首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Somatic cell hybrids were generated by fusion of mouse erythroleukemia cells either to mouse L cells (B82), human fibroblasts (W1-18 VA2), or human marrow fractions enriched in erythroblasts. The hybrid cells were examined for globin gene expression by benzidine staining to detect cytoplasmic hemoglobin, and by molecular hybridization of cellular RNA to globin complementary DNA (cDNA) to detect globin messenger RNA (MRNA). The fibroblast (human or mouse) times erythroleukemia cell hybrids grown in monolayer retained most of the chromosomes of each parent. Neither cytoplasmic hemoglobin nor globin mRNA was detected in dimethylsulfoxide-treated fibroblast times erythroleukemia hybrid cells, indicating extinction of hemoglobin synthesis prior to the formation of cytoplasmic mRNA. The human marrow times mouse erythroleukemia hybrid cells grown in suspension culture contained only a few human chromosomes and exhibited low levels of hemoglobin synthesis which were amplified by 2% dimethylsulfoxide. Mouse (but not human) globin mRNA was demonstrated in these hybrid cells. The results suggest that somatic cell hybrids may be useful in searching for genetic factors which regulate activity of the globin genes.  相似文献   

4.
The genes of the beta globin locus of sheep and goats undergo three developmental switches, from embryonic epsilon to fetal gamma to juvenile beta(C) and from beta(C) to adult beta(A). The juvenile beta(C) gene of adult goats and sheep are strikingly induced by erythropoietin (Epo). To obtain insights on the mechanism of beta(C) induction by Epo, we produced transgenic mice carrying various beta(C) gene constructs and examined the inducibility of the beta(C) gene following administration of high doses of erythropoietin. None of the treatments resulted in reproducible induction of the beta(C) gene by erythropoietin. We conclude that the Epo inducibility elements are not contained in the 4.7 kb (which included 0.88 kb of the beta(C) promoter and 2.3 kb downstream sequence) beta(C) gene we used or that a trans-acting environment specific to the goat and sheep erythroid cell lineage is required for induction of the beta(C) globin gene by erythropoietin.  相似文献   

5.
6.
Barker  JE; Pierce  JE; Nienhuis  AW 《Blood》1980,56(3):488-494
Stimulation of sheep erythropoietic progenitor cells by erythropoietin (epo) has been studied with regard to its effect on the pattern of hemoglobin production. An analysis of hemoglobin (Hb) synthesis in BFU- E- and CFU-E-derived colonies from fetuses either homozygous for HbA (AA) (homozygous also for the beta c gene responsible for HbC production) or HbB (BB) (lacking the beta c gene) indicated the following. Colonies derived from precursor cells from 51- and 89-day fetuses exhibited small but detectable increments of HbB synthesis with prolonged incubation in vitro. This response was not dependent on the epo concentration. Erythropoietic precursor cells from a 124-day BB fetus were already committed to HbB synthesis, since HbF production was replaced by HbB on successive days in vitro as erythroid colonies matured; this switch was not affected by varying the epo concentration. In contrast, progenitor cells from a 124-day AA fetus responded to higher doses of epo by forming colonies in which more HbC was made at the expense of both HbF and HbA. Erythropoietic stress did not result in induction of HbF in vivo or in erythroid colonies derived from CFU-E in young adult BB sheep, whereas our prior studies had shown induction of HbC synthesis under analogous conditions in colonies derived from young adult AA sheep. We conclude that the epo-induced HbF (or HbA) to HbC switch and the fetal to adult hemoglobin switch are regulated by different mechanisms.  相似文献   

7.
After screening a bacterial artificial chromosome of human genomic DNA library with human HS-40, zeta-, alpha-, and theta-globin probes, a 110-kb clone bearing the whole human alpha-globin gene cluster was obtained and rare restriction endonuclease mapping was performed. The bacterial artificial chromosome DNA was isolated, and transgenic mice were generated. Three founders were detected from 35 newborn mice. The copy numbers were 1, 2, and 2, and the expression of human alpha-globin genes in various tissues at different developmental stages in the transgenic mice was assayed. The human alpha-globin mRNA can be detected in bone marrow, kidney, liver, brain, but not in muscle, testis, or thymus. The human zeta-globin genes were switched off, and the alpha-globin genes were switched at day 11.5 in mouse embryo, indicating that developmental stage-specific expression of the alpha-like globin genes was properly regulated. The human alpha-globin mRNA ranged between 17-68% of the endogenous mouse alpha-globin, suggesting that the expression of human alpha-globin genes is integration site-dependent in transgenic mice. The ratio of human alpha(2)- and alpha(1)-globin gene expression in adult transgenic mouse is about 2.5:1 similar to the expression in human.  相似文献   

8.
9.
Summary In three young patients with erythroleukemia in whom a partial reversion to the fetal pattern of erythropoiesis occured there was found additionally an imbalance of globin chain synthesis. The synthesis of - plus -chains exceeded that of the -chains. In contrast, physiologic hemoglobin F production occuring in newborn infants and increased hemoglobin F production due to rapidly regenerating erythropoiesis in hereditary spherocytosis and after acute erythroblastopenia are characterized by a well balanced globin chain synthesis. These studies indicate that in distinct cases of juvenile erythroleukemia the genuine reversion to fetal erythropoiesis may be associated not only with a depression of hemoglobin synthesis but also with an imbalanced globin chain synthesis. Unlike adult cases of erythroleukemia without reversion to fetal erythropoiesis the imbalance of globin chain synthesis seems to be a more generalized phenomenon in these cases of juvenile erythroleukemia which is not confined to a particular red cell population.Supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg, Schr 86/14 and Ga 148/5  相似文献   

10.
BACKGROUND: Metallothioneins (MTs) are ubiquitously expressed intracellular proteins that bind heavy metals and are involved in cytoprotection against several types of stress agents including chemicals, hormones, and oxidants. We have previously reported 1 isoform, MT-II, as a possible candidate gene for ethanol (EtOH) preference (EP) determination in mice. METHODS: Semiquantitative RT-PCR was used to determine brain mRNA levels of MT-I and MT-III in 4 inbred mouse strains with variable EP. Following this, cosegregation of MT-II brain expression with EP was analyzed in F2 mice from 2 intercrosses (C57BL/6J x BALB/cJ and C57BL/6J x DBA/2J). Studies on MT-I/MT-II knockout (KO) mice were also undertaken to further explore this relationship. RESULTS: Our results suggest that MT-I is responsive to EtOH, with no evidence of basal-level differences between strains. Conversely, MT-III shows no EtOH response, yet indicates a possible strain-specific feature with C57BL/6J having the lowest levels of brain MT-III. Metallothionein-II expression cosegregates with EP in F2 mice from a C57BL/6J (preferring) and DBA/2J (avoiding) intercross. Although F2 mice from a cross with C57BL/6J and BALB/cJ (avoiding) strains follow a similar pattern, the results are not statistically significant. Metallothionein-I/MT-II knockout (MT-KO) mice appear to have smaller litter sizes as well as higher weight compared with controls (129S1/SvImJ) and also show a slight increase in EP. CONCLUSIONS: Metallothionein-II remains the primary candidate of the mouse MT gene family for involvement in EP. Its effect on EP appears to be dependent on the genetic background. Such conclusions are based on results from C57BL/6J, BALB/cJ, DBA/2J, and 129 inbred mouse strains. Evidence also points to shared neural pathways involved in weight gain and obesity. The complex interactions between MT-II, EP, and weight gain/obesity remain to be studied.  相似文献   

11.
Depressed contractile function plays a primary role in the pathophysiology of acute myocardial ischemia. Intracellular acidification is an important factor underlying the inhibition of force production in the ischemic myocardium. The effect of acidosis to depress contractility is markedly greater in cardiac as compared to skeletal muscle; however, the molecular basis of this difference in sensitivity to acidosis is not clearly understood. In this report, we describe transgenic mice that express the fast skeletal isoform of troponin C (sTnC) in cardiac muscle. In permeabilized single cardiac myocytes the shift in the midpoint of the tension-pCa relationship (i.e., pCa50, where pCa is -log[Ca2+]) due to lowering pH from 7.00 to 6.20 was 1.27 +/- 0.03 (n = 7) pCa units in control cardiac TnC (cTnC) expressing myocytes and 0.96 +/- 0.04 (n = 11) pCa unit in transgenic cardiac myocytes (P < 0.001). The effect of pH to alter maximum Ca(2+)-activated tension was unchanged by TnC isoforms in these cardiac myocytes. In a reciprocal experiment, contractile sensitivity to acidosis was increased in fast skeletal muscle fibers following extraction of endogenous sTnC and reconstitution with purified cTnC in vitro. Our findings demonstrate that TnC plays an important role in determining the profound sensitivity of cardiac muscle to acidosis and identify cTnC as a target for therapeutic interventions designed to modify ischemia-induced myocardial contractile dysfunction.  相似文献   

12.
13.
Cardiac arrhythmias: from (transgenic) mice to men   总被引:12,自引:0,他引:12  
Transgenic and gene-targeted mice now are frequently used to study cardiac arrhythmias due to the ease with which the mouse genome can be manipulated. Marked electrophysiologic differences are present between the mouse and human heart, however, and the utility of the mouse as a model for arrhythmias and sudden death remains controversial. Tachyarrhythmias, bradyarrhythmias, and ECG in the mouse need to be interpreted with extreme care and without preconceptions based on our experience with humans. Despite its limitations, the mouse can provide a powerful tool to further our understanding of basic mechanisms that underlie human cardiac electrophysiology.  相似文献   

14.
Chromosome-dependent gene transfer mediated by cell fusion was used to show that it is possible to activate phenotypic expression of human alpha globin genes derived from nonerythroid cells. Hybrid cells containing the human alpha globin structural genes were derived by fusion of populations of adult human peripheral blood mononuclear cells (devoid of identifiable erythroid cells) with adenine phosphoribosyl-transferase-deficient mouse erythroleukemia cells that contained close to a tetraploid complement of mouse chromosomes. The hybrid cells retained a near tetraploid complement of mouse chromosomes but had lost 80% of the chromosomes of the human parent cell. All of these hybrid cells and their subclones, which contained human chromosome 16, exhibited synthesis of human alpha globin chains. Human alpha globin mRNA was also demonstrated to be present in one of these hybrid cells by RNA.cDNA molecular hybridization analysis. We conclude that the mechanism responsible for restricting expression of the human globin genes in nonerthroid cells is not irreversible, at least for those globin structural genes that are actively transcribed in erythroid cells during adult life. Moreover, some genetic factor or process in the tetraploid mouse erythroleukemia cell is, under the conditions of our experiments, capable of reactivating phenotypic expression (production of globin chains) of human globin genes derived from nonerythroid hematopoietic cells after chromosome-dependent gene transfer.  相似文献   

15.
Romero JR  Suzuka SM  Nagel RL  Fabry ME 《Blood》2004,103(6):2384-2390
Elevation of K-Cl cotransport in patients with homozygous hemoglobin (Hb) S or HbC increases red cell mean corpuscular hemoglobin concentration (MCHC) and contributes significantly to pathology. Elucidation of the origin of elevated K-Cl cotransport in red cells with mutant hemoglobins has been confounded by the concomitant presence of reticulocytes with high K-Cl cotransport. In red cells of control mice (C57BL), transgenic mice that express only human HbA, and transgenic mice that express both mouse globins and human HbS, volume stimulation is weak and insensitive to NO3- and dihydroindenyl-oxy-alkanoic acid (DIOA). DIOA and NO3- are inhibitors in all other mammalian red cells. In contrast, in knock-out mice expressing exclusively human hemoglobin HbC or HbS+ gamma, replacement of isotonic Cl- media by hypotonic Cl- resulted in strong volume stimulation and sensitivity to DIOA, okadaic acid, and NO3-. In summary, we find that HbC, under all conditions, and HbS+ gamma, in the absence of mouse globins, have significant quantitative and qualitative effects on K-Cl cotransport in mouse red cells and activate mouse K-Cl. We conclude that human globins are able to stimulate the activity and/or regulation of K-Cl cotransport in mouse red cells. These observations support the contention that HbS and HbC stimulate K-Cl cotransport in human red cells.  相似文献   

16.
Somatic cell hybrids were derived by fusion of mouse erythroleukemia cells with fractionated human marrow enriched in erythroblasts, or with chinese hamster fetal liver erythroid cells. Such interspecific hybrid cells, when isolated in suspension culture, had retained nearly all the mouse chromosomes and had lost most of the human or chinese hamster chromosomes. However, two such hybrids (one human, the other hamster) studied 4-6 weeks after fusion, were found to contain several non-mouse chromosomes. RNA extracted from the human marrow x erythroleukemia hybrid annealed equally to both human and mouse globin complementary DNA, indicating that coexpression of the globin genes of each species had occurred in the hybrid cells. Mouse and human mRNA were found to accumulate only after incubation of the cells in 2% dimethylsulfoxide. The chinese hamster x erythroleukemia hybrid appeared to contain a double complement of mouse chromosomes in addition to several chinese hamster chromosomes. After 7 days of incubation in 2% dimethylsulfoxide, [3H]leucine was incorporated into chinese hamster beta-globin and the mouse globin chains. Thus, globin genes from differentiated cells, when introduced into spontaneously proliferating erythroleukemia cells, may be expressed after exposure of the resulting hybrid cells to an agent capable of inducing hemoglobin synthesis in the erythroleukemia cell.  相似文献   

17.
A 213 kb human beta-globin locus yeast artificial chromosome (beta-YAC) was modified by homologous recombination to delete 2.9 kb of cross-species conserved sequence similarity encompassing the LCR 5' hypersensitive site (HS) 4 (Delta5'HS4 beta-YAC). In three transgenic mouse lines, completion of the gamma- to beta-globin switch during definitive erythropoiesis was delayed relative to wild-type beta-YAC mice. In addition, quantitative per-copy human beta-like globin mRNA levels were similar to wild-type beta-YAC transgenic lines, although beta-globin gene expression was slightly decreased in the day 12 fetal liver of Delta5'HS4 beta-YAC mice. A 0.8 kb 5'HS1 fragment was similarly deleted in the YAC. Three Delta5'HS1 beta-YAC transgenic lines were established. epsilon-globin gene expression was markedly reduced, approximately 16 fold, during primitive erythropoiesis compared to wild-type beta-YAC mice, but gamma-globin expression levels were unaffected. However, during the fetal stage of definitive erythropoiesis, gamma-globin gene expression was decreased approximately 4 fold at day 12 and approximately 5 fold at day 14. Temporal developmental expression profiles of the beta-like globin genes were unaffected by deletion of 5'HS1. Decreased expression of the epsilon- and gamma-globin genes is the first phenotype ascribed to a 5'HS1 mutation in the human beta-globin locus, suggesting that this HS does indeed have a role in LCR function beyond simply a combined synergism with the other LCR HSs.  相似文献   

18.
Mice lacking the erythroid Kruppel-like factor (EKLF) die in utero at embryonic day 15 (E15) from severe anemia. EKLF(-/-) embryos display a marked deficit in beta-globin gene expression. To test whether beta-globin deficiency was solely responsible for the anemia and intrauterine death, we corrected the globin chain imbalance in EKLF(-/-) embryos by breeding with a strain of mice that express high levels of human gamma-globin. Despite efficient production of hybrid malpha(2)-hgamma(2) hemoglobin in the fetal livers of EKLF(-/-) animals, hemolysis was not corrected and survival was not prolonged. We concluded that deficiency of nonglobin EKLF target genes is a major contributor to the definitive red blood cell abnormalities and prenatal death in EKLF(-/-) embryos. These results suggest that strategies designed to antagonize EKLF function in adults with hemoglobinopathy, in an attempt to reactivate gamma-globin gene expression, may adversely affect other essential aspects of red blood cell physiology. (Blood. 2000;95:1827-1833)  相似文献   

19.
20.
Tiedt R  Schomber T  Hao-Shen H  Skoda RC 《Blood》2007,109(4):1503-1506
To generate transgenic mice that express Cre-recombinase exclusively in the megakaryocytic lineage, we modified a mouse bacterial artificial chromosome (BAC) clone by homologous recombination and replaced the first exon of the platelet factor 4 (Pf4), also called CXCL4, with a codon-improved Cre cDNA. Several strains expressing the transgene were obtained and one strain, Q3, was studied in detail. Crossing Q3 mice with the ROSA26-lacZ reporter strain showed that Cre-recombinase activity was confined to megakaryocytes. These results were further verified by crossing the Q3 mice with a strain containing loxP-flanked integrin beta1. Excision of this conditional allele in megakaryocytes was complete at the DNA level, and platelets were virtually devoid of the integrin beta1 protein. The Pf4-Cre transgenic strain will be a valuable tool to study megakaryopoiesis, platelet formation, and platelet function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号