首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The failure of axons to regenerate within the brain and spinal cord of mature mammals has been attributed to the absence of growth-promoting substances, especially extracellular matrix components, or to the presence of growth-inhibiting substances, particularly components associated with CNS myelin. The ability of mature mammalian CNS tissue to support neurite regeneration was tested by growing explants of embryonic chick lumbar sympathetic ganglia on fresh frozen sections of the mature rat brain and spinal cord. The extent of neurite outgrowth was quantified using morphometric analysis for explants grown on sections that included most of the major anatomical divisions of the CNS. Extensive, but variable, regeneration was present on gray matter regions, whereas major white matter tracts showed poor support, if any, for neurite growth. The results are consistent with the presence of growth-inhibiting factors associated with CNS white matter but also indicate that most gray matter regions of the mature mammalian brain and spinal cord will support axonal regeneration in tissue culture in spite of the absence of known extracellular matrix components.  相似文献   

2.
Oligodendrocyte precursor cell (OPC) proliferation and migration are critical for the development of myelin in the central nervous system (CNS). Previous studies showed that localized expression of the chemokine CXCL1 signals through the receptor CXCR2 to inhibit the migration and enhance the proliferation of spinal cord OPCs during development. Here, we report structural and functional alterations in the adult CNS of Cxcr2-/- mice. In Cxcr2-/- adult mice, we observed regional alterations in the density of oligodendrocyte lineage cells in Cxcr2-/- adult mice, with decreases in the cortex and anterior commissure but increases in the corpus callosum and spinal cord. An increase in the density and arborization of spinal cord NG2 positive cells was also observed in Cxcr2-/- adult mice. Compared with wild-type (WT) littermates, Cxcr2-/- mice exhibited a significant decrease in spinal cord white matter area, reduced thickness of myelin sheaths, and a slowing in the rate of central conduction of spinally elicited evoked potentials without significant changes in axonal caliber or number. Biochemical analyses showed decreased levels of myelin basic protein (MBP), proteolipid protein (PLP), and glial fibrillary acidic protein (GFAP). In vitro studies showed reduced numbers of differentiated oligodendrocytes in Cxcr2-/- spinal cord cultures. Together, these findings indicate that the chemokine receptor CXCR2 is important for the development and maintenance of the oligodendrocyte lineage, myelination, and white matter in the vertebrate CNS.  相似文献   

3.
This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein in complete Freund adjuvant. At 21 days after immunization, B-cell depletion was achieved by weekly intravenous injections of HuMab 7D8, a human-anti-human CD20 antibody that cross-reacts with marmoset CD20. In vivo magnetic resonance imaging showed widespread brain white matter demyelination in control marmosets that was absent in CD20 antibody-treated marmosets. High-contrast postmortem magnetic resonance imaging showed white matter lesions in 4of the 7 antibody-treated marmosets, but these were significantly smaller than those in controls. The same technique revealed gray matter lesions in 5 control marmosets, but none in antibody-treated marmosets. Histologic analysis confirmed that inflammation, demyelination, and axonal damage were substantially reduced in brain, spinal cord, and optic nerves of CD20 antibody-treated marmosets. In conclusion, CD20-postive B-cell depletion by HuMab 7D8 profoundly reduced the development of both white and gray matter lesions in the marmoset CNS. These data underline the central role of B cells in CNS inflammatory-demyelinating disease.  相似文献   

4.
In vitro and animal studies have identified molecules in mammalian CNS myelin which inhibit neuritic extension and which may be responsible, at least in part, for the lack of axonal regeneration after injury in the injured brain, optic nerve and spinal cord. To determine whether such inhibitory activity may be present in human CNS myelin, we used a bioassay to characterize neurite outgrowth on this substrate. Human CNS myelin strongly inhibited neuritic outgrowth from newborn rat dorsal root ganglion neurons and NG-108-15 cells, a neuroblastoma-glioma hybrid cell line. Similar but less potent inhibitory activity was identified in human gray matter. The CNS myelin inhibition of neuritic outgrowth appeared to be dependent on direct contact between the myelin substrate and neuntes. The inhibitory activity in human CNS myelin closely resembled that described in adult rodents. Inhibition of neurite growth by human CNS myelin in this in vitro bioassay mirrors the lack of regeneration in vivo and can be used as a model to develop strategies designed to enhance axonal regeneration and neural recovery.  相似文献   

5.
We analyzed pathway choices of regenerating, mostly supraspinal, descending axons in the spinal cord of adult zebrafish and the cellular changes in the spinal cord caudal to a lesion site after complete spinal transection. Anterograde tracing (by application of the tracer rostral to the spinal lesion site) showed that significantly more descending axons (74%) regenerated in the spinal gray matter of the caudal spinal cord than would be expected from random growth. Retrograde tracing (by application of the tracer caudal to the spinal lesion site) showed that, rostral to the lesion, most of these axons (80%) extended into the major white matter tracts. Thus, ventral descending tracts often were devoid of labeled axons caudal to a spinal lesion but contained many axons rostral to the lesion in the same animals, indicating a pathway switch of descending axons from the white matter to the gray matter. Ascending axons of spinal neurons were not observed regrowing to the rostral tracer application site; therefore, they most likely did not contribute to the axonal populations analyzed. A macrophage/microglia response within 2 days of spinal cord transection, along with phagocytosis of myelin, was observed caudal to the transection by immunohistochemistry and electron microscopy. Nevertheless, caudal to the lesion, descending tracts in the white matter were filled with myelin debris during the time of axonal regrowth, at least up to 6 weeks postlesion. We suggest that the spontaneous regeneration of axons of supraspinal origin after spinal cord transection in adult zebrafish may be due in part to the axons' ability to negotiate novel pathways in the spinal cord gray matter.  相似文献   

6.
Ousman SS  David S 《Glia》2000,30(1):92-104
Lysophosphatidylcholine (LPC) can induce rapid breakdown and removal of myelin from the adult mammalian CNS. In this paper we report the detailed characterization of the immune cell response as well as changes in the expression of cell adhesion molecules and the permeability of the blood-brain barrier after microinjection of LPC into the adult mouse spinal cord. T cells and neutrophils were seen in the spinal cord 6-12 h after LPC injection, but not in PBS-injected mice. Mac-1+ monocytes were also seen at 6 h and 12 h in the white and gray matter of mice injected with LPC and PBS but were significantly greater in the white matter after LPC injections. At later time points LPC induced an increase in the number of activated Mac-1+ macrophages that displayed a variety of morphologies in the white and gray matter. These cells were not present in PBS-injected control mice. LPC also induced widespread microglial activation in the white and gray matter. The number of these Mac-1+ microglia reduced drastically at 96 h after LPC injection suggesting that they may have transformed into Mac-1+ phagocytic cells with a different morphology. These LPC-induced changes in immune cells were accompanied by significant increases in VCAM-1+ and ICAM-1+ blood vessels in the spinal cord. In addition, LPC induced a rapid and widespread disruption of the blood-brain barrier, as compared to PBS injected mice. Therefore, LPC can induce an early and transient T cell and neutrophil response in the CNS. These cells likely promote the rapid influx of monocytes followed by widespread and effective activation of macrophages that mediate rapid phagocytosis of myelin debris.  相似文献   

7.
Schwann cells and oligodendrocytes produce myelin sheaths of widely varying sizes. How these cells determine the size of myelin sheath for a particular axon is incompletely understood. Axonal diameter has long been suspected to be a signal in this process. We have analyzed myelin sheath thickness in L5 lumbar root and spinal cord white matter of a series of mouse mutants with diminished axonal calibers resulting from a deficiency of neurofilaments (NFs). In the PNS, average axonal diameters were reduced by 20-37% in the NF mutants. Remarkably, the average myelin sheath thickness remained unchanged from control values, and regression analysis showed sheaths abnormally thick for a given size of axon. These data show that a genetically induced reduction in axonal caliber does not cause a reduction in myelin sheath thickness in PNS and indicate that Schwann cells read some intrinsic signal on axons that can be uncoupled from axonal diameter. Interestingly, myelin sheaths in the spinal cord of these animals were not abnormally thick, arguing that axonal diameter may contribute directly to the regulation of myelination in the CNS and that oligodendrocytes and Schwann cells use different cues to set myelin sheath thickness.  相似文献   

8.
The vigorous ingrowth of cut CNS axons into peripheral nerve grafts indicates that the lack of neuronal regeneration within the brain and spinal cord cannot be explained merely by CNS neurons having an inherent weak regenerative capacity. Rather, the brain and spinal cord seem to contain molecules that inhibit axonal growth and, indeed, oligodendrocyte myelin has been demonstrated to effectively block nerve fiber growth. Macrophages can in vitro counteract this growth prohibitorty property of the CNS. In this study we have examined the recruitment of macrophages and the removal of myelin in relation to neurite adhesive/repulsive properties in the injured spinal cord of adult rats. Cells immunoreactive for the macrophage-specific antibody ED1 rapidly invaded the lesion area after an incision in the dorsal or ventral funiculus. The number of macrophages remained high for several weeks in the scar tissue formed after both these injuries. This type of scar tissue has previously been reported to permit ingrowth and long-term persistence of axons. In the denervated area rostral to a dorsal funiculus transection, no or few ED1-immunoreactive cells were detected within the first month after the injury. However, at subsequent stages an increasing number of macrophages was found in this region. Myelin was removed much more rapidly at the site of the lesion than rostral to this (in the area undergoing Wallerian degeneration). In order to study adhesive/repulsive properties in the injured spinal cord in relation to local myelin content we employed an in vitro system in which PC12 cells were cultured on spinal cord slices. PC12 cells failed to adhere to sections from the intact spinal cord as well as to sections taken rostral to a dorsal funiculus transection, whereas many cells adhered to the glial scar formed at the lesion. Even at 15 months after the injury, very few PC12 cells attached to sections taken rostral to the transection despite the fact that no myelin could be detected in the denervated area at that time. These data suggest that, in addition to myelin-related growth inhibitory molecules, other factors may be involved in the failure of PC12 cells to adhere to the denervated spinal cord. Such factors could also affect axonal regrowth after spinal cord injury. The adhesion of PC12 cells to the lesion area may be a result of a locally high content of extracellular matrix molecules and/or cell adhesion molecules, factors which are not expressed in the region undergoing Wallerian degeneration.  相似文献   

9.
Previous work has demonstrated that white matter in the adult mammalian CNS inhibits cell adhesion and neurite outgrowth. This phenomenon has been investigated most recently by culturing neurons on cryostat sections of the adult CNS. Employing this same technique, we have found, in accord with others, that neurons seldom adhere to or grow on central nervous system white matter but will attach and grow on gray matter. In the experiments presented here, embryonic rat hippocampal neurons were grown on cryostat sections from the adult rat CNS, in the presence of brain derived glial cocultures. It was found that the white matter in cryostat sections can be modified by interaction with medium conditioned by brain-derived glial cells. Neurons plated on sections pretreated by such media show significant increases in both attachment and neurite outgrowth. The activity contained in glial conditioned medium is likely complex in nature. While the majority of the activity can be eliminated by heat treatment and trypsinization, neural adhesion but not neurite initiation is affected by protease treatment. Therefore, cell attachment and neurite outgrowth may be regulated by different factors in the conditioned media. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The classical studies by Del Rio Hortega (Mem. Real. Soc. Espan. Hist. Nat. 14:40-122, 1928) suggest that the oligodendrocyte population includes four morphological subtypes. Recent data from the cat and the rat show that the anatomy of oligodendrocytes related to early myelinating prospective large fibers differs from that of oligodendrocytes related to late myelinating prospective small fibers. After application of a polyclonal antiserum to cryostat sections from the chicken CNS, we noted that glial cells in the spinal cord white matter had become labeled. Analysis of the occurrence and cellular localization of this immunoreactivity--the T4-O immunoreactivity--in the CNS of the adult chicken showed that T4-O immunoreactive cells are enriched in the ventral funiculus and superficially in the lateral funiculus of the spinal cord, where they are co-localized with large fibers. Double staining with T4-O antiserum and anti-GFAP or the lectin BSI-B4 revealed that T4-O immunoreactive cells are not astrocytes or microglia. Staining with anti-HSP108, a general marker for avian oligodendrocytes, showed that T4-O immunoreactivity defines an oligodendroglial subpopulation. A search for T4-O immunoreactivity in spinal cord white matter of some other vertebrates revealed that T4-O immunoreactive cells are not present in sections from fish, frog, turtle, rat, and rabbit spinal cord white matter. These results suggest the presence of a fiber size-related molecular heterogeneity among chicken white matter oligodendrocytes.  相似文献   

11.
To study the interaction of neurons with CNS glial cells, dissociated sympathetic or sensory ganglion cells or fetal retinal cells were plated onto cultures of dissociated optic nerve glial cells of young rats. Whereas astrocytes favored neuron adhesion and neurite outgrowth, oligodendrocytes differed markedly in their properties as neuronal substrates. Immature (O4+, A2B5+, GalC-) oligodendrocytes were frequently contacted by neurons and neurites. In contrast, differentiated oligodendrocytes (O4+, A2B5-, GalC+) represented a nonpermissive substrate for neuronal adhesion and neurite growth. When neuroblastoma cells or 3T3 fibroblasts were plated into optic nerve glial cultures, the same differences were observed; differentiated oligodendrocytes were nonpermissive for cell adhesion, neurite growth, or fibroblast spreading. These nonpermissive oligodendrocytes were characterized by a radial, highly branched process network, often contained myelin basic protein, and may, therefore, correspond to cells actively involved in the production of myelin-like membranes. Isolated myelin from adult rat spinal cord was adsorbed to polylysine-coated culture dishes and tested as a substrate for peripheral neurons, neuroblastoma cells, or 3T3 cells. Again, cell attachment, neurite outgrowth, and fibroblast spreading was strongly impaired. General physicochemical properties of myelin were not responsible for this effect, since myelin from rat sciatic nerves favored neuron adhesion and neurite growth as well as spreading of 3T3 cells. These results show that differentiated oligodendrocytes express nonpermissive substrate properties, which may be of importance in CNS development or regeneration.  相似文献   

12.
Glial progenitor cells of the developing CNS committed to the oligodendrocyte lineage (OPCs) express the chondroitin sulfate proteoglycan, NG2. A proportion of OPCs fail to differentiate past the stage at which they express NG2 and the lipid antigen O4 and persist in the adult CNS in a phenotypically immature form. However, the physiological function of NG2(+) cells in the adult CNS is unknown. Using antibodies against NG2 we show that NG2 is expressed by a distinct cell population in the mature CNS with the homogeneous antigenic phenotype of oligodendrocyte progenitors. The morphology of NG2(+) OPCs varies from region to region, reflecting the different structural environments, but they appear to represent a homogeneous population within any one gray or white matter region. A study of nine CNS regions showed that NG2(+) OPCs are numerous throughout the CNS and numbers in the white matter are only 1.5 times that in the gray. Whereas the ratio of OPCs to myelinating oligodendrocytes in the spinal cord gray and white matter approximates 1:4, gray matter regions of the forebrain have a 1:1 ratio, a phenomenon that will have consequences for oligodendrocyte replacement following demyelination. BrdU incorporation experiments showed that NG2(+) cells are the major dividing cell population of the adult rat CNS. Since very little apoptosis was detected and BrdU became increasingly present in oligodendrocytes after a 10-day pulse chase, with a concomitant decrease in NG2(+) BrdU incorporating cells, we suggest that the size of the oligodendrocyte population may actually increase during adult life.  相似文献   

13.
We have compared the expression of the neural cell adhesion molecule (N-CAM) and the neuron-glial cell adhesion molecule (Ng-CAM) during histogenesis of the chick nervous system. Data from immunohistochemistry and photometry were combined to construct maps of the overall distribution and dynamics of CAM appearance and disappearance. Each CAM appeared in a characteristic spatial and temporal pattern in various areas during cell movement, fiber outgrowth, tract formation, and myelination. N-CAM was more uniformly distributed than Ng-CAM and was present on all neural cell bodies and processes of the CNS and PNS. In the adult, the staining pattern of N-CAM remained similar to that in the embryo, although the staining intensity was diminished. During embryonic development, Ng-CAM was expressed on extending neurites and migrating neurons. The appearance Ng-CAM in the CNS was correlated particularly with times of cell migration in spinal cord and cerebellum, and in regions undergoing neurite extension, such as the developing white matter of the spinal cord, the optic nerve, and the medial longitudinal fasciculus. Cell bodies not undergoing migration were negative for Ng-CAM. In the adult CNS, Ng-CAM was markedly decreased in myelinated fiber tracts like the white matter of the spinal cord but persisted in unmyelinated regions such as the olfactory bulb. In contrast, in the PNS (for example, the dorsal root ganglion and sciatic nerve), Ng-CAM appeared early on both cell bodies and neurites, and it continued to be present on both in the adult, even in the presence of myelin. Maps comparing the relative distribution of Ng-CAM and N-CAM showed dynamic reversals as the nervous system developed and, as a result, the pattern of CAM expression was markedly different in embryos and adults. This difference appears to reflect changes in the roles of selective adhesion and of the two neuronal CAMs at different times of development.  相似文献   

14.
W Cammer  R Sacchi  S Kahn 《Brain research》1985,352(1):89-96
Rat central nervous system (CNS) tissue sections were immunostained by the peroxidase-anti-peroxidase (PAP) method using a rabbit serum directed against rat liver 5'-nucleotidase. In paraffin sections from the brains of 60-day-old rats 5'-nucleotidase immunoreactivity occurred in the same white-matter regions as myelin-basic protein immunoreactivity and histological staining of myelin. The immunostaining of cerebral white matter for 5'-nucleotidase was more intense and wide-spread at the age of 120 days than at 60 days, and the choroid plexus and blood vessels were stained consistently. In the paraffin sections from the brains of younger (20-day-old) rats the staining of 5'-nucleotidase in the white matter was faint and patchy. In paraffin sections from spinal cord, 5'-nucleotidase immunoreactivity was observed throughout the lateral white-matter columns and, frequently, in the cell bodies of interfascicular oligodendroglia. Interfascicular oligodendroglia also showed 5'-nucleotidase immunoreactivity in vibratome sections from the CNS tissue of young and adult rats. The findings were consistent with histochemical and biochemical evidence for 5'-nucleotidase in rat brain myelin and oligodendroglia, with substantial increases in activity in the myelin as rats develop from the ages of 20 to 120 days. 5'-Nucleotidase immunoreactivity was not observed in any astrocytes or in oligodendrocytes in the gray matter; however, the enzyme may occur in those glial cells at levels lower than were detectable using the present method.  相似文献   

15.
W P Ng  A M Lozano 《Brain research》1999,836(1-2):49-61
Axonal regeneration is abortive in the central nervous system (CNS) of adult mammals, but readily occurs in the injured peripheral nervous system (PNS). Recent experiments indicate an important role for both intrinsic neuronal features and extrinsic substrate properties in determining the propensity for axonal regrowth. In particular, certain components of adult mammalian CNS myelin have been shown to exert a strong inhibitory influence on neurite outgrowth. To determine whether the potent neurite outgrowth inhibitory activity found in CNS myelin may also be present in PNS myelin and to study the influence of neuronal age on neurite outgrowth, we used a cryoculture assay in which dissociated rat dorsal root ganglion (DRG) neurons of different ages were challenged to extend neurites on fractionated myelin and cryostat sections from the PNS (sciatic nerve and myelin-free degenerated sciatic nerve) and CNS (optic nerve) of adult rats. The CNS environment of the optic nerve did not support E17 to P8 DRG neurite adhesion or outgrowth. E17 DRG neurons, unlike their older counterparts, however, were able to attach and extend neurites onto normal sciatic nerve and onto purified PNS myelin. In contrast, a vigorous neurite outgrowth response from all the ages tested was observed on the myelin-free degenerated sciatic nerve. These results indicate that PNS myelin is a potent inhibitor of neurite outgrowth and that DRG neuronal age plays an important role in determining the propensity for neurite outgrowth and regenerative response on inhibitory PNS and CNS substrata.  相似文献   

16.
Although Schwann cells are able to enter the central nervous system (CNS) when the integrity of the glia limitans is disrupted, their ability to migrate through intact CNS remains unclear. We have addressed this issue by transplanting lacZ-labeled Schwann cells into normal adult spinal cord white matter, and into X-irradiated spinal cord (an environment that, unlike normal spinal cord, permits the migration of transplanted oligodendrocyte progenitors). Schwann cell cultures, obtained from neonatal rat sciatic nerve and expanded using bovine pituitary extract and forskolin, were transfected by repeated exposure to retroviral vectors encoding the Escherichia coli lacZ gene. The normal behavior of the transduced cells was confirmed by transplantation into a nonrepairing area of demyelination in the spinal cord, where they formed myelin sheaths around demyelinated axons. A single microliter containing 4 x 10(4) cells was then transplanted into unlesioned normal and X-irradiated white matter of the spinal cord of adult syngeneic rats. One hour after injection, blue cells were observed as a discrete mass within the dorsal funiculus with a longitudinal distribution of 2-3 mm, indicating the extent of passive spread of the injected cells. At subsequent survival times (1, 2, and 4 weeks posttransplantation) blue cells had a distribution that was no more extensive than that seen 1 h after transplantation. However, the number of Schwann cells declined with time following transplantation such that at 4 weeks there were few surviving Schwann cells in both X-irradiated and nonirradiated spinal cord. These results indicate that transplanted Schwann cells do not migrate extensively and show poor long-term survival when introduced into a normal CNS environment.  相似文献   

17.
Brand-Schieber E  Werner P 《Glia》2003,42(1):12-24
Spinal cord white matter is susceptible to AMPA/kainate (KA)-type glutamate receptor-mediated excitotoxicity. To understand this vulnerability, it is important to characterize the distribution of AMPA/KA receptor subunits in this tissue. Using immunohistochemistry and laser confocal microscopy, we studied the expression sites of AMPA/KA receptor subunits in mouse spinal cord. The white matter showed consistent immunoreactivity for AMPA receptor subunit GluR2/3 and KA receptor subunits GluR6/7 and KA2. In contrast, antibodies against GluR1, GluR2, GluR4 (AMPA), and GluR5 (KA) subunits showed only weak and occasional labeling of white matter. However, gray matter neurons did express GluR1 and GluR2, as well as GluR2/3. The white matter astrocytes were GluR2/3 and GluR6/7 immunopositive, while the gray matter astrocytes displayed primarily GluR6/7. Both exclusively and abundantly, KA2 labeled oligodendrocytes and myelin, identified by CNPase expression. Interestingly, myelin basic protein, another myelin marker, showed less correlation with KA2 expression, placing KA2 at specific CNPase-containing subdomains. Focal points of dense KA2 labeling showed colocalization with limited, but distinct, axonal regions. These regions were identified as nodes of Ranvier by coexpressing the nodal marker, ankyrin G. Overall, axonal tracts showed little, if any, AMPA/KA receptor expression. The proximity of oligodendrocytic KA2 to the axonal node and the paucity of axonal AMPA/kainate receptor expression suggest that excitotoxic axonal damage may be secondary and, possibly, mediated by oligodendrocytes. Our data demonstrate differential expression of glutamate AMPA and KA receptor subunits in mouse spinal cord white matter and point to astrocytes and oligodendrocytes as potential targets for pharmacological intervention in white matter glutamate excitotoxicity.  相似文献   

18.
Monoclonal antibodies were raised against human glial hyaluronate-binding protein (GHAP), a major CNS-specific glycoprotein known to bind hyaluronate in vitro. Frozen sections of dog and human spinal cord were digested with Streptomyces hyaluronidase in order to ascertain whether GHAP is bound to hyaluronate in vivo. Digestion with hyaluronidase, prior to staining of the sections by conventional indirect immunofluorescence, led to a drastic reduction in the intensity of the staining reaction. Chondroitinase ABC (protease-free) was also effective in bringing about the release of GHAP from tissue sections. This enzyme also degrades hyaluronate. The effects of the chondroitinase were completely reversed by the addition of 1 mM Zn2+, a known inhibitor of this enzyme. The intact protein was released into the soluble fraction of human brain homogenates by testicular hyaluronidase. An immunoreactive species of 70 kD was released into the soluble fraction of dog spinal cord homogenates by Streptomyces hyaluronidase. Dog GHAP was isolated from spinal cord by means of ion exchange and affinity chromatography. This protein bound efficiently to hyaluronate in vitro. Dog and human GHAP had identical isoelectric points and similar peptide maps but different molecular weights. Dog GHAP (70 kD) was larger than its human counterpart (60 kD). These findings imply that GHAP exists in association with hyaluronate in CNS white matter. Immunoelectron microscopy revealed that GHAP fills the space between myelin sheaths in dog spinal cord white matter. One is led to conclude therefore that an hyaluronate based extracellular matrix exists in CNS white matter.  相似文献   

19.
20.
Matrix metalloproteinases and proteoglycans in axonal regeneration   总被引:2,自引:0,他引:2  
After an injury to the adult mammalian central nervous system (CNS), a variety of growth-inhibitory molecules are upregulated. A glial scar forms at the site of injury and is composed of numerous molecular substances, including chondroitin sulfate proteoglycans (CSPGs). These proteoglycans inhibit axonal growth in vitro and in vivo. Matrix metalloproteinases (MMPs) can degrade the core protein of some CSPGs as well as other growth-inhibitory molecules such as Nogo and tenascin-C. MMPs have been shown to facilitate axonal regeneration in the adult mammalian peripheral nervous system (PNS). This review will focus on the various roles of proteoglycans and MMPs within the injured nervous system. First, we will present a general background on the injured central nervous system and explore the roles that proteoglycans play in the injured PNS and CNS. Second, we will discuss the various functions of MMPs within the injured PNS and CNS. Special attention will be paid to the possibility of how MMPs might modify the growth-inhibitory extracellular environment of the injured adult mammalian spinal cord and facilitate axonal regeneration in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号