首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biochemical pharmacology》2014,89(4):468-478
Impaired proteostasis is one of the main features of all amyloid diseases, which are associated with the formation of insoluble aggregates from amyloidogenic proteins. The aggregation process can be caused by overproduction or poor clearance of these proteins. However, numerous reports suggest that amyloid oligomers are the most toxic species, rather than insoluble fibrillar material, in Alzheimer's, Parkinson's, and Prion diseases, among others. Although the exact protein that aggregates varies between amyloid disorders, they all share common structural features that can be used as therapeutic targets. In this review, we focus on therapeutic approaches against shared features of toxic oligomeric structures and future directions.  相似文献   

2.
Misfolding and subsequent aggregation of any of a number of proteins leads to the accumulation of amyloid fibrils, which have been associated with a variety of diseases. One such amyloidogenic protein is transthyretin (TTR), a 55-kDa homotetrameric protein found in the blood plasma and cerebrospinal fluid where it binds and transports thyroxine. In humans, the T119M-TTR variant has been shown to be protective against familial amyloid polyneuropathy, a TTR amyloid disease, through kinetic stabilization of the unliganded tetrameric structure. Studies have indicated that a diverse range of small molecules may also bind TTR in the thyroxine-binding pocket and subsequently kinetically stabilize the protein's native conformation in vitro, preventing the misfolding that has been implicated in the progression of several diseases. However, cyclooxygenase inhibition is a common unwanted side effect among such small-molecule kinetic stabilizers. The recent development of transthyretin stabilizers not subject to cyclooxygenase inhibition may prove attractive for the long-term treatment of TTR misfolding diseases in humans. Such compounds are attained by incorporating aromatic carborane icosahedra at strategic points in their structures.  相似文献   

3.
Amyloids are protein fibrils of nanometer size resulting from protein self-assembly. They have been shown to be associated with a wide variety of diseases such as Alzheimer's and Parkinson's and may contribute to various other pathological conditions, known as amyloidoses. Insulin is prone to form amyloid fibrils under slightly destabilizing conditions in vitro and may form amyloid structures when subcutaneously injected into patients with diabetes. There is a great deal of interest in developing novel small molecule inhibitors of amyloidogenic processes, as potential therapeutic compounds. In this study, the effects of five new synthetic benzofuranone derivatives were investigated on the insulin amyloid formation process. Protein fibrillation was analyzed by thioflavin-T fluorescence, Congo red binding, circular dichroism, and electron microscopy. Despite high structural similarity, one of the five tested compounds was observed to enhance amyloid fibrillation, while the others inhibited the process when used at micromolar concentrations, which could make them interesting potential lead compounds for the design of therapeutic antiamyloidogenic compounds.  相似文献   

4.
More and more evidence shows that Alzheimer's and prion-related diseases belong to the family of conformational diseases characterized by protein self-association and tissue deposition as amyloid fibrils. Regardless of the nature of the protein constituent, all forms of amyloid are stable assemblies based on noncovalent interactions between subunits of crossed beta-sheet structure. Understanding the mechanism and molecular details of the pathological conformational conversion of amyloidogenic proteins may be of importance to the development of approaches towards prevention and treatment of such diseases. We previously found that monoclonal antibodies (mAbs) interact at strategic sites where protein unfolding is initiated, thereby stabilizing the protein and preventing further precipitation. Indeed, site-directed mAbs raised against the N-terminal region of Alzheimer's beta-peptide (A beta P) disaggregate A beta P fibrils, restore peptide solubility and prevent its neurotoxic effects. Similarly, selected mAbs raised against the human prion peptide 106-126 modulate conformational changes occurring in the prion peptide exposed to aggregating conditions, preventing its aggregation and related neurotoxicity on cultivated neural-like cells. All these data and related procedures bring more attention to the immunological concept in the treatment of conformational diseases, and the recent performance of such antibodies in transgenic mice, as a model for human diseases, suggests the development of vaccination approaches against such diseases.  相似文献   

5.
The process of amyloid fibrils formation is a common mechanism of a large number of unrelated infectious, genetic and spontaneous diseases. A partial list includes the bovine spongiform encephalopathy (BSE), Alzheimer's diseases, Type II diabetes, Creutzfeldt-Jakob disease, and various unrelated amyloidosis diseases. In spite of its significant clinical importance, the mechanism of fibrillization is not fully understood. This review discusses the recent advancements in the mechanistic studies of amyloid formation by the use peptide fragments and analogues of amyloid-forming proteins and polypeptides. The use of short peptide shed much light of the mechanism of amyloid fibrillization. Recent studies clearly prove that very short peptide fragments (as short as pentapeptides) can form well-ordered amyloidal structures. Therefore, the molecular recognition and self-assembly process that lead to the formation of order structures is being mediated by small structural elements. Analysis of short amyloid-related fragment by the use of an alanine-scan and sequence analysis of a variety of unrelated peptide and protein fragments suggest that aromatic interaction may play a central role in the process of amyloid formation. Inhibitors that are based on the short aromatic elements already demonstrated clear potency in arresting the process of amyloid fibrils formation. Taken together, the recent advancement in the mechanistic understanding of the process of amyloid fibrils formation has a major importance in the development of inhibitors of fibrillization that may serve as future therapeutic means to treat amyloid diseases.  相似文献   

6.
The human nucleoside diphosphate (NDP) kinase A, product of the NME1 gene also named NM23-H1, is known as a metastasis suppressor protein. A naturally occurring variant, S120G, identified in neuroblastomas, possesses native three-dimensional structure and enzymatic activity but displays reduced conformational stability and a folding defect with the accumulation of a "molten globule" folding intermediate during refolding in vitro. As such intermediate has been postulated to be involved in amyloid formation, NDP kinase A may serve as a model protein for studying the relationship between folding intermediates and amyloid fibrils. The NDP kinase A S120G was heated in phosphate buffer (pH?7.0). The protein precipitated as amyloid fibrils, as demonstrated by electron microscopy, Congo red, and thioflavin T binding and FTIR spectroscopy. The NDP kinase A S120G, at neutral pH and at moderate temperature experiences a transition towards amyloid fibrils. The aggregation process was faster if seeded by preformed fibrils. The fibrils presented a large proteinase K-resistant core not including residue Gly 120, as shown by mass spectrometry. This suggests that the aggregation process is triggered by the reduced stability of the S120G variant and not by a specific increase in the kinase domain intrinsic aggregation propensity at the place of mutation. This constitutes one of the few reports on a protein involved in cancer biology able to aggregate into amyloid structures under mild conditions.  相似文献   

7.
The formation of well-ordered fibrillar protein deposits is common to a large group of amyloid-associated disorders. This group consists of several major human diseases such as Alzheimer's disease, Parkinson's disease, prion diseases, and type II diabetes. Currently, there is no approved therapeutic agent directed towards the formation of fibrillar assemblies, which have been recently shown to have a key role in the cytotoxic nature of amyloidogenic proteins. One important approach in the development of therapeutic agents is the use of small molecules that specifically and efficiently inhibit the aggregation process. Several small polyphenol molecules have been demonstrated to remarkably inhibit the formation of fibrillar assemblies in vitro and their associated cytotoxicity. Yet, the inhibition mechanism was mostly attributed to the antioxidative properties of these polyphenol compounds. Based on several observations demonstrating that polyphenols are capable of inhibiting amyloid fibril formation in vitro, regardless of oxidative conditions, and in view of their structural similarities we suggest an additional mechanism of action. This mechanism is assuming structural constraints and specific aromatic interactions, which direct polyphenol inhibitors to the amyloidogenic core. This proposed mechanism is highly relevant for future de novo inhibitors' design as therapeutic agents for the treatment of amyloid-associated diseases.  相似文献   

8.
Amyloid fibres are stable, persistent and highly ordered aggregates of mis-folded protein that accumulate in tissues and are a prominent feature of the pathology of a wide range of human diseases. The presumed role of amyloid as a causative factor of tissue damage is based largely on 'guilt by association'. However, growing understanding of the nature of amyloid, its formation by a nucleated growth mechanism from destabilised and partially unfolded precursors and its persistence at sites of deposition has provided the foundation for the development of approaches to inhibit amyloid formation and enable its clearance. In spite of intensive study, our understanding of the detailed structure of amyloid itself remains incomplete although 'crossed-beta' structure is clearly a common constituent. On the other hand detailed structural understanding of transthyretin, beta-secretase and serum amyloid P component is contributing to the design of small molecule compounds to target amyloid. Thyroxin mimetics stabilise the native tetrameric protein structure, beta-secretase inhibitors will limit the production of the amyloidogenic Abeta1-42 polypeptide. Compounds that crosslink serum amyloid P component rapidly deplete the plasma and amyloid-bound pool of this protein. The efficacy of these compounds as drugs to prevent formation or enable removal of amyloid will provide a stringent test of the 'amyloid hypothesis' of disease.  相似文献   

9.
Misfolding and self assembly of proteins in nano-aggregates of different sizes and morphologies (nano-ensembles, primarily nanofilaments and nano-rings) is a complex phenomenon that can be facilitated, impeded, or prevented, by interactions with various intracellular metabolites, intracellular nanomachines controlling protein folding and interactions with other proteins. A fundamental understanding of molecular processes leading to misfolding and self-aggregation of proteins involved in various neurodegenerative diseases will provide critical information to help identify appropriate therapeutic routes to control these processes. An elevated propensity of misfolded protein conformation in solution to aggregate with the formation of various morphologies impedes the use of traditional physical chemical approaches for studies of misfolded conformations of proteins. In our recent alternative approach, the protein molecules were tethered to surfaces to prevent aggregation and AFM force spectroscopy was used to probe the interaction between protein molecules depending on their conformations. It was shown that formation of filamentous aggregates is facilitated at pH values corresponding to the maximum of rupture forces. In this paper, a novel surface chemistry was developed for anchoring of amyloid beta (Abeta) peptides at their N-terminal moieties. The use of the site specific immobilization procedure allowed to measure the rupture of Abeta-Abeta contacts at single molecule level. The rupture of these contacts is accompanied by the extension of the peptide chain detected by a characteristic elasto-mechanical component of the force-distance curves. Potential applications of the nanomechanical studies to understanding the mechanisms of development of protein misfolding diseases are discussed.  相似文献   

10.
Fibrillar amyloid is the hallmark feature of many protein aggregation diseases, such as Alzheimer's and Parkinson's diseases. A monoclonal single-chain variable fragment (scFv) targeting insulin fibrils was isolated using phage display technology and an atomic force microscopy (AFM) mica substrate. Specific targeting of the scFv to insulin fibrils but not monomers or other small oligomeric forms, under similar conditions, was demonstrated both by enzyme-linked immunosorbent assays and AFM recognition imaging. The scFv also recognizes beta-amyloid fibrils, a hallmark feature of Alzheimer's disease. The results suggest that the isolated scFv possibly targets a shared fibrillar motif-probably the cross-beta-sheet characteristic of amyloid fibrils. The techniques outlined here provide additional tools to further study the process of fibril formation. The scFvs isolated can have potential use as diagnostic or therapeutic reagents for protein aggregation diseases.  相似文献   

11.
Neurodegenerative diseases are characterized by amyloid deposition. Thioflavin T (ThT) is one of the molecules considered for detection of amyloid deposits; however, its lipophilicity is too low to cross the blood–brain barrier. Therefore, there is a strong motivation to develop suitable compounds for in vitro fibril quantification as well as for in vivo amyloid imaging. Moreover, oxidative stress (particularly, uncontrolled peroxidase activity) has frequently been reported to play a critical role in the onset/progression of some neurodegenerative disorders. In this study, we describe the synthesis of some benzothiazole and benzofuranone compounds and examine their peroxidase inhibitory properties. Furthermore, to establish the potential binding of synthesized compounds to amyloid aggregates, their in vitro binding to some non-disease related amyloidogenic proteins were characterized. Analyses of the in vitro binding studies indicated that compounds 2 and 4 bind to the amyloid structures successfully while compounds 1 and 3 showed a low affinity in binding to fibrils. Furthermore, compounds 3 and 4 were observed to inhibit amyloid-mediated peroxidase activity in a reversible un-competitive manner.  相似文献   

12.
Significant advances in therapeutic applications of proteins and peptides have brought new challenges in the field of drug development. Ordered protein aggregation known as amyloid formation has recently emerged as a universal phenomenon due to extensive research in protein folding and amyloid diseases. The amyloid represents a new generic structure characterized by cross-beta-sheet formation in its core, which implies that any polypeptide can adopt this conformation under amyloid-prone conditions. Some widely-used biopharmaceuticals such as insulin, glucagon, amylin and calcitonin have been shown to form amyloids and this list may be significantly extended upon further research. Compared to soluble precursor proteins and amorphous aggregates amyloids gain new properties such as remarkable stability and protease resistance, polymorphism, self-propagation via seeding and cross-seeding, cytotoxicity and induced immunogenicity. Some of them can be hazardous in biopharmaceutical applications. The causes of amyloid aggregation and strategies for its prevention are reviewed here. They utilize the current knowledge of amyloid properties, structure-based design principles and protein chemistry. Once these challenges are met, they will ultimately lead to safer and surer pharmaceuticals.  相似文献   

13.
Importance of the field: The identification of molecules that inhibit protein deposition or reverse fibril formation could open new strategies for therapeutic intervention in misfolding diseases. Numerous compounds have been shown to inhibit amyloid fibril formation in vitro. Among these compounds, tetracycline and the disaccharide trehalose have been reported to inhibit or reverse amyloid aggregation but their efficiency as potential drugs is controversial.

Areas covered in this review: The results obtained using tetracycline and trehalose, reported in the last 15 years, are described and discussed.

What the reader will gain: The conclusions have important implications for the development of therapeutic agents for protein deposition diseases. If fibrillar proteins contribute to cell degeneration, then the disassembly of fibrils may reverse or slow down disease progression; however, if the action of therapeutic agents produces intermediates of fibrillation and/or products of fibril disaggregation, then their accumulation could be harmful.

Take home message: Care should be taken to ensure that strategies aimed at inhibiting fibril formation do not cause a corresponding increase in the concentration of toxic oligomeric species.  相似文献   

14.
Recent structural and computational insights into conformational diseases   总被引:2,自引:0,他引:2  
Protein aggregation correlates with the development of several deleterious human disorders such as Alzheimer's disease, Parkinson's disease, prion-associated transmissible spongiform encephalopathies and type II diabetes. The polypeptides involved in these disorders may be globular proteins with a defined 3D-structure or natively unfolded proteins in their soluble conformations. In either case, proteins associated with these pathogeneses all aggregate into amyloid fibrils sharing a common structure, in which beta-strands of polypeptide chains are perpendicular to the fibril axis. Because of the prominence of amyloid deposits in many of these diseases, much effort has gone into elucidating the structural basis of protein aggregation. A number of recent experimental and theoretical studies have significantly increased our understanding of the process. On the one hand, solid-state NMR, X-ray crystallography and single molecule methods have provided us with the first high-resolution 3D structures of amyloids, showing that they exhibit conformational plasticity and are able to adopt different stable tertiary folds. On the other hand, several computational approaches have identified regions prone to aggregation in disease-linked polypeptides, predicted the differential aggregation propensities of their genetic variants and simulated the early, crucial steps in protein self-assembly. This review summarizes these findings and their therapeutic relevance, as by uncovering specific structural or sequential targets they may provide us with a means to tackle the debilitating diseases linked to protein aggregation.  相似文献   

15.
An increasing number of studies indicate that low-molecular-weight compounds can help correct conformational diseases by inhibiting the aggregation or enable the mutant proteins to escape the quality control systems, and thus their function can be rescued. The small molecules were named chemical chaperones and it is thought that they nonselectively stabilize the mutant proteins and facilitate their folding. Chemical chaperones are usually osmotically active, such as DMSO, glycerol, or deuterated water, but other compounds, such as 4-phenylbutiric acid, are also members of the chemical chaperone group. More recently, compounds such as receptor ligands or enzyme inhibitors, which selectively recognize the mutant proteins, were also found to rescue conformational mutants and were termed pharmacological chaperones. An increasing amount of evidence suggests that the action of pharmacological chaperones could be generalized to a large number of misfolded proteins, representing new therapeutic possibilities for the treatment of conformational diseases. A new and exciting strategy has recently been developed, leading to the new chemical group called folding agonist. These small molecules are designed to bind proteins and thus restore their native conformation.  相似文献   

16.
A process of protein aggregation that causes intracellular or extracellular accumulation of insoluble protein deposits causes many important neurodegenerative diseases associated with the ageing. The recognition that protein aggregation plays a prominent role in pathogenesis of important pathologies such as Alzheimer's and Parkinson's diseases prompted the scientific community to focus on the molecular mechanism of protein aggregation. Many proteins with sophisticated functions can self-aggregate because their folding is complicate and abnormal intermolecular contacts can predominate over the normal intramolecular interactions. The review of biochemical functional and pathogenic implications attributed to alpha synuclein, A beta peptide, presenilin and apoE highlights for these proteins a common conformational plasticity and the capacity to adapt their secondary structure to surrounding solvent as well as to the contacted ligands. Their functions are not fully elucidated but there is an elevated number of metabolic pathways in which apparently they are involved as well as they generate functional contact with a remarkable number of other proteins. The mechanism by which alpha synuclein and A beta protein make fibrils is an example of conformational plasticity because both these polypeptides can visit a coil or helical structure, but otherwise they convert into a pathogenic beta sheet structure highly suitable for polymerisation and fibril formation. The emerging question in the puzzling pathogenic basis of these diseases is if protein aggregation associated with ageing has a role in molecular evolution of the species or if it just represents a calculated drawback.  相似文献   

17.
C A Gates  R S Rees 《Toxicon》1990,28(11):1303-1315
Serum amyloid P component or serum amyloid protein is a ubiquitous, highly conserved glycoprotein whose function is unknown. Although the related pentraxin, C-reactive protein, is an acute phase reactant in man, there is no direct evidence that human serum amyloid protein is involved in an inflammatory response. Here we show that serum amyloid protein is required by sphingomyelinase D, the principal necrotic agent of the venom of Loxosceles reclusa, for the in vitro-activation of human platelets. Furthermore, this platelet activation is dependent upon the presence of only serum amyloid protein; no other plasma components are necessary. Secretion of [3H]-serotonin and aggregation of platelets are nearly maximal following incubation of the platelets with purified sphingomyelinase D (0.3 micrograms/ml) and 5 micrograms/ml pure serum amyloid protein in the presence of calcium. Since the platelets are no longer activated when this 10% physiologic amount of serum amyloid protein is omitted, serum amyloid protein is likely to have a role in the necrosis caused by brown recluse spider venom.  相似文献   

18.
Transthyretin is an amyloidogenic protein associated with several amyloidosis, namely familial amyloidotic polyneuropathy, familial amyloidotic cardiomyopathy, and central nervous system selective amyloidosis, familial rare diseases caused by single point mutants, and senile systemic amyloidosis associated with wild-type TTR. The current model for amyloid fibril formation involves initial dissociation of the native TTR tetramer into non-native monomers which associate into soluble oligomers and protofibrils that evolve to mature amyloid deposits. A number of efforts are addressed to identify small molecules targeting the formation, clearance, or assembly of toxic aggregates as a promising therapeutic strategy to treat amyloidosis. This review classifies and summarizes the different strategies and assays that have been developed in vitro, ex vivo, and in vivo as tools to screen libraries of compounds or to test compounds from rational design in the search of drug candidates for the treatment of TTR-associated amyloidosis. Depending on the property they measure, the assays are classified as: a) in vitro assays that monitor protein aggregation and/or fibril formation, b) in vitro assays that monitor binding to native protein, c) ex vivo TTR plasma selectivity assays, d) in vitro assays for tetrameric TTR stabilization, e) cellular assays, and f) animal models to evaluate amyloidosis inhibitors.  相似文献   

19.
Amyloidosis comprises a group of diseases characterized by the deposition of insoluble protein fibrils in specific organs and includes several serious medical disorders, such as Alzheimer's disease, prion-associated transmissible spongiform encephalitis, and type II diabetes. Despite the structural dissimilarity between the soluble proteins and peptides, these fibrils exhibit similar morphologies under electron microscopy with a characteristic "cross beta-sheet" pattern examined by x-ray fiber diffraction experiments. Many studies have revealed that each of these diseases is associated to a specific protein that is partially unfolded, misfolded, and aggregated. However, the detailed structures of the causative agents and the toxicity mechanisms are less known. This review summarizes recent studies in the conformational disorders leading to aggregation; including which proteins potentially cause conformational diseases, the aggregation mechanisms of these proteins, and recent researches on the conformational changes using advanced experiments or molecular dynamics simulations. Finally, current drug designs towards these protein conformational diseases are also discussed. It is believed that the advances in basic understanding of the mechanisms of conformational changes as well as biological functions of these proteins will shed light on the development and design of potential interfering compounds against amyloid formation associated with protein conformational diseases.  相似文献   

20.
Beta-amyloid peptide 1-42 is a major peptide constituent of beta-amyloid fibrils. We investigated the role of sucrose on the deposition and the D-aspartic acid formation in an amyloidogenic peptide 1-42 under physiological conditions. From analyses using thioflavine-T fluorometric assay and electronmicroscopic spectroscopy after 60 h incubation at 37 degrees C, it was found that sucrose retarded the fibril formation in the amyloidogenic peptide. The retardation of the formation of amyloid fibrils by sucrose was suggested to be not due to viscosity but due to disturbance of the assemlby of alpha-helix containing peptides. Moreover, we showed that the formation of D-aspartyl residue, which is found in beta-amyloid fibrils from Alzheimer disease brains, in the amyloidogenic peptide was also retarded in the presence of sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号