首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundProgrammed death-ligand-1 (PD-L1) is a well-known predictive biomarker in non-small cell lung cancer (NSCLC) patients, however, its accuracy remains controversial. Here, we investigated the correlation between PD-L1 expression level and efficacy of its inhibitors, and hence assessed the predictive effect of PD-L1 expression.MethodsStudies that evaluated the efficacy of programmed death-1 (PD-1)/ PD-L1 inhibitors in advanced NSCLC patients according to tumor PD-L1 expression levels were searched for on Medline, Cochrane Library, and Embase. The pooled risk ratio (RR) and 95% confidence intervals (95% CIs) were calculated for the objective response rate (ORR) with overall survival (OS) and progression-free survival (PFS) were measured in terms of hazard ratio (HR) and the corresponding 95% CIs.Results1432 NSCLC patients from six randomized controlled trials (RCTs) were included and three PD-1/PD-L1 inhibitors (atezolizumab, nivolumab, and pembrolizumab) were used to treat the patients. A significantly higher ORR was observed in the high PD-L1 expression group compared to the low expression group (0.35 [95% CI, 0.30–0.40] vs 0.11 [95% CI, 0.09–0.14]). The results of the subgroup analysis, grouped by the type of drugs and antibodies which assess immune checkpoint inhibitors were identical with the pooled result. However, our study showed that PD-L1 expression was neither prognostic nor predictive of overall survival (OS) or progression-free survival (PFS) in patients treated with PD-1/PD-L1 inhibitors compared to chemotherapy.ConclusionsPD-L1 can be a predictive biomarker for ORR. Nevertheless, PD-L1 expression is not a good predictive tool for OS and PFS.  相似文献   

2.
ObjectiveProgrammed death ligand 1 (PD-L1) has been reported to be connected to prognosis in individuals with malignant pleural mesothelioma (MPM), although there is no consensus based on data from previous studies. Accordingly, this quantitative meta-analysis investigated prognostic and clinicopathological utility of PD-L1 in patients with MPM.MethodsA comprehensive search of the PubMed, Web of Science, Embase, and Cochrane Library databases for articles published up to October 4, 2019 was performed. Studies using immunohistochemical techniques to detect/quantify the expression of PD-L1 in MPM tissue were enrolled in the analysis. The combined hazard ratio (HR) and corresponding 95% confidence interval (CI) was applied to assess the association between PD-L1 expression and overall survival (OS).ResultsA total of 11 studies comprising 1606 patients was included in the present meta-analysis. For OS, pooled data revealed an HR of 1.50 (95% CI 1.32–1.70; p < 0.001), suggesting that patients with PD-L1 overexpression experience inferior OS. Subgroup analysis revealed that elevated PD-L1 remained a significant prognostic indicator for worse OS, irrespective of sample size, cut-off value, ethnicity, and Newcastle-Ottawa Scale score. Moreover, PD-L1 overexpression was associated with non-epithelioid histology (odds ratio 4.30 [95% CI 1.89–9.74]; p < 0.001).ConclusionsResults of this meta-analysis show that elevated expression of PD-L1 could be a factor predicting poorer survival in patients with MPM.  相似文献   

3.
4.
5.
《药学学报(英文版)》2020,10(5):723-733
Immunotherapy strategies targeting the programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) pathway in clinical treatments have achieved remarkable success in treating multiple types of cancer. However, owing to the heterogeneity of tumors and individual immune systems, PD-L1/PD-1 blockade still shows slow response rates in controlling malignancies in many patients. Accumulating evidence has shown that an effective response to anti-PD-L1/anti-PD-1 therapy requires establishing an integrated immune cycle. Damage in any step of the immune cycle is one of the most important causes of immunotherapy failure. Impairments in the immune cycle can be restored by epigenetic modification, including reprogramming the environment of tumor-associated immunity, eliciting an immune response by increasing the presentation of tumor antigens, and by regulating T cell trafficking and reactivation. Thus, a rational combination of PD-L1/PD-1 blockade and epigenetic agents may offer great potential to retrain the immune system and to improve clinical outcomes of checkpoint blockade therapy.  相似文献   

6.
《药学学报(英文版)》2021,11(10):3134-3149
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) cascade is an effective therapeutic target for immune checkpoint blockade (ICB) therapy. Targeting PD-L1/PD-1 axis by small-molecule drug is an attractive approach to enhance antitumor immunity. Using flow cytometry-based assay, we identify tubeimoside-1 (TBM-1) as a promising antitumor immune modulator that negatively regulates PD-L1 level. TBM-1 disrupts PD-1/PD-L1 interaction and enhances the cytotoxicity of T cells toward cancer cells through decreasing the abundance of PD-L1. Furthermore, TBM-1 exerts its antitumor effect in mice bearing Lewis lung carcinoma (LLC) and B16 melanoma tumor xenograft via activating tumor-infiltrating T-cell immunity. Mechanistically, TBM-1 triggers PD-L1 lysosomal degradation in a TFEB-dependent, autophagy-independent pathway. TBM-1 selectively binds to the mammalian target of rapamycin (mTOR) kinase and suppresses the activation of mTORC1, leading to the nuclear translocation of TFEB and lysosome biogenesis. Moreover, the combination of TBM-1 and anti-CTLA-4 effectively enhances antitumor T-cell immunity and reduces immunosuppressive infiltration of myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our findings reveal a previously unrecognized antitumor mechanism of TBM-1 and represent an alternative ICB therapeutic strategy to enhance the efficacy of cancer immunotherapy.  相似文献   

7.
Cancer immunotherapy has brought a great revolution in the treatment of advanced human cancer. Immune checkpoint inhibitors (ICIs) that target cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death protein 1 pathway (PD-1/PD-L1) have been widely administrated in the past years and demonstrated promising in a variety of malignancies. While some patients show benefit from ICIs, others do not respond or even develop resistance to these therapies. Among the responders, the treatments are consequently accompanied with immune-related adverse effects (irAEs), which are diverse in their effected organs, degree of severity and timing. Some of the toxicities are fatal and result in discontinuance of immunotherapy. The toxicity profile from anti-CTLA-4 to anti-PD-1/PD-L1 immunotherapies is distinct from those caused by conventional anticancer therapies, though their presentation may be similar. In order to better help clinicians recognize, monitor and manage irAEs in a growing population of cancer patients who are receiving ICI therapy, this article summarizes the FDA approved ICIs and focuses on (1) existing toxic evidence related to ICIs, (2) occurrence of irAEs, (3) factors influencing tumor responders treated with ICIs, (4) predictive biomarkers of irAEs, and (5) new potential mechanisms of resistance to ICI therapy.  相似文献   

8.
Macrophages are recognized as one of the major cell types in tumor microenvironment, and macrophage infiltration has been predominantly associated with poor prognosis among patients with breast cancer. Using the murine models of triple-negative breast cancer in CD169-DTR mice, we found that CD169+ macrophages support tumor growth and metastasis. CD169+ macrophage depletion resulted in increased accumulation of CD8+ T cells within tumor, and produced significant expansion of CD8+ T cells in circulation and spleen. In addition, we observed that CD169+ macrophage depletion alleviated tumor-induced splenomegaly in mice, but had no improvement in bone loss and repression of bone marrow erythropoiesis in tumor-bearing mice. Cancer cells and tumor associated macrophages exploit the upregulation of the immunosuppressive protein PD-L1 to subvert T cell-mediated immune surveillance. Within the tumor microenvironment, our understanding of the regulation of PD-L1 protein expression is limited. We showed that there was a 5-fold higher relative expression of PD-L1 on macrophages as compared with 4T1 tumor cells; coculture of macrophages with 4T1 cells augmented PD-L1 levels on macrophages, but did not upregulate the expression of PD-L1 on 4T1 cells. JAK2/STAT3 signaling pathway was activated in macrophages after coculture, and we further identified the JAK2 as a critical regulator of PD-L1 expression in macrophages during coculture with 4T1 cells. Collectively, our data reveal that breast cancer cells and CD169+ macrophages exhibit bidirectional interactions that play a critical role in tumor progression, and inhibition of JAK2 signaling pathway in CD169+ macrophages may be potential strategy to block tumor microenvironment-derived immune escape.  相似文献   

9.
BackgroundPyroptosis is identified as a novel form of inflammatory programmed cell death and has been recently found to be closely related to atherosclerosis (AS). We found that IFN regulatory factor-1(IRF-1) effectively promotes macrophage pyroptosis in patients with acute coronary syndrome (ACS). Subsequent studies have demonstrated that circRNAs are implicated in AS. However, the underlying mechanisms of circRNAs in macrophage pyroptosis remain elusive.MethodsWe detected the RNA expression of hsa_circ_0002984, hsa_circ_0010283 and hsa_circ_0029589 in human PBMC-derived macrophages from patients with coronary artery disease (CAD). The lentiviral recombinant vector for hsa_circ_0029589 overexpression (pLC5-GFP-circ_0029589) and small interference RNAs targeting hsa_circ_0029589 and METTL3 were constructed. Then, macrophages were transfected with pLC5-GFP-circ_0029589, si-circ_0029589 or si-METTL3 after IRF-1 was overexpressed and to explore the potential mechanism of hsa_circ_0029589 involved in IRF-1 induced macrophage pyroptosis.ResultsThe relative RNA expression level of hsa_circ_0029589 in macrophages was decreased, whereas the N6-methyladenosine (m6A) level of hsa_circ_0029589 and the expression of m6A methyltransferase METTL3 were validated to be significantly elevated in macrophages in patients with ACS. Furthermore, overexpression of IRF-1 suppressed the expression of hsa_circ_0029589, but induced its m6A level along with the expression of METTL3 in macrophages. Additionally, either overexpression of hsa_circ_0029589 or inhibition of METTL3 significantly increased the expression of hsa_circ_0029589 and attenuated macrophage pyroptosis.ConclusionOur observations suggest a novel mechanism by which IRF-1 facilitates macrophage pyroptosis and inflammation in ACS and AS by inhibiting circ_0029589 through promoting its m6A modification.  相似文献   

10.
Antibody therapy based on PD-1/PD-L1 blocking or ADCC effector has produced significant clinical benefit for cancer patients. We generated a novel anti-B7-H3 antibody (07B) and engineered the Fc fragment to enhance ADCC. To improve efficacy and tumor selectivity, we developed anti-B7-H3/PD-1 bispecific fusion proteins that simultaneously engaged tumor associate marker B7-H3 and immune suppressing ligand PD-L1 as well as enhanced ADCC to promote potent and highly selective tumor killing. Fusion proteins were designed by fusing human PD-1 extra domain to 07B in four different formats and showed good binding capacity to both targets. Indeed, the affinity of fusion proteins to B7-H3 is over 10,000 fold higher compared to that of the analogous PD-L1 and the blocking of fusion proteins to PD-L1 was worse but it greatly enhanced when bound to B7-H3, thus achieving directly PD-L1-blockade to B7-H3-expressing tumor cells. Importantly, IL-2 production was enhanced by fusion proteins from staphylococcal enterotoxin B (SEB) stimulated PBMC. Similarly, cytokines induced by fusion proteins was enhanced when co-cultured with stimulated CD8+ T cells and B7-H3/PD-L1 transfected raji cells. Additionally, fusion proteins improved activation to CD16a by Fc modification and delivered selective cytotoxicity to B7-H3 expressing tumor cells. In conclusion, fusion proteins blocked the PD-1/PD-L1 signal pathway and significantly increased potency of ADCC in a B7-H3-directed manner, thereby selectively activating CD8+ T cells and enhancing natural killing towards tumor. This novel fusion protein with its unique targeting preference may be useful to enhance efficacy and safety of immunotherapy for B7-H3-overexpressing malignancies.  相似文献   

11.
Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blocking therapy has become a major pillar of cancer immunotherapy. Compared with antibodies targeting, small-molecule checkpoint inhibitors which have favorable pharmacokinetics are urgently needed. Here we identified berberine (BBR), a proven anti-inflammation drug, as a negative regulator of PD-L1 from a set of traditional Chinese medicine (TCM) chemical monomers. BBR enhanced the sensitivity of tumour cells to co-cultured T-cells by decreasing the level of PD-L1 in cancer cells. In addition, BBR exerted its antitumor effect in Lewis tumor xenograft mice through enhancing tumor-infiltrating T-cell immunity and attenuating the activation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). BBR triggered PD-L1 degradation through ubiquitin (Ub)/proteasome-dependent pathway. Remarkably, BBR selectively bound to the glutamic acid 76 of constitutive photomorphogenic-9 signalosome 5 (CSN5) and inhibited PD-1/PD-L1 axis through its deubiquitination activity, resulting in ubiquitination and degradation of PD-L1. Our data reveals a previously unrecognized antitumor mechanism of BBR, suggesting BBR is small-molecule immune checkpoint inhibitor for cancer treatment.  相似文献   

12.
Platycodin D (PTD) is an oleanane-type terpenoid saponin, isolated from the plant Platycodon grandiflorus. PTD displays multiple pharmacological effects, notably significant anticancer activities in vitro and in vivo. Recently, PTD was shown to trigger the extracellular release of the immunologic checkpoint glycoprotein PD-L1. The reduction of PD-L1 expression at the surface of cancer cells leads to interleukin-2 secretion and T cells activation. In the present review, we have analyzed the potential origin of this atypical PTD-induced PD-L1 release to propose a mechanistic explanation. For that, we considered all published scientific information, as well as the physicochemical characteristics of the natural product (a modeling analysis of PTD and the related saponin β -escin is provided). On this basis, we raise the hypothesis that the capacity of PTD to induce PD-L1 extracellular release derives from two main mechanisms: (i) a drug-promoted shedding of membrane PD-L1 by metalloproteases or more likely, (ii) a cholesterol binding-related effect, that would lead to perturbation of membrane raft domains, limiting the recruitment of proteins like TLR4. The drug-induced membrane effects (frequently observed with saponin drugs), associated with a production of interferon-γ,can favor the release of proteins like PD-L1 into membrane vesicles. Our analysis supports the hypothesis that PTD is a cholesterol-dependent lipid raft-modulating agent able to promote the formation of PD-L1 containing extracellular vesicles. The anticancer potential of PTD and its capacity to modulate the functioning of the PD-1/PD-L1 checkpoint should be further considered.  相似文献   

13.
BackgroundGastric cancer has extremely high morbidity and mortality. Currently, it is lack of effective biomarkers and therapeutic targets for guiding clinical treatment. In this study, we aimed to identify novel biomarkers and therapeutic targets for gastric cancer.MethodsDifferentially expressed genes (DEGs) between gastric cancer and normal tissues were obtained from Gene Expression Omnibus (GEO). Core genes were identified by constructing protein-protein interaction network of DEGs. The expression of core genes was verified in Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN and clinical samples. Further, the mutation, DNA methylation, prognostic value, and immune infiltration of core genes were validated by cBioPortal, MethSurv, Kaplan-Meier plotter, and Tumor Immune Estimation Resource (TIMER) databases. Additionally, drug response analysis was performed by Cancer Therapy Response Portal (CTRP).ResultsA total of seven collagen family members were identified as core genes among upregulated genes. And copy number amplification may be involved in the upregulation of COL1A1 and COL1A2. Importantly, the collagen family was associated with the poor prognosis of patients with metastasis. Among them, COL1A1 had a higher hazard ratio (HR) for overall survival than other members (HR = 2.33). The correlation between DNA methylation levels at CpG sites of collagen family members and the prognosis was verified in gastric cancer. Besides, collagen family expression was positively correlated with macrophages infiltration and the expression of M2 macrophages markers. Further, collagen expression was related to the sensitivity and resistance of gastric cancer cell lines to certain drugs.ConclusionsThe collagen family, especially COL1A1, COL1A2, and COL12A1, may act as potential prognostic biomarkers and immune-associated therapeutic targets in gastric cancer.  相似文献   

14.
《Saudi Pharmaceutical Journal》2022,30(10):1387-1395
BackgroundMuscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.  相似文献   

15.
16.
IntroductionAllogenic hematopoietic stem cell transplantation is a curative option for malignant and non-malignant pediatric diseases. Serotherapy is often employed to avoid graft-versus-host disease (GvHD) on one hand and graft rejection on the other hand. Therapeutic drug monitoring is increasingly used to allow for more precise dosing especially in pediatric patients due to their specific pharmacological characteristics. Application of T-cell directed antibodies is not routinely monitored, but may benefit from more precise dosing regimens.MethodsTwo different preparations of rabbit anti-thymocyte globulin (rATG), Thymoglobuline® and ATG-F (Grafalon®), are frequently used to prevent GvHD in pediatric patients by in vivo T-cell depletion. Total rATG levels and active rATG levels were analyzed prospectively in pediatric patients undergoing HSCT. Clinical and laboratory outcome parameters were recorded.ResultsrATG levels were measured in 32 patients, 22 received thymoglobuline and 10 received ATG-F. The median total peak plasma level was 419.0 µg/ml for ATG-F and 60.4 µg/ml for thymoglobuline. For ATG-F, exposure could be predicted from the calculated dose more precisely than for thymoglobuline. Active peak plasma levels neither of ATG-F, nor of thymoglobuline correlated significantly with the number of lymphocytes prior to serotherapy. There was no significant difference in incidence of aGvHD, cGvHD, rejection, mixed chimerism or viral infections in the two cohorts. However, in our cohort, patients with high thymoglobuline exposure showed a compromised reconstitution of T cells.ConclusionsATG-F and thymoglobuline show different pharmacological and immunological impact in children, whose clinical significance needs to be investigated in larger cohorts.  相似文献   

17.
《Saudi Pharmaceutical Journal》2021,29(11):1289-1302
BackgroundGlioblastoma is one of the most aggressive and deadliest malignant tumors. Acquired resistance decreases the effectiveness of bevacizumab in glioblastoma treatment and thus increases the mortality rate in patients with glioblastoma. In this study, the potential targets of pentagamavunone-1 (PGV-1), a curcumin analog, were explored as a complementary treatment to bevacizumab in glioblastoma therapy.MethodsTarget prediction, data collection, and analysis were conducted using the similarity ensemble approach (SEA), SwissTargetPrediction, STRING DB, and Gene Expression Omnibus (GEO) datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted using Webgestalt and DAVID, respectively. Hub genes were selected based on the highest degree scores using the CytoHubba. Analysis of genetic alterations and gene expression as well as Kaplan–Meier survival analysis of selected genes were conducted with cBioportal and GEPIA. Immune infiltration correlations between selected genes and immune cells were analyzed with database TIMER 2.0.ResultsWe found 374 targets of PGV-1, 1139 differentially expressed genes (DEGs) from bevacizumab-resistant-glioblastoma cells. A Venn diagram analysis using these two sets of data resulted in 21 genes that were identified as potential targets of PGV-1 against bevacizumab resistance (PBR). PBR regulated the metabolism of xenobiotics by cytochrome P450. Seven potential therapeutic PBR, namely GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110 were found to have genetic alterations in 1.2%–30% of patients with glioblastoma. Analysis using the GEPIA database showed that the mRNA expression of ADAM10, AKR1B1, and HSD17B10 was significantly upregulated in glioblastoma patients. Kaplan–Meier survival analysis showed that only patients with low mRNA expression of AKR1B1 had significantly better overall survival than the patients in the high mRNA group. We also found a correlation between PBR and immune cells and thus revealed the potential of PGV-1 as an immunotherapeutic agent via targeting of PBR.ConclusionThis study highlighted seven PBR, namely, GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110. This study also emphasized the potential of PBR as a target for immunotherapy with PGV-1. Further validation of the results of this study is required for the development of PGV-1 as an adjunct to immunotherapy for glioblastoma to counteract bevacizumab resistance.  相似文献   

18.
《药学学报(英文版)》2022,12(3):1305-1321
Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss. This study aimed to assess the potential effect of the DNA methyltransferase (DNMT) inhibitor RG108 on cisplatin-induced ototoxicity. Immunohistochemistry, apoptosis assay, and auditory brainstem response (ABR) were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells (HCs) and spiral ganglion neurons (SGNs). Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential (MMP) assessment. Reactive oxygen species (ROS) amounts were evaluated by Cellrox green and Mitosox-red probes. Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates (OCRs). The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs, and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation. Furthermore, RG108 upregulated BCL-2 and downregulated APAF1, BAX, and BAD in HEI-OC1 cells, and triggered the PI3K/AKT pathway. Decreased expression of low-density lipoprotein receptor-related protein 1 (LRP1) and high methylation of the LRP1 promoter were observed after cisplatin treatment. RG108 treatment can increase LRP1 expression and decrease LRP1 promoter methylation. In conclusion, RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin via activating the LRP1-PI3K/AKT pathway.  相似文献   

19.
BackgroundDeiodinases comprise a group of selenoproteins that regulate the bioavailability of active thyroid hormones (TH) in a time and tissue specific fashion. They increase the hormonal activity by metabolizing their inactive precursors to active forms or terminate their activity by deactivating active hormones. The role of the deiodinase (DIO) gene polymorphisms in thyroid cancer is not fully understood yet. This study evaluated the potential association of the DIO1 and DIO2 genes with differentiated thyroid cancer and differential thyroxine dose requirement in thyroidectomized patients in a Saudi cohort.MethodsWe selected four variants (one DIO1 and three DIO2) for the association studies using Taqman assays in 507 DTC patients undergoing treatment with thyroxin against 560 disease-free individual, all of Saudi Arab origin.ResultsNone of the studied variants was linked to differentiated thyroid cancer. The rs1388378_G > T was initially linked to thyroxine dose requirement (p = 0.035) when all patients were considered together, but this association was lost when the patients were classified into either near suppressed (0.1 ≤ TSH < 0.5) or suppressed (TSH < 0.1) TSH group.DiscussionAlthough the results suggest only a weak relationship with differentiated thyroid cancer, they strongly indicate that the DIO2 polymorphism influences the hormonal dose requirement in patients undergoing treatment with thyroxine. This probably points to a distinction in the way this gene influences disease as compared to therapy thereof.  相似文献   

20.
BackgroundsTriptolide (TP) exhibits effective activity against colon cancer in multiple preclinical models, but the mechanisms underlying the observed effects are not fully understood. Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in the regulation of colon cancer progression. The aim of this study was to investigate the effect of TP on the sphingosine kinase (SPHK)-S1P signaling pathway in colitis-associated colon cancer.MethodsAn azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model and the THP-1 cell line were used to evaluate the therapeutic effects and mechanisms of TP in colitis-associated colon cancer (CACC). Various molecular cell biology experiments, including Western blotting, real-time PCR and immunofluorescence, were used to obtain relevant experimental data. A liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was also established to detect the levels of S1P in tissue and plasma.ResultsIn the AOM/DSS mouse model, TP treatment induced a dose-dependent decrease in tumor incidence and inhibited macrophage recruitment and M2 polarization in the tumors. TP also efficiently decreased the S1P levels and SPHK1/S1PR1/S1PR2 expression and significantly inhibited activation of the S1P-mediated phosphorylation of ERK protein in macrophages.ConclusionsThe results indicated that TP might influence the recruitment and polarization of tumor-associated macrophages by suppressing the SPHK-S1P signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号