首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sprouting of sympathetic and peptidergic sensory neurones proximal to nerve lesions may reflect upregulation of growth factors around damaged dorsal root ganglion (DRG) cells. Axons containing noradrenaline or calcitonin gene-related peptide were visualized in DRGs and spinal roots of guinea pigs and rats. After sciatic transection in rats, varicose terminals of both types appeared around large DRG somata. These neurones were surrounded by proliferated satellite cells expressing glial fibrillary acidic protein (GFAP) and p75. This did not occur in guinea pigs. Instead, sympathetic axons grew through the DRG and centrally along the dorsal roots (which contained p75-positive glia), avoiding the DRG somata. Thus the glial reaction to peripheral injury differs between species such that, in guinea pigs, the environment in the spinal roots rather than in the DRGs favours sympathetic sprouting.  相似文献   

2.
R E Papka 《Neuroscience》1990,39(2):459-470
The pelvic paracervical autonomic ganglia of female rats were studied for a subpopulation of nerve endings that could be derived from sensory nerve fibers. Immunohistochemical staining using an antiserum against the synaptic-terminal protein synapsin I was used to identify terminal boutons, while an antiserum against the neuropeptide calcitonin gene-related peptide was used to reveal a subpopulation of sensory nerve fibers. The uterine cervix was also examined for the existence of calcitonin gene-related peptide and synapsin I immunoreactivity in nerve fiber varicosities. In addition, the location of nerve endings in the paracervical ganglion was compared to that in the superior cervical ganglion. Synapsin I immunoreactivity was present in the paracervical ganglion in abundant boutons around neuron somata and in the cervix in varicose nerve fibers of the myometrium, vasculature and epithelium. Double labeling immunocytochemistry revealed calcitonin gene-related peptide-like immunoreactivity in subpopulations of synapsin I-immunoreactive endings in ganglia and nerve varicosities in the cervix. Injection of a retrograde axonal tracer, fluorogold, into the paracervical ganglion produced labeled neurons in dorsal root ganglia and spinal cord; however, fluorogold-labeled neurons containing calcitonin gene-related peptide immunoreactivity were visualized only in dorsal root ganglia. Injections of fluorogold into the uterine cervix produced labeled neurons in the paracervical ganglion and dorsal root ganglia; however, only those in dorsal root ganglia contained immunoreactivity for calcitonin gene-related peptide. These results suggest that immunoreactivity for calcitonin gene-related peptide is present in a subpopulation of nerve endings in the paracervical ganglion and not merely in fibers of passage. The nerve endings in the ganglion and varicosities in the uterine cervix originate from sensory neurons in dorsal root ganglia. The arrangement of endings in the ganglia could play a role in sensory/autonomic interactions for modulation of visceral activity.  相似文献   

3.
4.
Summary The expression of neuropeptides, and the enzymes nitric oxide synthase and tyrosine hydroxylase were examined in intramural ganglia of human urinary bladder using single label immunocytochemistry. Scattered ganglia composed of between 1–36 neurons (median 4) were observed in all layers of the lateral wall of the bladder. These contained immunoreactivity to vasoactive intestinal peptide, nitric oxide synthase, neuropeptide Y, and galanin. Neurons within the bladder were heterogeneous with regard to their content of these antigens, with the proportion of immunopositive cells ranging from 58–84%. Occasional neurons with immunoreactivity to the catecholamine-synthesizing enzyme, tyrosine hydroxylase, were also observed. No cell somata, however, were immunoreactive for enkephalin, substance P, calcitonin generelated peptide or somatostatin. Varicose terminals entering the ganglia were seen to form pericellular baskets surrounding some of the principal ganglion cells. The most prominent pericellular varicosities were those containing calcitonin gene-related peptide- or vasoactive intestinal peptide-immunoreactivity, followed by those with immunoreactivity for enkephalin, neuropeptide Y, or galanin. Less common were pericellular varicosities with substance P-immunoreactivity, which may represent collateral processes of unmyelinated primary sensory fibres, and presumptive noradrenergic processes containing tyrosine hydroxylase. Some calcitonin gene-related peptide-immunoreactive varicosities constituted a distinct type, terminating as large pericellular boutons 2–4 m in diameter. Fibres containing nitric oxide synthase- or somatostatin-immunoreactivity were not associated with the intramural neurons. The results demonstrate that intrinsic neurons within the human urinary bladder express a number of neuroactive chemicals, and could in principle form circuits with the potential to support integrative activity.  相似文献   

5.
Summary Using double immunogold staining procedures, calcitonin gene-related peptide (CGRP)-like and substance P (SP)-like immunoreactivities were localized at the ultrastructural level to guinea pig trigeminal ganglia, dorsal root ganglia and peripheral nerve fibres associated with the vascular system. CGRP-like and SP-like immunoreactivities were found consistently in large granular secretory vesicles (70–100 nm in diameter), and both peptide immunoreactivities were co-localized to the same vesicle in both sensory ganglion cells and within axons and their terminals in the adventitia and adventitial-medial border of the superior mesenteric artery. These results suggest that CGRP and SP are co-stored and may be released together from peripheral axons in the guinea pig.  相似文献   

6.
The distribution and origin of the nerve fibres innervating the rat thyroid were studied by immunocytochemistry, retrograde tracing and denervation experiments. Immunocytochemistry revealed nerve fibres containing noradrenaline, neuropeptide Y, vasoactive intestinal peptide, peptide histidine-isoleucine, galanin, substance P, neurokinin A and calcitonin gene-related peptide around blood vessels and follicles. Many of these transmitter candidates were found to co-exist with each other in different combinations in different subpopulations of neurons. Sympathectomy eliminated all noradrenaline- and noradrenaline/neuropeptide Y-containing fibres in the thyroid. Cervical vagotomy eliminated about 50% of the galanin-, substance P- and calcitonin gene-related peptide-containing fibres. Local denervation (removal of the thyroid ganglion and the thyroid nerve) eliminated all galanin- and substance P-immunoreactive fibres and the majority of noradrenaline-, noradrenaline/neuropeptide Y-, vasoactive intestinal peptide- and calcitonin gene-related peptide-containing fibres in the thyroid gland. Injection of True Blue into the thyroid gland labelled cell bodies in the thyroid ganglion, the laryngeal ganglion, the superior cervical ganglion, the jugular-nodose ganglionic complex, the dorsal root ganglia (C2-C5) and the trigeminal ganglion. Judging from the number of labelled nerve cell bodies, the superior cervical ganglion and the thyroid ganglion contribute most to the thyroid innervation, while the laryngeal ganglion and the trigeminal ganglion contribute least. The True Blue-labelled ganglia were examined for the presence of various populations of nerve cell bodies (only major populations are listed). The thyroid ganglion harboured neuropeptide Y, vasoactive intestinal peptide and galanin/vasoactive intestinal peptide cell bodies (in order of predominance); the laryngeal ganglion galanin/vasoactive intestinal peptide, vasoactive intestinal peptide and calcitonin gene-related peptide cell bodies; the superior cervical ganglion noradrenaline/neuropeptide Y and noradrenaline cell bodies; the jugular ganglion calcitonin gene-related peptide, substance P/calcitonin gene-related peptide and galanin/substance P/calcitonin gene-related peptide cell bodies; the nodose ganglion vasoactive intestinal peptide and vasoactive intestinal peptide/galanin cell bodies; the dorsal root ganglia (C2-C5) and the trigeminal ganglion calcitonin gene-related peptide, substance P/calcitonin gene-related peptide and galanin/substance P/calcitonin gene-related peptide cell bodies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We used explant cultures of adult mouse dorsal root ganglia with spinal nerve attached growing in Matrigel to assess the effects of the non-immunosuppressive immunophilin ligand GPI-1046 [Snyder et al. (1998) TIPS 19, 21-26] on the growth rate of regenerating sensory axons and found a potent stimulation of axon growth. In these explant cultures, naked, unfasciculated axons emerge from the cut end of the spinal nerve and continue to grow in the Matrigel for up to eight days [Tonge et al. (1996) Neuroscience 73, 541-551]. Some axons are entirely smooth whilst others show prominent varicosities. Some of the former express the phosphorylated neurofilament epitope recognised by monoclonal antibody RT97, a marker for large calibre, myelinated axons, whilst the latter express calcitonin gene-related peptide, predominantly a marker for unmyelinated, and small diameter myelinated sensory axons. Many of the axons in these cultures also express the low-affinity neurotrophin receptor p75. GPI-1046 has been shown to have striking stimulatory effects on embryonic primary sensory axons growing in vitro and it was therefore of interest to see whether it could also enhance regenerating sensory axon growth from the adult ganglia in our cultures. GPI-1046 potently stimulated axon growth in our cultures in a dose-dependent manner. The stimulatory effect was not dependent on the class of sensory axon. These observations show that GPI-1046 is a potent stimulator of regenerating axons from adult, primary sensory neurones. The cellular site of action of GPI-1046 is unknown. To distinguish between a direct effect of the drug on neurones and an indirect effect we compared the effects of GPI-1046 on explant and dissociated cultures. In confirmation of previous results, we found that GPI-1046 potently stimulated axon outgrowth from explants of embryonic chick dorsal root ganglia. However, the drug was without effect on dissociated embryonic dorsal root ganglion neurones, suggesting that non-neuronal cells are important for axon growth stimulation.  相似文献   

8.
The temporal course of changes in peptide expression in the dorsal root ganglia L4 and L5 and in the dorsal horn of the spinal cord has been studied in rats subjected to a sciatic nerve transection at a mid-thigh level following different survival times. Galanin-, substance P-, vasoactive intestinal polypeptide-, peptide histidine-isoleucine- and calcitonin gene-related peptide-like immunoreactivities have been studied both by immunohistochemistry and radioimmunoassay. Galanin messenger ribonucleic acid has also been studied by in situ hybridization in the dorsal root ganglia of normal and lesioned animals. In addition, a group of animals with a sciatic nerve crush was studied to compare possible differences in peptide expression after both types of lesions. The results show that the transection induces an increase in the number of cell bodies expressing galanin-like immunoreactivity in the ganglia, and that the galanin levels rise about 120-fold after three and 14 days of survival. This increase reflected increased synthesis of the peptide, since there was a rise in the galanin messenger ribonucleic acid already at 24 h post-lesion, which was maintained for at least 60 days. In the spinal cord there was an increase of staining in the midportion of the outer layers of the dorsal horn that corresponded to fibers thought to arise from cells of the dorsal root ganglia affected by the transection. Also a depletion of substance P-like and an increase in vasoactive intestinal polypeptide- and peptide histidine-isoleucine-like immunoreactivities in the dorsal root ganglia were confirmed. These changes were shown to be rapidly detectable and were paralleled by similar changes in the dorsal horn of the spinal cord. For calcitonin gene-related peptide the immunohistochemistry was inconclusive, and the radioimmunoassay showed no detectable changes. After nerve crush a transient increase in the number of galanin immunoreactive neurons was observed, as well as a decrease in the number of neurons showing substance P-like immunoreactivity. These changes were most noticeable between six and 14 days of survival. After this, peptide expression seemed to return slowly to normal, that is by day 45 post-crush only a few cells showed galanin-like, and many sensory neurons expressed substance P-like immunoreactivity. The results demonstrate that when primary sensory neurons are peripherally lesioned they respond in a complex manner, altering their normal production of peptides by increasing or decreasing their synthesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Summary Using the indirect immunofluorescence method andin situ hybridization, the localization and levels of immunoreactivities and mRNAs for several neuropeptides were studied in lumbar dorsal root ganglia and spinal cord of untreated monkeys (Macaca mulatto) and after unilateral transection of the sciatic nerve. Immunoreactive galanin, calcitonin gene-related peptide, substance P and somatostatin and their mRNAs were found in cell bodies in dorsal root ganglia of untreated monkeys and on the contralateral side of the monkeys with unilateral sciatic nerve lesion. After axotomy there was a marked decrease in the number of calcitonin gene-related peptide-, substance P- and somatostatin-positive neurons in dorsal root ganglia ipsilateral to the lesion, whereas the number of galanin positive cells strongly increased. A few neuropeptide tyrosine-positive cells were seen in after axotomy, whereas no such neurons were found in controls. No vasoactive intestinal polypeptide-, peptide histidine isoleucine-, cholecystokinin-, dynorphin-, enkephalin-, neurotensin-or thyrotrophin releasing hormone-positive cell bodies were seen in dorsal root ganglia of any of the groups studied. In the dorsal horn of the spinal cord all peptide immunoreactivities described above, except thyrotropin releasing hormone, were found in varying numbers of nerve fibres with a similar distribution in untreated monkeys and in the contralateral dorsal horn in monkey with unilateral sciatic nerve lesion. Two cholecystokinin antisera were used directed against the C- and N-terminal portions, respectively, showing a distinctly different distribution pattern in the dorsal horn. Somatostatin- and dynorphin-like immunoreactivities were also observed in small neurons in the dorsal horn. No certain effect of axotomy on these interneurons could be seen. However, marked changes were observed after this type of lesion for some peptide containing fibres in the ipsilateral dorsal horn. Thus, there was a marked increase in galanin-like immunoreactivity, whereas calcitonin gene-related peptide-, substance P-, somatostatin-, peptide histidine isoleucine neurotensin- and cholecystokinin-like immunoreactivities decreased. No changes could be observed in neuropeptide tyrosine or enkephalin-positive fibres. The present results demonstrate marked ganglionic and transganglionic changes in peptide levels after peripheral axotomy. When compared to published results on the effect of axotomy on peptides in dorsal root ganglia and spinal cord of rat, both similarities and differences were encountered. Thus, in contrast to rat there was no marked upregulation of vasoactive intestinal polypeptide/peptide histidine isoleucine or neuropeptide tyrosine after axotomy in the monkey, whereas galanin was increased in both species. Both in monkey and rat, calcitonin gene-related peptide, substance P and somatostatin decreased. The decrease in neurotensin, peptide histidine isoleucine, and genuine cholecystokinin seen in monkey after axotomy has not been reported in the rat. Experimental studies on rat suggest that galanin may be an endogenous analgesic compound, active particularly after peripheral nerve lesions. We have therefore recently proposed that galanin agonists may be used in treatment of chronic pain, and the present demonstration that galanin is regulated in a similar fashion in a primate gives further support to the proposal to test galanin as an analgesic in human.  相似文献   

10.
W Ma  M A Bisby 《Neuroscience》1999,93(1):335-348
Neuropeptide plasticity in the gracile nucleus is thought to play a role in the development of neuropathic pain following nerve injury. Two weeks after chronic constriction injury of adult rat sciatic nerve, galanin, neuropeptide Y and calcitonin gene-related peptide immunoreactivities were increased in fibers and cells in the gracile nucleus ipsilateral to injury. At the electron microscopic level, this increased neuropeptide immunoreactivity was localized in myelinated axons, boutons, dendrites, neurons and glial cells. Galanin-, neuropeptide Y- and calcitonin gene-related peptide-immunoreactive boutons were frequently presynaptic to dendrites of both immunoreactive and non-immunoreactive neurons. However, no neuropeptide Y, galanin and calcitonin gene-related peptide messenger RNA was detected in the injured side gracile nuclei by in situ hybridization. These results show that partial nerve injury to the sciatic nerve induces increases in the content of galanin, neuropeptide Y and calcitonin gene-related peptide immunoreactivities in synaptic terminals within the gracile nucleus, which suggests that there may be increased release of these neuropeptides following sensory or spontaneous stimulation of large-diameter primary afferents following partial nerve injury, perhaps one mechanism involved in neuropathic pain. We also show an apparent transfer of these neuropeptides to the cells of the gracile nucleus, both neurons and glial cells, an intriguing phenomenon of unknown functional significance.  相似文献   

11.
Galanin inhibits gut-related vagal neurons in rats   总被引:3,自引:0,他引:3  
Galanin plays an important role in the regulation of food intake, energy balance, and body weight. Many galanin-positive fibers as well as galanin-positive neurons were seen in the dorsal vagal complex, suggesting that galanin produces its effects by actions involving vagal neurons. In the present experiment, we used tract-tracing and neurophysiological techniques to evaluate the origin of the galaninergic fibers and the effect of galanin on neurons in the dorsal vagal complex. Our results reveal that the nucleus of the solitary tract is the major source of the galanin terminals in the dorsal vagal complex. In vivo experiments demonstrated that galanin inhibited the majority of gut-related neurons in the dorsal motor nucleus of the vagus. In vitro experiments demonstrated that galanin inhibited the majority of stomach-projecting neurons in the dorsal motor nucleus of the vagus by suppressing spontaneous activity and/or producing a fully reversible dose-dependent membrane hyperpolarization and outward current. The galanin-induced hyperpolarization and outward current persisted after synaptic input was blocked, suggesting that galanin acts directly on receptors of neurons in the dorsal motor nucleus of the vagus. The reversal potential induced by galanin was close to the potassium ion potentials of the Nernst equation and was prevented by the potassium channel blocker tetraethylammonium, indicating that the inhibitory effect of galanin was mediated by a potassium channel. These results indicate that the dorsal motor nucleus of the vagus is inhibited by galanin derived predominantly from neurons in the nucleus of the solitary tract projecting to the dorsal motor nucleus of the vagus nerve. Galanin is one of the neurotransmitters involved in the vago-vagal reflex.  相似文献   

12.
A correlated histochemical and pharmacological study was undertaken to establish the presence, origin, and possible function of nerve fibers containing a galanin-like peptide in the mudpuppy (Necturus maculosus) heart. Whole mount preparations of septum-sinus venosus or atria and sections of ventricular muscle were prepared for immunocytochemistry. Galanin-immunoreactive fibers were found coursing diffusely across the septum-sinus venosus to form complex networks over cardiac muscle strands. Individual atrial muscle strands were densely innervated by galanin-immunoreactive fibers and galanin-immunoreactive fibers were also observed in the epicardial and myocardial layers of the ventricle. Most of the parasympathetic postganglionic neurons in the cardiac ganglion and many of the small intensely fluorescent-like cells exhibited galanin immunoreactivity. Galanin-immunoreactive fibers were present in the nerve trunks connecting clusters of parasympathetic postganglionic neurons. Close associations between galanin-positive fibers and individual parasympathetic postganglionic neurons were also observed. The presence of the galanin-immunoreactive fibers was similar in preparations taken from animals pretreated with 6-hydroxydopamine to that seen in preparations taken from control animals, indicating that the galanin-positive fibers were not sympathetic postganglionic axons. Moreover, the galanin-immunoreactive nerve fibers were separate from fibers containing substance P and/or calcitonin gene-related peptide that have previously been shown to be processes of afferent fibers. In twitch-tension experiments, galanin in the range 1 x 10(-7) to 1 x 10(-6) M caused cardioinhibition of spontaneously beating isolated septal-sinus venosus preparations. Galanin also produced a concentration-dependent (1 x 10(-7) to 1 x 10(-6) M) decrease in the twitch-tension development of electrically stimulated atrial or ventricular preparations. Local application of galanin produced hyperpolarization of cardiac muscle fibers in both isolated septal-sinus venosus preparations and atrial preparations. The response of individual parasympathetic ganglion cells to local application of galanin varied between neurons; some neurons were depolarized whereas others were hyperpolarized. We conclude that a galanin-like peptide is contained in both the parasympathetic postganglionic neurons and small intensely fluorescent-like cells and their processes. Further, we hypothesize that in the case of the parasympathetic postganglionic neurons, the galanin-like peptide may work in conjunction with acetylcholine to regulate cardiac activity.  相似文献   

13.
The neurochemical properties of the ovine middle cervical ganglion (MCG) were studied using antibodies raised against tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), neuropeptide Y (NPY), substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and galanin (GAL). Double-labelling immunocytochemistry revealed that the vast majority (95.5 +/- 0.8%) of postganglionic sympathetic MCG neurons expressed simultaneously both catecholamine-synthesizing enzymes (neurons were TH/DbetaH-positive). A large population of noradrenergic neurons exhibited immunoreactivity (IR) to NPY (62.2 +/- 2.2%), but single NPY-positive perikarya-lacking noradrenergic markers were also observed (2.0 +/- 0.3%). None of the examined MCG neuronal somata contained SP, CGRP, GAL or VIP. A moderate number of noradrenergic nerve fibres located amongst neuronal cell bodies was also found. In small number of these terminals the presence of NPYor GAL (but not CGRP or VIP) was detected. The ovine MCG was numerously innervated with SP-immunoreactive nerve fibres which sometimes formed basket-like formations around postganglionic neurons. The MCG exhibited a sparse CGRP-immunoreactive innervation and lacked VIP-positive nerve terminals. In many aspects the chemical coding of MCG postganglionic neurons and nerve terminals resembles that found in other mammalian cervico-thoracic paravertebral ganglia, but some important species-dependent differences exist. The functional implications of these differences remain to be elucidated.  相似文献   

14.
Projections of peptide-containing neurons in rat colon   总被引:8,自引:0,他引:8  
The distribution, origin and projections of nerve fibers containing vasoactive intestinal peptide, substance P, neuropeptide Y, galanin, gastrin-releasing peptide, calcitonin gene-related peptide, somatostatin or enkephalin were studied in the midcolon of the rat by immunocytochemistry and immunochemistry. Most of these nerve fibers had an intramural origin as was established by extrinsic denervation (serving of mesenterial nerves). Extrinsic denervation eliminated neuropeptide Y-containing fibers of presumably sympathetic origin together with sensory nerve fibers containing both substance P and calcitonin gene-related peptide. Co-existence of two peptides in the same neuron was studied by double immunostaining. This revealed co-existence of neuropeptide Y and vasoactive intestinal peptide in one population of intramural neurons; an additional population of intramural neurons was found to contain vasoactive intestinal peptide but not neuropeptide Y. All somatostatin-containing neurons in the submucous ganglia were found to harbor calcitonin gene-related peptide. A much larger population of submucous neurons containing calcitonin gene-related but not somatostatin was also detected. Some perivascular calcitonin gene-related peptide-containing nerve fibers (of intrinsic origin) harbored vasoactive intestinal peptide while others (of extrinsic origin) harbored substance P. The polarities and projections of the various peptide-containing intramural neurons in the transverse colon were studied by analysing the loss of nerve fibers upon local disruption of enteric nervous pathways (myectomy or intestinal clamping). Myenteric neurons containing vasoactive intestinal peptide, galanin, gastrin-releasing peptide, calcitonin gene-related peptide, somatostatin or vasoactive intestinal peptide/neuropeptide Y gave off 5-10-mm-long descending projections while those containing substance P or enkephalin issued approx. 5-mm-long ascending projections. Submucous neurons containing calcitonin gene-related peptide, somatostatin/calcitonin gene-related peptide or gastrin-releasing peptide issued both ascending (2-6 mm) and descending (2-6 mm) projections, those containing vasoactive intestinal peptide issued ascending (approx. 2 mm) projections, while those containing galanin or vasoactive intestinal peptide/neuropeptide Y lacked demonstrable oro-anal projections. Enkephalin-containing fibers could not be detected in the mucosa and the mucosal substance P-containing nerve fibers were too few to enable us to delineate their projections.  相似文献   

15.
M Fabri  F Conti 《Neuroscience》1990,35(1):167-174
An antiserum raised against the C-terminal region of rat alpha-calcitonin gene-related peptide has been used to investigate the morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide in the cat dorsal column nuclear complex. Calcitonin gene-related peptide-positive fibers and axon terminals were denser in the cuneate nucleus than in the other dorsal column nuclei subdivisions and were observed throughout all rostrocaudal levels. They were densest in the dorsal and ventrolateral portions of the middle cuneate. Immunoreactive neurons were observed only in animals pre-treated with colchicine. In these cases, some calcitonin gene-related peptide-positive neurons were present in the cuneate and in the external cuneate. In double-labeling experiments, visualization of calcitonin gene-related peptide immunoreactivity in dorsal root ganglia neurons was combined with the retrograde transport of colloidal gold-labeled wheat germ agglutinin conjugated to inactive horseradish peroxidase injected in the cuneate nucleus. These experiments show that calcitonin gene-related peptide-positive fibers in the cuneate nucleus originate mostly from C3-C6 medium sized dorsal root ganglia neurons but also from some small and large neurons. These results suggest that calcitonin gene-related peptide-positive fibers may convey sensory information from a wide range of peripheral receptors.  相似文献   

16.
The neuropeptide galanin is elevated in the cardiac sympathetic innervation after myocardial infarction (MI). Galanin inhibits vagal transmission and may support the regeneration of sympathetic nerves, thereby contributing to the development of arrhythmia and sudden cardiac death after MI. The reason for increased galanin production in sympathetic neurons after myocardial infarction is not known. Cardiac sympathetic neurons are activated chronically after cardiac ischemia–reperfusion, and activation of sympathetic neurons in culture stimulates galanin expression. Therefore, we tested the hypothesis that increased sympathetic nerve activity stimulates galanin expression in cardiac sympathetic neurons after myocardial infarction. To test this hypothesis we used TGR(ASrAOGEN) transgenic rats, which lack brain angiotensinogen and do not exhibit post-infarct sympathetic hyperactivity. Hearts and stellate ganglia were collected 1 week after ischemia–reperfusion. Galanin mRNA was quantified by real-time PCR and peptide content was assayed by enzyme-linked immunosorbent assay. Galanin mRNA increased approximately 3-fold after MI in cardiac sympathetic neurons of both genotypes compared to unoperated and sham controls. Left ventricular galanin content, however, increased after MI only in Sprague–Dawley rats and not in AOGEN rats. These data suggest that post-infarct cardiac sympathetic hyperactivity stimulates galanin peptide production but is not required for increased galanin mRNA expression.  相似文献   

17.
Immunoreactivity (IR) for the calcium binding protein, calbindin, was localized in sensory ganglia (nodose, trigeminal and dorsal root), in parasympathetic ganglia (otic and sphenopalatine) in sympathetic chain ganglia and in sympathetic pre-vertebral ganglia of guinea pig. In sensory ganglia, fine nerve fibres with calbindin-IR surrounded the majority of cell bodies, a low proportion of which were themselves reactive. In cranial parasympathetic and in sympathetic chain ganglia, a small proportion of nerve cells was surrounded with baskets of calbindin-IR nerve fibres, but very few cell bodies were reactive. In prevertebral sympathetic ganglia, dense networks of terminals surrounded many cell bodies, but few somata were themselves reactive. In the coeliac and inferior mesenteric ganglia, the calbindin-IR nerve fibres surrounded somatostatin-IR cell bodies, but not those with neuropeptide Y-IR. It is concluded that specific subgroups of peripheral autonomic and sensory neurones have calbindin-IR.  相似文献   

18.
Four types of substance P-immunoreactive structures have been distinguished in the rat superior cervical ganglion by double-immunofluorescence microscopy: (1) A major population of mainly varicose fibres enmeshed singly-scattered neuronal perikarya, some of which contained vasoactive intestinal polypeptide-immunoreactivity. These substance P-immunoreactive fibres did not contain colocalized calcitonin gene-related peptide (CGRP) and were absent after transection of the cervical sympathetic trunk. (2) A rather small substance P-immunoreactive fibre population with colocalized calcitonin gene-related peptide-immunoreactivity was distributed in a patchy manner and disappeared after cutting the postganglionic branches. (3) Most of the intraganglionic small intensely fluorescent (SIF) cell clusters were intensely substance P-immunoreactive. SIF cells were not visibly changed in number and fluorescence intensity by either surgical procedure. (4) Immunoreactivity was not visible in principal ganglionic neurons of control ganglia, but occurred in cell bodies after pre- as well as after postganglionic nerve transection. Some of the substance P-immunolabelled perikarya in addition revealed immunostaining to antisera against the catecholamine-synthesizin enyzme tyrosine hydroxylase or against the neuropeptides leu-enkephalin and vasoactive intestinal polypeptide, respectively. The results strongly suggest that, in addition to a substance P-containing preganglionic input (1), and a supply by substance P-containing sensory axon collaterals (2), the superior cervical ganglion of the rat gives origin to a paraganglionic (3) and a postganglionic (4) substance P-immunoreactive intrinsic system, the latter becoming visible only after disconnection of the sympathetic pathway.  相似文献   

19.
20.
The neuropeptide galanin is elevated in the cardiac sympathetic innervation after myocardial infarction (MI). Galanin inhibits vagal transmission and may support the regeneration of sympathetic nerves, thereby contributing to the development of arrhythmia and sudden cardiac death after MI. The reason for increased galanin production in sympathetic neurons after myocardial infarction is not known. Cardiac sympathetic neurons are activated chronically after cardiac ischemia-reperfusion, and activation of sympathetic neurons in culture stimulates galanin expression. Therefore, we tested the hypothesis that increased sympathetic nerve activity stimulates galanin expression in cardiac sympathetic neurons after myocardial infarction. To test this hypothesis we used TGR(ASrAOGEN) transgenic rats, which lack brain angiotensinogen and do not exhibit post-infarct sympathetic hyperactivity. Hearts and stellate ganglia were collected 1 week after ischemia-reperfusion. Galanin mRNA was quantified by real-time PCR and peptide content was assayed by enzyme-linked immunosorbent assay. Galanin mRNA increased approximately 3-fold after MI in cardiac sympathetic neurons of both genotypes compared to unoperated and sham controls. Left ventricular galanin content, however, increased after MI only in Sprague-Dawley rats and not in AOGEN rats. These data suggest that post-infarct cardiac sympathetic hyperactivity stimulates galanin peptide production but is not required for increased galanin mRNA expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号