首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stromal cell-derived factor 1 (SDF-1) and the chemokine receptor CXCR4 are highly expressed in the nervous system. Knockout studies have suggested that both SDF-1 and CXCR4 play essential roles in cerebellar, hippocampal, and neocortical neural cell migration during embryogenesis. To extend these observations, CXCR4 signaling events in rat and human neural progenitor cells (NPCs) were examined. Our results show that CXCR4 is expressed in abundance on rat and human NPCs. Moreover, SDF-1alpha induced increased NPCs levels of inositol 1,4,5-triphosphate, extracellular signal-regulated kinases 1/2, Akt, c-Jun N-terminal kinase, and intracellular calcium whereas it diminished cyclic adenosine monophosphate. Finally, SDF-1alpha can induce human NPC chemotaxis in vitro, suggesting that CXCR4 plays a functional role in NPC migration. Both T140, a CXCR4 antagonist, and pertussis toxin (PTX), an inactivator of G protein-coupled receptors, abrogated these events. Ultimately, this study suggested that SDF-1alpha can influence NPC function through CXCR4 and that CXCR4 is functional on NPC.  相似文献   

2.
We tested the hypothesis that a nitric oxide donor, DETA-NONOate, up-regulates stromal cell-derived factor-1 (SDF1) and angiopoietin 1 (Ang1) in the ischemic brain and their respective receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hr later DETA-NONOate (0.4 mg/kg) or phosphate-buffered solution was intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis by real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate-induced SVZ migration after stroke, SDF1alpha, Ang1 peptide, a specific antagonist of CXCR4 (AMD3100), and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percentage area of doublecortin (DCX, a marker of migrating neuroblasts)-immunoreactive cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and up-regulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo-alone animals. In vitro, SDF1alpha and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate-induced SVZ cell migration. Our data indicate that treatment of stroke with a nitric oxide donor up-regulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration.  相似文献   

3.
Neural precursor cells (NPCs) are self-renewing, multipotent progenitors that give rise to neurons, astrocytes and oligodendrocytes in the central nervous system (CNS). Fetal NPCs have attracted attention for their potential use in studying normal CNS development. Several studies of rodent neural progenitors have suggested that chemokines and their receptors are involved in directing NPC migration during CNS development. In this study, we established a consistent system to culture human NPCs and examined the expression of chemokine receptors on these cells. NPCs were found to express the markers nestin and CD133 and to differentiate into neurons, astrocytes and oligodendrocytes at the clonal level. Flow cytometry and RNase protection assay (RPA) indicated that NPCs express high levels of CXCR4 and low levels of several other chemokine receptors. When examined using a chemotaxis assay, NPCs were able to respond to CXCL12/SDF-1alpha, a ligand of CXCR4. Treatment with anti-CXCR4 antibody or HIV-1 gp120 abolished the migratory response of NPCs towards CXCL12/SDF-1alpha. These findings suggest that CXCR4 may play a significant role in directing NPC migration during CNS development.  相似文献   

4.
Rodent adult subventricular zone (SVZ)-derived progenitor cells abandon the rostral migratory stream (RMS)/olfactory complex postmiddle cerebral artery occlusion (MCAo) and migrate into compromised tissue, possibly playing a role in brain recovery. Using SVZ tissue explants from the adult rat, we investigated the role of the phosphoinositide 3-kinase (PI3K) signal transduction pathway in the migration of SVZ cells. Stroke significantly (P <.01) increased migratory speed (198 +/- 39 microm/day) of neuroblasts out of the SVZ explants compared with the speed (99 +/- 20 microm/day) in the normal SVZ (nSVZ) explants within the first 3 days of incubation. Three-dimensional laser scanning confocal microscopy revealed formation of neuroblast encompassing chain-like astrocyte structures extruding from both normal and stroke explants. Western blots showed that stroke SVZ (sSVZ) explants increased Akt phosphorylation. Treatment of sSVZ explants with the selective PI3K inhibitor LY294002 significantly (P <.01) attenuated neuroblast migration and Akt phosphorylation, whereas treatment with LY294002 did not affect the number of bromodeoxyuridine (BrdU)- and caspase-3-immunoreactive cells, indicating that stroke-enhanced neuroblast migration is independent of cell proliferation and survival. PI3K catalyzes phosphatidylinositol-3,4,5-triphosphate (PIP(3)) which facilitates Akt phosphorylation. Thus, our data demonstrate that the PI3K/Akt signal transduction pathway mediates neuroblast migration after stroke.  相似文献   

5.
背景:近年研究发现移植的骨髓间充质干细胞能向颅内创伤、脑卒中、炎症和变性疾病等病灶部位迁移,进而发挥治疗作用,但对于其向病灶定向迁移的具体机制还不十分清楚。 目的:探讨基质细胞衍生因子1及其受体 CXCR4在移植的骨髓间充质干细胞趋向缺血脑组织迁移中的作用。 设计、时间及地点:细胞学体内实验,于2008-02/2009-02在解放军第三军医大学新桥医院中心实验室进行。 材料:骨髓标本取自解放军第三军医大学附属新桥医院血液科收治的15~40岁正常或原发病未累及骨髓患者,三四月龄健康雄性SD大鼠72只由解放军第三军医大学野战外科研究所实验动物中心提供。 方法:密度梯度离心贴壁筛选法分离纯化、体外培养人骨髓间充质干细胞。54只大鼠参照Nagasawa线栓法制备局灶性脑缺血再灌注模型,剩余18只作为假手术组,仅插入线栓10 mm。模型组及假手术组大鼠各取9只,分别于造模后第2,4,8天,采用Real-time PCR和免疫组织化学法定量分析缺血脑组织基质细胞衍生因子1表达变化。剩余36只脑缺血再灌注模型鼠随机分为细胞移植组、溶液对照组,18只/组,于再灌注后24 h分别从尾静脉缓慢注入1 mL人骨髓间充质干细胞悬液(含2×109 L-1个细胞)或1 mL PBS。 主要观察指标:人骨髓间充质干细胞CXCR4 mRNA和蛋白的表达,缺血再灌注后脑组织基质细胞衍生因子1 mRNA和蛋白表达变化,免疫组织化学检测人骨髓间充质干细胞向缺血脑组织的迁移和分布。 结果:RT-PCR结果发现人骨髓间充质干细胞表达CXCR4 mRNA,免疫细胞化学染色发现CXCR4主要表达于人骨髓间充质干细胞的胞膜和胞浆。脑缺血再灌注损伤后2,4,8 d,趋化因子基质细胞衍生因子1 mRNA水平呈上升趋势,与假手术组比较差异有显著性意义(P < 0.05)。经静脉移植的人骨髓间充质干细胞定向迁移到脑损伤区域,并大量分布于基质细胞衍生因子1高表达的缺血半暗区,损伤侧大脑半球人骨髓间充质干细胞数量显著高于对侧半球(P < 0.01)。 结论:基质细胞衍生因子1及其受体CXCR4参与并促进人骨髓间充质干细胞向脑缺血再灌注损伤区的迁移。  相似文献   

6.
Stromal cell-derived factor 1alpha (SDF-1alpha), a chemoattractant for leucocytes and neurons, and its receptor, CXCR4 are expressed in subsets of neurons of specific brain areas. In rat lateral hypothalamic area (LHA) we show, using immunocytochemistry, that CXCR4 is localized within melanin-concentrating hormone (MCH)-expressing neurons, mainly involved in feeding behaviour regulation. We investigated whether SDF-1alpha may control MCH neuronal activity. Patch-clamp recordings in rat LHA slices revealed multiple effects of SDF-1alpha on the membrane potential of MCH neurons, indirect through glutamate/GABA release and direct through GIRK current activation. Moreover, SDF-1alpha at 0.1-1 nM decreased peak and discharge frequency of action potential evoked by current pulses. These effects were further confirmed in voltage-clamp experiments, SDF-1alpha depressing both potassium and sodium currents. At 10 nM, however, SDF-1alpha increased peak and discharge frequency of action potential evoked by current pulses. Using a specific CXCR4 antagonist, we demonstrated that only the depressing effect on AP discharge was mediated through CXCR4 while the opposite effect was indirect. Together, our studies reveal for the first time a direct effect of SDF-1alpha on voltage-dependent membrane currents of neurons in brain slices and suggest that this chemokine may regulate MCH neuron activity.  相似文献   

7.
Stromal cell-Derived Factor-1 (SDF-1alpha), binds to the seven-transmembrane G protein-coupled CXCR4 receptor and modulates cell migration, differentiation, and proliferation. CXCR4 has been reported to be expressed in various tissues including brain. Moreover, CXCR4 has recently been shown to be one of the coreceptors for HIV-1 infection which could be implicated in HIV encephalitis. In the present study, the binding properties and autoradiographic distribution of [125I]SDF-1alpha binding to CXCR4 were characterized in the adult rat brain. SDF-1alpha binding and CXCR4 coupling system were also studied in human neuroblastoma cell line SK-N-SH. The binding of [125I]SDF-1alpha on rat brain sections was specific, time-dependent and reversible. The highest densities of CXCR4 were detected in the choroid plexus of the lateral and the dorsal third ventricle. Lower densities of [125I]SDF-1alpha binding sites were observed in various brain regions including cerebral cortex, anterior olfactory nuclei, hippocampal formation, thalamic nuclei, blood vessels and pituitary gland. In the choroid plexus, the IC(50) and K(d) of [125I]SDF-1alpha binding were respectively 0.6 nM and 0. 36 nM. Similar IC(50) values were obtained in other brain structures. A CXCR4 antagonist, bicyclam, competed with SDF-1alpha binding (30% inhibition at 10(-6) M). In SK-N-SH cells, [125I]SDF-1alpha bound to CXCR4 with a K(d) of 5.0 nM and a maximal binding capacity of 460 fmol/mg of protein. SDF-1alpha induced a rapid and transient intracellular calcium increase in SK-N-SH cells. These findings suggest that CXCR4 is highly expressed in some brain structures and have a regulatory role in the nervous system. The significance of this expression in the brain parenchyma and more specifically in the choroid plexus remains to be clarified in the normal as well as in the infected brain.  相似文献   

8.
Rat forebrain neurogenesis and striatal neuron replacement after focal stroke   总被引:36,自引:0,他引:36  
The persistence of neurogenesis in the forebrain subventricular zone (SVZ) of adult mammals suggests that the mature brain maintains the potential for neuronal replacement after injury. We examined whether focal ischemic injury in adult rat would increase SVZ neurogenesis and direct migration and neuronal differentiation of endogenous precursors in damaged regions. Focal stroke was induced in adult rats by 90-minute right middle cerebral artery occlusion (tMCAO). Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (BrdU) labeling and immunostaining for cell type-specific markers. Brains examined 10-21 days after stroke showed markedly increased SVZ neurogenesis and chains of neuroblasts extending from the SVZ to the peri-infarct striatum. Many BrdU-labeled cells persisted in the striatum and cortex adjacent to infarcts, but at 35 days after tMCAO only BrdU-labeled cells in the neostriatum expressed neuronal markers. Newly generated cells in the injured neostriatum expressed markers of medium spiny neurons, which characterize most neostriatal neurons lost after tMCAO. These findings indicate that focal ischemic injury increases SVZ neurogenesis and directs neuroblast migration to sites of damage. Moreover, neuroblasts in the injured neostriatum appear to differentiate into a region-appropriate phenotype, which suggests that the mature brain is capable of replacing some neurons lost after ischemic injury.  相似文献   

9.
Chemokine stromal cell-derived factor-1 (SDF-1, or CXCL12) plays an important role in brain development and functioning. Whole-cell patch clamp recordings were conducted on CA3 neurons in hippocampal slices prepared from neonatal rats between postnatal days 2 and 6 to study the modulatory effects of SDF-1alpha on network-driven, gamma-aminobutyric-acid-mediated giant depolarizing potentials (GDPs), a hallmark of the developing hippocampus. We found that SDF-1alpha, the only natural ligand for chemokine CXC motif receptor 4 (CXCR4), decreased GDP firing without significant effects on neuronal passive membrane properties in neonatal hippocampal neurons. The SDF-1alpha-mediated decrease in GDP firing was blocked by T140, a CXCR4 receptor antagonist, suggesting that SDF-1alpha modulates GDP firing via CXCR4. We also showed that endogenous SDF-1 exerts a tonic inhibitory action on GDPs in the developing hippocampus. As SDF-1/CXCR4 are highly expressed in the developing brain and GDPs are involved in activity-dependent synapse formation and functioning, the inhibitory action of SDF-1alpha on GDPs may reflect a potential mechanism for chemokine regulation of neural development in early neonatal life.  相似文献   

10.
Ischemic stroke affecting the adult brain causes increased progenitor proliferation in the subventricular zone (SVZ) and generation of neuroblasts, which migrate into the damaged striatum and differentiate to mature neurons. Meteorin (METRN), a newly discovered neurotrophic factor, is highly expressed in neural progenitor cells and immature neurons during development, suggesting that it may be involved in neurogenesis. Here, we show that METRN promotes migration of neuroblasts from SVZ explants of postnatal rats and stroke-subjected adult rats via a chemokinetic mechanism, and reduces N-methyl-D-asparate-induced apoptotic cell death in SVZ cells in vitro. Stroke induced by middle cerebral artery occlusion upregulates the expression of endogenous METRN in cells with neuronal phenotype in striatum. Recombinant METRN infused into the stroke-damaged brain stimulates cell proliferation in SVZ, promotes neuroblast migration, and increases the number of immature and mature neurons in the ischemic striatum. Our findings identify METRN as a new factor promoting neurogenesis both in vitro and in vivo by multiple mechanisms. Further work will be needed to translate METRN's actions on endogenous neurogenesis into improved recovery after stroke.  相似文献   

11.
12.
基质细胞衍生因子-1对间质干细胞迁移的影响   总被引:7,自引:0,他引:7  
目的:观察基质细胞衍生因子-1(SDF-1)在体内外对大鼠骨髓间质干细胞(rMSCs)的趋化诱导作用,探讨SDF-1对rMSCs迁移影响的可能机制。方法:应用体外细胞迁移实验及大鼠脑梗死模型体内移植,观察SDF-1对rMSCs的迁移影响。流式细胞术与RT-PCR检测rMSCs的CXC趋化因子受体4(CXCchemokinereceptor4,CXCR4)表达。结果:在SDF-1存在时,rMSCs迁移活跃,应用抗体封闭CXCR4后,这种迁移显著减弱。体内移植的rMSCs主要聚集在脑梗死灶周围,但在封闭CXCR4后,这种聚集现象大大减弱。流式细胞术示仅小部分rMSCs表面表达CXCR4,但经TritonX-100处理后,表达CXCR4的rMSCs增加。结论:SDF-1可通过CXCR4对rMSCs起趋化作用,针对这种作用可望调控干细胞向靶组织的趋化聚集量,达到治疗目的。  相似文献   

13.
14.
Neuroblasts migrate long distances in the postnatal subventricular zone (SVZ) and rostral migratory stream (RMS) to the olfactory bulbs. Many fundamental features of SVZ migration are still poorly understood, and we addressed several important questions using two‐photon time‐lapse microscopy of brain slices from postnatal and adult eGFP+ transgenic mice. 1) Longitudinal arrays of neuroblasts, so‐called chain migration, have never been dynamically visualized in situ. We found that neuroblasts expressing doublecortin‐eGFP (Dcx‐eGFP) and glutamic acid decarboxylase‐eGFP (Gad‐eGFP) remained within arrays, which maintained their shape for many hours, despite the fact that there was a wide variety of movement within arrays. 2) In the dorsal SVZ, neuroblasts migrated rostrocaudally as expected, but migration shifted to dorsoventral orientations throughout ventral regions of the lateral ventricle. 3) Whereas polarized bipolar morphology has been a gold standard for inferring migration in histologic sections, our data indicated that migratory morphology was not predictive of motility. 4) Is there local motility in addition to long distance migration? 5) How fast is SVZ migration? Unexpectedly, one‐third of motile neuroblasts moved locally in complex exploratory patterns and at average speeds slower than long distance movement. 6) Finally, we tested, and disproved, the hypothesis that all motile cells in the SVZ express doublecortin, indicating that Dcx is not required for migration of all SVZ cell types. These data show that cell motility in the SVZ and RMS is far more complex then previously thought and involves multiple cell types, behaviors, speeds, and directions. J. Comp. Neurol. 505:190–208, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

15.
16.
Stromal-derived factor 1 (SDF-1), a known chemoattractant, and its receptor CXCR4 are widely expressed in the developing and adult cerebral cortex. Recent studies have highlighted potential roles for SDF-1 during early cortical development. In view of the current findings, our histological analysis has revealed a distinct pattern of SDF-1 expression in the developing cerebral cortex at a time when cell proliferation and migration are at peak. To determine the role of chemokine signalling during early cortical development, embryonic rat brain slices were exposed to a medium containing secreted SDF-1 to perturb the endogenous levels of chemokine. Alternatively, brain slices were treated with 40 muM of T140 or AMD3100, known antagonists of CXCR4. Using these experimental approaches, we demonstrate that chemokine signalling is imperative for the maintenance of the early cortical plate. In addition, we provide evidence that both neurogenesis and radial migration are concomitantly regulated by this signalling system. Conversely, interneurons, although not dependent on SDF-1 signalling to transgress the telencephalic boundary, require the chemokine to maintain their tangential migration. Collectively, our results demonstrate that SDF-1 with its distinct pattern of expression is essential and uniquely positioned to regulate key developmental events that underlie the formation of the cerebral cortex.  相似文献   

17.
Transient focal ischemia is known to induce proliferation of neural progenitors in adult rodent brain. We presently report that doublecortin positive neuroblasts formed in the subventricular zone (SVZ) and the posterior peri-ventricle region migrate towards the cortical and striatal penumbra after transient middle cerebral artery occlusion (MCAO) in adult rodents. Cultured neural progenitor cells grafted into the non-infarcted area of the ipsilateral cortex migrated preferentially towards the infarct. As chemokines are known to induce cell migration, we investigated if monocyte chemoattractant protein-1 (MCP-1) has a role in post-ischemic neuroblast migration. Transient MCAO induced an increased expression of MCP-1 mRNA in the ipsilateral cortex and striatum. Immunostaining showed that the expression of MCP-1 was localized in the activated microglia and astrocytes present in the ischemic areas between days 1 and 3 of reperfusion. Furthermore, infusion of MCP-1 into the normal striatum induced neuroblast migration to the infusion site. The migrating neuroblasts expressed the MCP-1 receptor CCR2. In knockout mice that lacked either MCP-1 or its receptor CCR2, there was a significant decrease in the number of migrating neuroblasts from the ipsilateral SVZ to the ischemic striatum. These results show that MCP-1 is one of the factors that attract the migration of newly formed neuroblasts from neurogenic regions to the damaged regions of brain after focal ischemia.  相似文献   

18.
Bone morphogenetic proteins (BMPs) affect cell proliferation and differentiation. Astrocytes in ischemic brain are highly responsive to bone marrow stromal cell (BMSC) treatment. We investigated the effects of BMSCs on astrocytes cultured under oxygen- and glucose-deprived conditions, which in part simulate in vivo stroke conditions, to test the hypothesis that BMSCs alter astrocytic expression of BMPs which may contribute to neurological functional recovery of stroke. Quantitative real-time RT-PCR showed that the expression of BMP2/4 mRNAs decreased within ischemic astrocytes, In contrast, BMP2/4 mRNA was significantly increased after cocultured with BMSCs. Western blotting also confirmed this increase at the protein level in the medium of ischemic astrocytes after coculture with BMSCs. As a source of neural stem and progenitor cells, cultured subventricular zone (SVZ) neurospheres exposed to medium obtained from ischemic astrocytes cocultured with BMSCs were significantly enriched in cells expressing the astrocytic marker glial fibrillary acidic protein (GFAP), but not at the expense of beta-III-tubulin-positive SVZ neuroblasts. The expression of BMP2/4 subsequently increased the phosphorylation of downstream effector Smad1 and the expression of notch signal pathway-induced protein Hes1 in cultured SVZ neurospheres. BMP antagonist Noggin blocked the elevation of phosphorylated Smad1 and the expression of Hes1 as well as reducing the percentage of astrocytic SVZ progenitor cells. Our results indicate that BMSCs increase BMP2/4 expression in ischemic astrocytes. These changes enhance subventricular progenitor cell gliogenesis by activating relevant signaling pathways. BMSC-stimulated signaling of endogenous astrocytes may alter the ischemic environment, promoting remodeling of brain and hence, improve functional recovery after stroke.  相似文献   

19.
Enhancing the ability of either endogenous or transplanted oligodendrocyte progenitors (OPs) to engage in myelination may constitute a novel therapeutic approach to demyelinating diseases of the brain. It is known that in adults neural progenitors situated in the subventricular zone of the lateral ventricle (SVZ) are capable of generating OPs which can migrate into white matter tracts such as the corpus callosum (CC). We observed that progenitor cells in the SVZ of adult mice expressed CXCR4 chemokine receptors and that the chemokine SDF-1/CXCL12 was expressed in the CC. We therefore investigated the role of chemokine signaling in regulating the migration of OPs into the CC following their transplantation into the lateral ventricle. We established OP cell cultures from Olig2-EGFP mouse brains. These cells expressed a variety of chemokine receptors, including CXCR4 receptors. Olig2-EGFP OPs differentiated into CNPase-expressing oligodendrocytes in culture. To study the migratory capacity of Olig2-EGFP OPs in vivo, we transplanted them into the lateral ventricles of mice. Donor cells migrated into the CC and differentiated into mature oligodendrocytes. This migration was enhanced in animals with Experimental Autoimmune Encephalomyelitis (EAE). Inhibition of CXCR4 receptor expression in OPs using shRNA inhibited the migration of transplanted OPs into the white matter suggesting that their directed migration is regulated by CXCR4 signaling. These findings indicate that CXCR4 mediated signaling is important in guiding the migration of transplanted OPs in the context of inflammatory demyelinating brain disease.  相似文献   

20.
BackgroundCerebral ischemic stroke can induce the proliferation of subventricular zone (SVZ) neural stem cells (NSCs) in the adult brain. However, this reparative process is restricted because of NSCs’ death shortly after injury or disability of them to reach the infarct boundary. In the present study, we investigated the ability of cerebral dopamine neurotrophic factor (CDNF) on the attraction of SVZ-resident NSCs toward the lesioned area and neurological recovery in a photothrombotic (PT) stroke model of miceMethodsThe mice were assigned to three groups stroke, stroke+phosphate buffered saline (PBS), and stroke+CDNF. Migration of SVZ NSCs were evaluated by BrdU/doublecortin (DCX) double immunofluorescence method on days 7 and 14 and their differentiation were evaluated by BrdU/ Neuronal Nuclei (NeuN) double immunofluorescence method 28 days after intra-SVZ CDNF injection. Serial coronal sections were stained with cresyl violet to detect the infarct volume and a modified neurological severity score (mNSS) was performed to assess the neurological performanceResultsInjection of CDNF increased the proliferation of SVZ NSCs and the number of DCX-expressing neuroblasts migrated from the SVZ toward the ischemic site. It also enhanced the differentiation of migrated neuroblasts into the mature neurons in the lesioned site. Along with this, the infarct volume was significantly decreased and the neurological performance was improved as compared to other groupsConclusionThese results demonstrate that CDNF is capable of enhancing the proliferation of NSCs residing in the SVZ and their migration toward the ischemia region and finally, differentiation of them in stroke mice, concomitantly decreased infarct volume and improved neurological abilities were revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号