors. Hypothesized differences were identified by the protein/gene affected/mutated and the tumor histology/primary site. Overall, 1057 MSI-H tumors were identified from the 32 932 tested. MSI was examined by NGS using 7000+ target microsatellite loci. TMB was calculated using only nonsynonymous missense mutations sequenced with a 592-gene panel; a subset of MSI-H tumors also had MMR IHC performed. Analyses examined TMB by MMR protein heterodimer impacted (loss of MLH1/PMS2 vs. MSH2/MSH6 expression) and gene-specific mutations. The sample was 54.6% female; mean age was 63.5 years. Among IHC tested tumors, loss of co-expression of MLH1/PMS2 was more common (n = 544/705, 77.2%) than loss of MSH2/MSH6 (n = 81/705, 11.5%; P < .0001), and was associated with lower mean TMB (MLH1/PMS2: 25.03 mut/Mb vs MSH2/MSH6 46.83 mut/Mb; P < .0001). TMB also varied by tumor histology: colorectal cancers demonstrating MLH1/PMS2 loss had higher TMBs (33.14 mut/Mb) than endometrial cancers (20.60 mut/Mb) and other tumors (25.59 mut/Mb; P < .0001). MMR gene mutations were detected in 42.0% of tumors; among these, MSH6 mutations were most common (25.7%). MSH6 mutation patterns showed variability by tumor histology and TMB. TMB varies by underlying cause(s) of MSI and tumor histology; this heterogeneity may contribute to differences in response to ICI.  相似文献   

19.
背景与目的:林奇综合征(Lynch syndrome,LS)相关的子宫内膜癌有着独特的临床病理学特征及治疗手段。对新发子宫内膜癌患者采用免疫组织化学(immunohistochemistry,IHC)染色的方法检测错配修复(mismatch repair,MMR)蛋白表达情况,可以有效地筛查LS相关的癌症患者。本研究探讨MMR蛋白(MLH1、MSH2、MSH6及PMS2)在子宫内膜样腺癌中的表达情况及其与患者临床病理学特征的关系。方法:收集中国医科大学盛京医院2018年1月—2020年8月共515例子宫内膜样腺癌连续性病例为研究对象,年龄范围为28 ~ 81(57.73±8.41)岁。采用IHC染色的方法检测癌组织中MLH1、MSH2、MSH6和PMS2蛋白表达情况,应用聚合酶链式反应(polymerase chain reaction,PCR)方法对MLH1蛋白表达缺失的标本进行基因的甲基化检测,并且分析MMR蛋白表达缺失情况与子宫内膜样腺癌临床病理学特征的关系。只要有一种MMR蛋白表达缺失即判定为MMR蛋白错配修复缺陷(deficient mismatch repair,dMMR),蛋白全部阳性则判定为MMR表达完整(proficient mismatch repair,pMMR)。结果:515例子宫内膜样腺癌中有138例(26.8%)发生MMR蛋白表达缺失,MLH1、PMS2、MSH2及MSH6蛋白表达缺失率分别是16.3%(84/515)、19.0%(98/515)、5.4%(28/515)、8.0%(41/515)。MMR蛋白的缺失以MLH1和PMS2联合表达缺失(60.9%,84/138)为主;其次为MSH2和MSH6联合表达缺失(18.8%,26/138);MSH2、MSH6和PMS2联合表达缺失有2例(1.4%,2/138);PMS2、MSH2和MSH6蛋白单独表达缺失比例分别为8.0%(11/138)、1.4%(2/138)、10.1%(14/138)。对27例MLH1蛋白表达缺失标本进行甲基化检测,结果显示,阳性率为85.2%(23/27)。515例子宫内膜样腺癌组织中的MMR蛋白表达缺失与患者发病年龄、国际妇产科联合会(The International Federation of Gynecology and Obstetrics,FIGO)分期、组织学分化程度、浸润深度、脉管转移、神经侵犯、淋巴结转移、p53异常表达、肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte,TIL)及肿瘤伴瘤周淋巴细胞有相关性,而与是否累及子宫下段无关。与pMMR的患者相比,dMMR的患者发病年龄更小,FIGO临床分期多为Ⅲ ~ Ⅳ期,组织学分化程度多为低分化,肿瘤多无肌层浸润,肿瘤多出现脉管神经侵犯及淋巴结转移,肿瘤浸润淋巴细胞增多,且肿瘤伴瘤周淋巴细胞更显著,MSH6蛋白缺失患者多无p53异常表达。结论:dMMR的子宫内膜样腺癌患者具有独特的临床病理学特征。应用免疫组织化学染色方法检测MMR蛋白表达情况,并对MLH1表达缺失的标本进行基因甲基化检测,能初步筛查LS患者,对肿瘤患者免疫治疗具有一定指导意义。  相似文献   

20.
Lynch syndrome (LS) is an autosomal dominant inherited disease caused by germline pathogenic variants (PVs) in mismatch repair (MMR) genes. LS-associated endometrial cancer (LS-EC) is the most common extraintestinal sentinel cancer caused by germline PVs in MMR genes, including MLH1, MSH2, MSH6 and PMS2. The clinicopathologic features of LS-EC include early age of onset, lower body mass index (BMI), endometrioid carcinoma and lower uterine segment involvement. There has been significant progress in screening, diagnosis, surveillance, prevention and treatment of LS-EC. Many studies support universal screening for LS among patients with EC. Screening mainly involves a combination of traditional clinical criteria and molecular techniques, including MMR-immunohistochemistry (MMR-IHC), microsatellite instability (MSI) testing, MLH1 promoter methylation testing and gene sequencing. The effectiveness of endometrial biopsy and transvaginal ultrasound (TVS) for clinical monitoring of asymptomatic women with LS are uncertain yet. Preventive strategies include hysterectomy and bilateral salpingo-oophorectomy (BSO) as well as chemoprophylaxis using exogenous progestin or aspirin. Recent research has revealed the benefits of immunotherapy for LS-EC. The NCCN guidelines recommend pembrolizumab and nivolumab for treating patients with advanced or recurrent microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号