首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Although hyaluronic acid (HA) has been widely used in clinics as an injectable biomaterial, it may not be appropriate as an injectable stem cell carrier because highly hydrophilic HA hydrogels provide an unfavorable environment in which the encapsulated stem cells are likely to be constrained to a round shape, thereby losing their native morphology. Herein, we hypothesized that dextran microspheres (DMs) can improve stem cell viability in HA hydrogels because they can act as substrates for stem cell adhesion, spreading and proliferation. DMs with a mean diameter of 80 μm were mixed with HA hydrogels. Human adipose-derived stem cells (hASCs) were isolated from human adipose tissue and seeded into the DM-incorporated HA hydrogels. When compared with the hydrogels alone, the number of viable cells was significantly increased in the presence of the DMs. Initially, hASCs appeared to be round in the HA hydrogels. At 12 h after seeding, the hASCs apparently attached onto the DMs and became slightly flattened. One day after seeding, the hASCs seemed to spread onto the surface of the DMs. Fluorescence micrography of live and dead cells confirmed that the cell viability was significantly improved by use of the DMs in HA hydrogels. Overall results demonstrated that the microsphere/hydrogel composite supported stem cell survival and spreading. These characteristics show the potential for use of the composite in cell-delivery and tissue-engineering applications.  相似文献   

2.
《Acta biomaterialia》2014,10(6):2539-2550
In this study, one-step enzyme-mediated preparation of a multi-functional injectable hyaluronic-acid-based hydrogel system is reported. Hydrogel was formed through the in situ coupling of phenol moieties by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), and bioactive peptides were simultaneously conjugated into the hydrogel during the gel formation process. The preparation of this multi-functional hydrogel was made possible by synthesizing peptides containing phenols which could couple with the phenol moieties of hyaluronic-acid–tyramine (HA–Tyr) during the HRP-mediated crosslinking reaction. Preliminary studies demonstrated that two phenol moieties per molecule resulted in a consistently high degree of conjugation into the HA–Tyr hydrogel network, unlike the one modified with one phenol moiety per molecule. Therefore, an Arg–Gly–Asp (RGD) peptide bearing two phenol moieties (phenol2–poly(ethylene glycol)–RGD) was designed for conjugation to endow the HA–Tyr hydrogel with adhesion signals and enhance its bioactivities. Human umbilical vein endothelial cells (HUVECs) cultured on or within the RGD-modified hydrogels showed significantly different adhesion behavior, from non-adherence on the HA–Tyr hydrogel to strong adhesion on hydrogels modified with phenol2–poly(ethylene glycol)–RGD. This altered cell adhesion behavior led to improved cell proliferation, migration and formation of capillary-like network in the hydrogel in vitro. More importantly, when HUVECs and human fibroblasts (HFF1) were encapsulated together in the RGD-modified HA–Tyr hydrogel, functional vasculature was observed inside the cell-laden gel after 2 weeks in the subcutaneous tissue. Taken together, the in situ conjugation of phenol2–poly(ethylene glycol)–RGD into HA–Tyr hydrogel system, coupled with the ease of incorporating cells, offers a simple and effective means to introduce biological signals for preparation of multi-functional injectable hydrogels for tissue engineering application.  相似文献   

3.
Spermatogonial stem cells (SSCs) are increasingly studied for potential use in tissue regeneration due to their ability to dedifferentiate into embryonic stem cell-like cells. For their successful therapeutic use, these cells must first be expanded in vitro using an appropriate culture system. We hypothesized that a hydrogel with proper biochemical and biomechanical properties may mimic the composition and structure of the native basement membrane onto which SSCs reside, thus allowing us to control SSC proliferation. This hypothesis was examined in two-dimensional (2D) and three-dimensional (3D) cultures using hydrogels formed from calcium cross-linked alginate molecules conjugated with synthetic oligopeptides containing the Arg-Gly-Asp sequence (RGD peptides). The RGD peptide density (N(RGD)) in gel matrices was controlled by mixing alginate molecules modified with RGD peptides and unmodified alginate molecules at varied ratios. The mechanical stiffness was controlled with the cross-linking density of gel matrices. Interestingly, the RGD peptide density modulated cell proliferation in both 2D and 3D cultures as well as the number and size of SSC colonies formed in 3D cultures. In contrast, cell proliferation was minimally influenced by mechanical stiffness in 2D cultures. Overall, the results of this study elucidate an important factor regulating SSC proliferation and also present a bioactive hydrogel that can be used as a 3D synthetic basement membrane. In addition, the results of this study will be broadly useful in controlling the proliferation of various stem cells.  相似文献   

4.
We describe a method for creating alginate hydrogels with adjustable degradation rates that can be used as scaffolds for stem cells. Alginate hydrogels have been widely tested as three-dimensional constructs for cell culture, cell carriers for implantation, and in tissue regeneration applications; however, alginate hydrogel implants can take months to disappear from implantation sites because mammals do not produce endogenous alginases. By incorporating poly(lactide-co-glycolide) (PLGA) microspheres loaded with alginate lyase into alginate hydrogels, we demonstrate that alginate hydrogels can be enzymatically degraded in a controlled and tunable fashion. We demonstrate that neural progenitor cells (NPCs) can be cultured and expanded in vitro in this degradable alginate hydrogel system. Moreover, we observe a significant increase in the expansion rate of NPCs cultured in degrading alginate hydrogels versus NPCs cultured in standard, i.e. non-degrading, alginate hydrogels. Degradable alginate hydrogels encapsulating stem cells may be widely applied to develop novel therapies for tissue regeneration.  相似文献   

5.
Valvular interstitial cells (VICs) maintain functional heart valve structure and display transient fibroblast and myofibroblast properties. Most cell characterization studies have been performed on plastic dishes; while insightful, these systems are limited. Thus, a matrix metalloproteinase (MMP) degradable poly(ethylene glycol) (PEG) hydrogel system is proposed in this communication as a useful tool for characterizing VIC function in 3D. When encapsulated, VICs attained spread morphology, and proliferated and migrated as shown through real-time cell microscopy. Additionally, fibronectin derived pendant RGD was incorporated into the system to promote integrin binding. As RGD concentration increased from 0 to 2000 μm, VIC process extension and integrin αvβ3 binding increased within two days. By day 10, integrin binding was equalized between conditions. VIC morphology and rate of process extension were also increased through decreasing the hydrogel matrix density presented to the cells. VIC differentiation in response to exogenously delivered transforming growth factor-beta1 (TGF-β1) was also examined within the hydrogel networks. TGF-β1 increased expression of alpha smooth muscle actin (αSMA) and collagen-1 at both the mRNA and protein level by day 2 of culture, indicating myofibroblast differentiation, and was sustained over the course of the study (2 weeks). These studies demonstrate the utility, flexibility, and biological activity of this MMP-degradable system for the characterization of VICs, an important cell population for tissue engineering viable valve replacements and understanding valvular pathobiology.  相似文献   

6.
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair, and there is growing evidence that mechanical signals play a critical role in the regulation of stem cell chondrogenesis and in cartilage development. In this study we investigated the effect of dynamic compressive loading on chondrogenesis, the production and distribution of cartilage specific matrix, and the hypertrophic differentiation of human MSCs encapsulated in hyaluronic acid (HA) hydrogels during long term culture. After 70 days of culture, dynamic compressive loading increased the mechanical properties, as well as the glycosaminoglycan (GAG) and collagen contents of HA hydrogel constructs in a seeding density dependent manner. The impact of loading on HA hydrogel construct properties was delayed when applied to lower density (20 million MSCs/ml) compared to higher seeding density (60 million MSCs/ml) constructs. Furthermore, loading promoted a more uniform spatial distribution of cartilage matrix in HA hydrogels with both seeding densities, leading to significantly improved mechanical properties as compared to free swelling constructs. Using a previously developed in vitro hypertrophy model, dynamic compressive loading was also shown to significantly reduce the expression of hypertrophic markers by human MSCs and to suppress the degree of calcification in MSC-seeded HA hydrogels. Findings from this study highlight the importance of mechanical loading in stem cell based therapy for cartilage repair in improving neocartilage properties and in potentially maintaining the cartilage phenotype.  相似文献   

7.
Control of the in vitro spatiotemporal availability of calcium ions is one means by which the microenvironments of hematopoietic stem cells grown in culture may be reproduced. The effects of cross-linking density on the diffusivity of calcium ions through cell culture compatible poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based bioactive hydrogels possessing 1.0 mol% 2-methacryloyloxyethyl phosphorylcholine (MPC), 5 mol% N,N-(dimethylamino)ethylmethacrylate (DMAEMA) and ca. 17 mol% n-butyl acrylate (n-BA) have been investigated to determine if varying cross-link density is a viable approach to controlling transport of calcium across hydrogel membranes. Cross-linking density was varied by changing the composition of cross-linker, tetraethyleneglycol diacrylate (TEGDA). The hydrogel membranes were formed by sandwich casting onto the external surface of track-etched polycarbonate membranes (T?=?10 μm, φ?=?0.4 μm pores) of cell culture inserts, polymerized in place by UV light irradiation and immersed in buffered (0.025 HEPES, pH 7.4) 0.10 M calcium chloride solution. The transport of calcium ions across the hydrogel membrane was monitored using a calcium ion selective electrode set within the insert. Degree of hydration (21.6?±?1.0%) and void fraction were found to be constant across all cross-linking densities. Diffusion coefficients, determined using time-lag analysis, were shown to be strongly dependent on and to exponentially decrease with increasing cross-linking density. Compared to that found in buffer (2.0-2.5?×?10?? cm2/s), diffusion coefficients ranged from 1.40?×?10?? cm2/s to 1.80?×?10?? cm2/s and tortuosity values ranged from 1.7 to 10.0 for the 1 and 12 mol% TEGDA cross-linked hydrogels respectively. Changes in tortuosity arising from variations in cross-link density were found to be the primary modality for controlling diffusivity through novel n-BA containing poly(HEMA)-based bioactive hydrogels.  相似文献   

8.
Lei Y  Segura T 《Biomaterials》2009,30(2):254-265
The ability to genetically modify mesenchymal stem cells (MSCs) seeded inside synthetic hydrogel scaffolds would offer an alternative approach to guide MSC differentiation and to study molecular pathways in three dimensions than protein delivery. In this report, we explored gene transfer to infiltrating MSCs into matrix metalloproteinase (MMP) degradable hydrogels that were loaded with DNA/poly(ethylene imine) (PEI) polyplexes. DNA/PEI polyplexes were encapsulated inside poly(ethylene glycol) (PEG) hydrogels crosslinked with MMP-degradable peptides via Michael addition chemistry. A large fraction of encapsulated polyplexes remained active after encapsulation (65%) and the mechanical properties of the hydrogels were unchanged by the encapsulation of the polyplexes. Cells were seeded inside the hydrogel scaffolds using two different approaches: clustered and homogeneous. The viability of MSCs was similar in hydrogels with and without polyplexes. Transgene expression was characterized with time using a secreted reporter gene and showed different profiles for clustered and homogeneously seeded cells. Clustered cells resulted in cumulative transgene expression that increased through the 21-day incubation, while homogeneously seeded cells resulted in cumulative transgene expression that plateaued after 7 days of culture. The use of hydrogel scaffolds that allow cellular infiltration to deliver DNA may result in long lasting signals in vivo, which are essential for the regeneration of functional tissues.  相似文献   

9.
Mann BK  Gobin AS  Tsai AT  Schmedlen RH  West JL 《Biomaterials》2001,22(22):3045-3051
Photopolymerizable polyethylene glycol (PEG) derivatives have been investigated as hydrogel tissue engineering scaffolds. These materials have been modified with bioactive peptides in order to create materials that mimic some of the properties of the natural extracellular matrix (ECM). The PEG derivatives with proteolytically degradable peptides in their backbone have been used to form hydrogels that are degraded by enzymes involved in cell migration, such as collagenase and elastase. Cell adhesive peptides, such as the peptide RGD, have been grafted into photopolymerized hydrogels to achieve biospecific cell adhesion. Cells seeded homogeneously in the hydrogels during photopolymerization remain viable, proliferate, and produce ECM proteins. Cells can also migrate through hydrogels that contain both proteolytically degradable and cell adhesive peptides. The biological activities of these materials can be tailored to meet the requirements of a given tissue engineering application by creating a mixture of various bioactive PEG derivatives prior to photopolymerization.  相似文献   

10.
Valvular interstitial cells (VICs) were encapsulated in enzymatically degradable, crosslinked hydrogels formed from hyaluronic acid (HA) and poly(ethylene glycol) (PEG) macromolecular monomers. Titration of PEG with HA allowed for the synthesis of gels with a broad compositional spectrum, leading to a range of degradation behavior upon exposure to bovine testes hyaluronidase. The rate of mass loss and release of HA fragments from the copolymer gels depended on the PEG content of the network. These hydrogels were shown to have the dual function of permitting the diffusion of ECM elaborated by 3D cultured VICs and promoting the development of a specific matrix composition. Initial cleavage of hydrogel crosslinks, prior to network mass loss, permit the diffusion of collagen, while later stages of degradation promote elastin elaboration and suppress collagen production due to HA fragment release. Exogenous HA delivery through the cell culture media further demonstrated the utility of delivered HA on manipulating the secretory properties of encapsulated VICs.  相似文献   

11.
Hyaluronan (HA) hydrogels resist attachment and spreading of fibroblasts and most other mammalian cell types. A thiol-modified HA (3,3'-dithiobis(propanoic dihydrazide) [HA-DTPH]) was modified with peptides containing the Arg-Gly-Asp (RGD) sequence and then crosslinked with polyethylene glycol (PEG) diacrylate (PEGDA) to create a biomaterial that supported cell attachment, spreading, and proliferation. The hydrogels were evaluated in vitro and in vivo in three assay systems. First, the behavior of human and murine fibroblasts on the surface of the hydrogels was evaluated. The concentration and structure of the RGD peptides and the length of the PEG spacer influenced cell attachment and spreading. Second, murine fibroblasts were seeded into HA-DTPH solutions and encapsulated via in situ crosslinking with or without bound RGD peptides. Cells remained viable and proliferated within the hydrogel for 15 days in vitro. Although the RGD peptides significantly enhanced cell proliferation on the hydrogel surface, the cell proliferation inside the hydrogel in vitro was increased only modestly. Third, HA-DTPH/PEGDA/peptide hydrogels were evaluated as injectable tissue engineering materials in vivo. A suspension of murine fibroblasts in HA-DTPH was crosslinked using PEGDA plus PEGDA peptide, and the viscous, gelling mixture was injected subcutaneously into the flanks of nude mice; gels formed in vivo following injection. After 4 weeks, growth of new fibrous tissue had been accelerated by the sense RGD peptides. Thus, attachment, spreading, and proliferation of cells is dramatically enhanced on RGD-modified surfaces but only modestly accelerated in vivo tissue formation.  相似文献   

12.
Ananthanarayanan B  Kim Y  Kumar S 《Biomaterials》2011,32(31):7913-7923
Glioblastoma multiforme (GBM) is a malignant brain tumor characterized by diffuse infiltration of single cells into the brain parenchyma, which is a process that relies in part on aberrant biochemical and biophysical interactions between tumor cells and the brain extracellular matrix (ECM). A major obstacle to understanding ECM regulation of GBM invasion is the absence of model matrix systems that recapitulate the distinct composition and physical structure of brain ECM while allowing independent control of adhesive ligand density, mechanics, and microstructure. To address this need, we synthesized brain-mimetic ECMs based on hyaluronic acid (HA) with a range of stiffnesses that encompasses normal and tumorigenic brain tissue and functionalized these materials with short Arg-Gly-Asp (RGD) peptides to facilitate cell adhesion. Scanning electron micrographs of the hydrogels revealed a dense, sheet-like microstructure with apparent nanoscale porosity similar to brain extracellular space. On flat hydrogel substrates, glioma cell spreading area and actin stress fiber assembly increased strongly with increasing density of RGD peptide. Increasing HA stiffness under constant RGD density produced similar trends and increased the speed of random motility. In a three-dimensional (3D) spheroid paradigm, glioma cells invaded HA hydrogels with morphological patterns distinct from those observed on flat surfaces or in 3D collagen-based ECMs but highly reminiscent of those seen in brain slices. This material system represents a brain-mimetic model ECM with tunable ligand density and stiffness amenable to investigations of the mechanobiological regulation of brain tumor progression.  相似文献   

13.
《Acta biomaterialia》2014,10(3):1333-1340
Photocrosslinked hyaluronic acid (HA) hydrogels provide a conducive 3-D environment that supports the chondrogenesis of human mesenchymal stem cells (hMSCs). The HA macromer concentration in the hydrogels has a significant impact on the chondrogenesis of the encapsulated MSCs due to changes in the physical properties of the hydrogels. Meanwhile, hypoxia has been shown to promote MSC chondrogenesis and suppress subsequent hypertrophy. This study investigates the combinatorial effect of tuning HA macromer concentration (1.5–5% w/v) and hypoxia on MSC chondrogenesis and hypertrophy. To decouple the effect of HA concentration from that of crosslinking density, the HA hydrogel crosslinking density was adjusted by varying the extent of the reaction through the light exposure time while keeping the HA concentration constant (5% w/v at 5 or 15 min). It was found that hypoxia had no significant effect on the chondrogenesis and cartilaginous matrix synthesis of hMSCs under all hydrogel conditions. In contrast, the hypoxia-mediated positive or negative regulation of hMSC hypertrophy in HA hydrogels is dependent on the HA concentration but independent of the crosslinking density. Specifically, hypoxia significantly suppressed hMSC hypertrophy and neocartilage calcification in low HA concentration hydrogels, whereas hypoxia substantially enhanced hMSC hypertrophy, leading to elevated tissue calcification in high HA concentration hydrogels irrespective of their crosslinking density. In addition, at a constant high HA concentration, increasing hydrogel crosslinking density promoted hMSC hypertrophy and matrix calcification. To conclude, the findings from this study demonstrate that the effect of hypoxia on hMSC chondrogenesis and hypertrophy is differentially influenced by the encapsulating HA hydrogel properties.  相似文献   

14.
Hydrogels possess great potential in biofabrication because they allow cell encapsulation and proliferation in a highly hydrated three-dimensional environment, and they provide biologically relevant chemical and physical signals. However, development of hydrogel systems that mimic the complexity of natural extracellular matrix remains a challenge. In this study, we report the development of a binary hydrogel system containing a synthetic poly(amido amine) (PAMAM) dendrimer and a natural polymer, i.e., hyaluronic acid (HA), to form a fast cross-linking hydrogel. Live cell staining experiment and cell viability assay of bone marrow stem cells demonstrated that cells were viable and proliferating in the in situ formed PAMAM/HA hydrogel system. Furthermore, introduction of a Arginylglycylaspartic acid (RGD) peptide into the hydrogel system significantly improved the cell viability, proliferation, and attachment. Therefore, this PAMAM/HA hydrogel system could be a promising platform for various applications in biofabrication.  相似文献   

15.
Thiol-ene photopolymerization offers a unique platform for the formation of peptide-functionalized poly(ethylene glycol) hydrogels and the encapsulation, culture and differentiation of cells. Specifically, this photoinitiated polymerization scheme occurs at neutral pH and can be controlled both spatially and temporally. Here, we have encapsulated human mesenchymal stem cells (hMSCs) in matrix metalloproteinase (MMP) degradable and cell-adhesive hydrogels using thiol-ene photopolymerization. We find that hMSCs survive equally well in this system, regardless of MMP-degradability. When hMSCs are encapsulated in these cell-degradable hydrogels, they survive and are able to proliferate. In classic hMSC differentiation medias, hMSCs locally remodel their microenvironment and take on characteristic morphologies; hMSCs cultured in growth or osteogenic differentiation media are less round, as measured by elliptical form factor, and are smaller than hMSCs cultured in chondrogenic or adipogenic differentiation media. In addition, hMSCs encapsulated in completely cell-degradable hydrogels and cultured in osteogenic, chondrogenic, or adipogenic differentiation media generally express increased levels of specific differentiation markers as compared to cells in hydrogels that are not cell-degradable. These studies demonstrate the ability to culture and differentiate hMSCs in MMP-degradable hydrogels polymerized via a thiol-ene reaction scheme and that increased cell-mediated hydrogel degradability facilitates directed differentiation of hMSCs.  相似文献   

16.
Poly(ethylene glycol) (PEG) hydrogels are popular for cell culture and tissue-engineering applications because they are nontoxic and exhibit favorable hydration and nutrient transport properties. However, cells cannot adhere to, remodel, proliferate within, or degrade PEG hydrogels. Methacrylated gelatin (GelMA), derived from denatured collagen, yields an enzymatically degradable, photocrosslinkable hydrogel that cells can degrade, adhere to and spread within. To combine the desirable features of each of these materials we synthesized PEG-GelMA composite hydrogels, hypothesizing that copolymerization would enable adjustable cell binding, mechanical, and degradation properties. The addition of GelMA to PEG resulted in a composite hydrogel that exhibited tunable mechanical and biological profiles. Adding GelMA (5%-15% w/v) to PEG (5% and 10% w/v) proportionally increased fibroblast surface binding and spreading as compared to PEG hydrogels (p<0.05). Encapsulated fibroblasts were also able to form 3D cellular networks 7 days after photoencapsulation only within composite hydrogels as compared to PEG alone. Additionally, PEG-GelMA hydrogels displayed tunable enzymatic degradation and stiffness profiles. PEG-GelMA composite hydrogels show great promise as tunable, cell-responsive hydrogels for 3D cell culture and regenerative medicine applications.  相似文献   

17.
In this study we generated 3D poly(ethylene glycol) (PEG) hydrogel arrays to screen for the individual and combinatorial effects of extracellular matrix (ECM) degradability, cell adhesion ligand type, and cell adhesion ligand density on human mesenchymal stem cell (hMSC) viability. In particular, we explored the influence of two well-characterized ECM-derived cell adhesion ligands: the fibronectin-derived Arg-Gly-Asp-Ser-Pro (RGDSP) sequence, and the laminin-derived Ile-Lys-Val-Ala-Val (IKVAV) sequence. PEG network degradation, the RGDSP ligand, and the IKVAV ligand each individually increased hMSC viability in a dose-dependent manner. The RGDSP ligand also improved hMSC viability in a dose-dependent manner in degradable PEG hydrogels, while the effect of IKVAV was less pronounced in degradable hydrogels. Combinations of RGDSP and IKVAV promoted high viability of hMSCs in nondegradable PEG networks, while the combined effects of the ligands were not significant in degradable PEG hydrogels. Although hMSC spreading was not commonly observed within PEG hydrogels, we qualitatively observed hMSC spreading after 5 days only in degradable PEG hydrogels prepared with 2.5 mM of both RGDSP and IKVAV. These results suggest that the enhanced throughput approach described herein can be used to rapidly study the influence of a broad range of ECM parameters, as well as their combinations, on stem cell behavior.  相似文献   

18.
A triblock co-polymer of oligo(trimethylene carbonate)-block-poly(ethylene glycol) 20000-block-oligo(trimethylene carbonate) diacrylate (TMC20) was used as a photo-polymerizable precursor for the encapsulation of primary articular chondrocytes. The efficacy of TMC20 as a biodegradable scaffold for cartilage tissue engineering was compared with non-degradable poly(ethylene glycol) 20000 diacrylate (PEG20) hydrogel. Chondrocytes encapsulated in PEG hydrogels containing oligo(trimethylene carbonate) (OTMC) moieties underwent spontaneous aggregation during in vitro culture, which was not observed in the PEG hydrogel counterparts. The aggregation of cells was found to be dependent on the initial cell density, as well as the mesh size of the hydrogels. Similarly, cell aggregation was also found in biodegradable PEG hydrogels containing caprolactone moieties. The aggregation of cells in TMC20 hydrogels resulted in enhanced cartilage matrix production compared with their PEG20 counterparts over 3 weeks of culture. Taken together, these results indicate that PEG hydrogels containing degradable OTMC moieties promote the aggregation and biosynthetic activity of encapsulated chondrocytes, indicating their potential as scaffolds for the repair of cartilage tissue.  相似文献   

19.
Hyaluronic acid is a natural glycosaminoglycan involved in biological processes. Low-molecular-weight hyaluronic acid (10 and 50 kDa)-based hydrogel was synthesized using derivatized hyaluronic acid. Hyaluronic acid was acrylated by two steps: (1) introduction of an amine group using adipic acid dihydrazide, and (2) acrylation by N-acryloxysuccinimide. Injectable hyaluronic acid-based hydrogel was prepared by using acrylated hyaluronic acid and poly(ethylene glycol) tetra-thiols via Michael-type addition reaction. Mechanical properties of the hydrogel were evaluated by varying the molecular weight of acrylated hyaluronic acid (10 and 50 kDa) and the weight percent of hydrogel. Hydrogel based on 50-kDa hyaluronic acid showed the shortest gelation time and the highest complex modulus. Next, human mesenchymal stem cells were cultured in cell-adhesive RGD peptide-immobilized hydrogels together with bone morphogenic protein-2 (BMP-2). Cells cultured in the RGD/BMP-2-incorporated hydrogels showed proliferation rates higher than that of control or RGD-immobilized hydrogels. Real-time RT-PCR showed that the expression of osteoblast marker genes such as CBFalpha1 and alkaline phosphatase was increased in hyaluronic acid-based hydrogel, and the expression level was dependent on the molecular weight of hyaluronic acid, RGD peptide, and BMP-2. This study indicates that low-molecular-weight hyaluronic acid-based hydrogel can be applied to tissue regeneration as differentiation guidance materials of stem cells.  相似文献   

20.
Human adipose-derived stem cells (hADSCs) are a promising cell source for tissue engineering and regenerative medicine with no ethnical issue and easy access of large quantities. Conventional surfaces for hADSC culture, such as tissue culture plates (TCPs), do not provide optimal environmental cues, leading to limited expansion, loss of pluripotency and undesirable differentiation of stem cells. The present study demonstrated that heparin-based hydrogels without additional modification provided an excellent surface for adhesion and proliferation of hADSCs, which were further tunable by both the amount of heparin (in a positive way) and the elasticity of hydrogel (in a negative way). The optimized heparin-based hydrogel could selectively modulate the adhesion of hADSCs and human bone marrow stem cells (but not all kinds of cells), and resulted in a significant increase in cell proliferation compared to TCP. Furthermore, in terms of the maintenance of pluripotency and specific differentiation, heparin-based hydrogel was much superior to TCP. The selective binding and proliferation of human mesenchymal stem cells on heparin-based hydrogel over other hydrogels were largely mediated by integrin β1 and selectin, and these superior characteristics were observed regardless of the presence of serum proteins in the culture medium. Consequently, heparin-based hydrogel could be a powerful platform for cultivation of mesenchymal stem cells in various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号