首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual attention selects behaviorally relevant information for detailed processing by resolving competition for representation among stimuli in retinotopically organized visual cortex. The signals that control this attentional biasing are thought to arise in a frontoparietal network of several brain regions, including posterior parietal cortex. Recent studies have revealed a topographic organization in the intraparietal sulcus (IPS) that mirrors the retinotopic organization in visual cortex, suggesting that connectivity between these regions might provide the mechanism by which attention acts on early cortical representations. Using white-matter imaging and functional MRI, we examined the connectivity between two topographic regions of IPS and six retinotopically defined areas in visual cortex. We observed a strong positive correlation between attention modulations in visual cortex and connectivity of posterior IPS, suggesting that these white-matter connections mediate the attention signals that resolve competition among stimuli for representation in visual cortex. Furthermore, we found that connectivity between IPS and V1 consistently respects visuotopic boundaries, whereas connections to V2 and V3/VP disperse by 60%. This pattern is consistent with changes in receptive field size across regions and suggests that a primary role of posterior IPS is to code spatially specific visual information. In summary, we have identified white-matter pathways that are ideally suited to carry attentional biasing signals in visuotopic coordinates from parietal control regions to sensory regions in humans. These results provide critical evidence for the biased competition theory of attention and specify neurobiological constraints on the functional brain organization of visual attention.  相似文献   

2.
Attention often requires maintaining a stable mental state over time while simultaneously improving perceptual sensitivity. These requirements place conflicting demands on neural populations, as sensitivity implies a robust response to perturbation by incoming stimuli, which is antithetical to stability. Functional specialization of cortical areas provides one potential mechanism to resolve this conflict. We reasoned that attention signals in executive control areas might be highly stable over time, reflecting maintenance of the cognitive state, thereby freeing up sensory areas to be more sensitive to sensory input (i.e., unstable), which would be reflected by more dynamic attention signals in those areas. To test these predictions, we simultaneously recorded neural populations in prefrontal cortex (PFC) and visual cortical area V4 in rhesus macaque monkeys performing an endogenous spatial selective attention task. Using a decoding approach, we found that the neural code for attention states in PFC was substantially more stable over time compared with the attention code in V4 on a moment-by-moment basis, in line with our guiding thesis. Moreover, attention signals in PFC predicted the future attention state of V4 better than vice versa, consistent with a top-down role for PFC in attention. These results suggest a functional specialization of attention mechanisms across cortical areas with a division of labor. PFC signals the cognitive state and maintains this state stably over time, whereas V4 responds to sensory input in a manner dynamically modulated by that cognitive state.SIGNIFICANCE STATEMENT Attention requires maintaining a stable mental state while simultaneously improving perceptual sensitivity. We hypothesized that these two demands (stability and sensitivity) are distributed between prefrontal and visual cortical areas, respectively. Specifically, we predicted attention signals in visual cortex would be less stable than in prefrontal cortex, and furthermore prefrontal cortical signals would predict attention signals in visual cortex in line with the hypothesized role of prefrontal cortex in top-down executive control. Our results are consistent with suggestions deriving from previous work using separate recordings in the two brain areas in different animals performing different tasks and represent the first direct evidence in support of this hypothesis with simultaneous multiarea recordings within individual animals.  相似文献   

3.
Turner syndrome is a genetic disorder caused by the complete or partial absence of an X chromosome in affected women. Individuals with TS show characteristic difficulties with executive functions, visual‐spatial and mathematical cognition, with relatively intact verbal skills, and congruent abnormalities in structural development of the posterior parietal cortex (PPC). The functionally heterogeneous PPC has recently been investigated using connectivity‐based clustering methods, which sub‐divide a given region into clusters of voxels showing similar structural or functional connectivity to other brain regions. In the present study, we extended this method to compare connectivity‐based clustering between groups and investigate whether functional networks differentially recruit the PPC in TS. To this end, we parcellated the PPC into sub‐regions based on temporal correlations with other regions of the brain. fMRI data were collected from 15 girls with TS and 14 typically developing (TD) girls, aged 7–14, while they performed a visual‐spatial task. Temporal correlations between voxels in the PPC and a set of seed regions were calculated, and the PPC divided into clusters of voxels showing similar connectivity. It was found that in general the PPC parcellates similarly in TS and TD girls, but that regions in bilateral inferior parietal lobules, and posterior right superior parietal lobule, were reliably recruited by different networks in TS relative to TD participants. These regions showed weaker correlation in TS with a set of regions involved in visual processing. These results suggest that abnormal development of visuospatial functional networks in TS may relate to the well documented cognitive difficulties in this disorder. Hum Brain Mapp 34:3117–3128, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Cognitive control is built upon the interactions of multiple brain regions. It is currently unclear whether the involved regions are temporally separable in relation to different cognitive processes and how these regions are temporally associated in relation to different task performances. Here, using stop‐signal task data acquired from 119 healthy participants, we showed that concurrent and poststop cognitive controls were associated with temporally distinct but interrelated neural mechanisms. Specifically, concurrent cognitive control activated regions in the cingulo‐opercular network (including the dorsal anterior cingulate cortex [dACC], insula, and thalamus), together with superior temporal gyrus, secondary motor areas, and visual cortex; while regions in the fronto‐parietal network (including the lateral prefrontal cortex [lPFC] and inferior parietal lobule) and cerebellum were only activated during poststop cognitive control. The associations of activities between concurrent and poststop regions were dependent on task performance, with the most notable difference in the cerebellum. Importantly, while concurrent and poststop signals were significantly correlated during successful cognitive control, concurrent activations during erroneous trials were only correlated with posterror activations in the fronto‐parietal network but not cerebellum. Instead, the cerebellar activation during posterror cognitive control was likely to be driven secondarily by posterror activation in the lPFC. Further, a dynamic causal modeling analysis demonstrated that postsuccess cognitive control was associated with inhibitory connectivity from the lPFC to cerebellum, while excitatory connectivity from the lPFC to cerebellum was present during posterror cognitive control. Overall, these findings suggest dissociable but temporally related neural mechanisms underlying concurrent, postsuccess, and posterror cognitive control processes in healthy individuals.  相似文献   

5.
This study used resting state functional magnetic resonance imaging (rsfMRI) to investigate whole brain networks in patients with persistent postural perceptual dizziness (PPPD). We compared rsfMRI data from 38 patients with PPPD and 38 healthy controls using whole brain and region of interest analyses. We examined correlations among connectivity and clinical variables and tested the ability of a machine learning algorithm to classify subjects using rsfMRI results. Patients with PPPD showed: (a) increased connectivity of subcallosal cortex with left superior lateral occipital cortex and left middle frontal gyrus, (b) decreased connectivity of left hippocampus with bilateral central opercular cortices, left posterior opercular cortex, right insular cortex and cerebellum, and (c) decreased connectivity between right nucleus accumbens and anterior left temporal fusiform cortex. After controlling for anxiety and depression as covariates, patients with PPPD still showed decreased connectivity between left hippocampus and right inferior frontal gyrus, bilateral temporal lobes, bilateral insular cortices, bilateral central opercular cortex, left parietal opercular cortex, bilateral occipital lobes and cerebellum (bilateral lobules VI and V, and left I–IV). Dizziness handicap, anxiety, and depression correlated with connectivity in clinically meaningful brain regions. The machine learning algorithm correctly classified patients and controls with a sensitivity of 78.4%, specificity of 76.9%, and area under the curve = 0.88 using 11 connectivity parameters. Patients with PPPD showed reduced connectivity among the areas involved in multisensory vestibular processing and spatial cognition, but increased connectivity in networks linking visual and emotional processing. Connectivity patterns may become an imaging biomarker of PPPD.  相似文献   

6.
BACKGROUND: The cerebellum is of potential interest for understanding adaptive responses in motor control in patients with multiple sclerosis because of the high intrinsic synaptic plasticity of this brain region. OBJECTIVE: To assess the relative roles of interactions between the neocortex and the cerebellum using measures of functional connectivity. METHODS: A role for altered neocortical-cerebellar functional connectivity in adaptive responses to injury from multiple sclerosis was tested using 1.5 T functional magnetic resonance imaging (fMRI) during figure writing with the dominant right hand in patients with predominantly early relapsing-remitting multiple sclerosis. RESULTS: Patients (n = 14) showed a more bihemispheric pattern of activation in motor cortex than healthy controls (n = 11). Correlations between task related signal changes in neocortical and cerebellar regions of interest were used as a measure of functional connectivity. Healthy controls showed strong functional connectivity between the left motor cortex and the right cerebellar dentate nucleus. Significant connectivity between the left primary motor cortex and the right dentate was not found in patients. However, patients had significant connectivity between the left premotor neocortex and the ipsilateral (left) cerebellar cortex (crus I), which was not found in healthy controls. CONCLUSIONS: Changes in apparent cerebellar-neocortical functional connectivity may mediate potentially adaptive changes in brain motor control in patients with multiple sclerosis. Similar changes in the cerebellum and premotor cortex have been reported in the healthy brain during motor learning, suggesting that common mechanisms may contribute to normal motor learning and motor recovery after injury from multiple sclerosis.  相似文献   

7.
Feedback regulation from the higher association areas is thought to control the primary sensory cortex, contribute to the cortical processing of sensory information, and work for higher cognitive functions such as multimodal integration and attentional control. However, little is known about the underlying neural mechanisms. Here, we show that the posterior parietal cortex (PPC) persistently inhibits the activity of the primary visual cortex (V1) in mice. Activation of the PPC causes the suppression of visual responses in V1 and induces the short‐term depression, which is specific to visual stimuli. In contrast, pharmacological inactivation of the PPC or disconnection of cortical pathways from the PPC to V1 results in an effect of transient enhancement of visual responses in V1. Two‐photon calcium imaging demonstrated that the cortical disconnection caused V1 excitatory neurons an enhancement of visual responses and a reduction of orientation selectivity index (OSI). These results show that the PPC regulates the response properties of V1 excitatory neurons. Our findings reveal one of the functions of the PPC, which may contribute to higher brain functions in mice.  相似文献   

8.
The cerebellum plays a key role not only in motor function but also in affect and cognition. Although several psychopathological disorders have been associated with overall cerebellar dysfunction, it remains unclear whether different regions of the cerebellum contribute uniquely to psychopathology. Accordingly, we compared seed‐based resting‐state functional connectivity of the anterior cerebellum (lobule IV–V), of the posterior cerebellum (Crus I), and of the anterior vermis across posttraumatic stress disorder (PTSD; n = 65), its dissociative subtype (PTSD + DS; n = 37), and non‐trauma‐exposed healthy controls (HC; n = 47). Here, we observed decreased functional connectivity of the anterior cerebellum and anterior vermis with brain regions involved in somatosensory processing, multisensory integration, and bodily self‐consciousness (temporo‐parietal junction, postcentral gyrus, and superior parietal lobule) in PTSD + DS as compared to PTSD and HC. Moreover, the PTSD + DS group showed increased functional connectivity of the posterior cerebellum with cortical areas related to emotion regulation (ventromedial prefrontal and orbito‐frontal cortex, subgenual anterior cingulum) as compared to PTSD. By contrast, PTSD showed increased functional connectivity of the anterior cerebellum with cortical areas associated with visual processing (fusiform gyrus), interoceptive awareness (posterior insula), memory retrieval, and contextual processing (hippocampus) as compared to HC. Finally, we observed decreased functional connectivity between the posterior cerebellum and prefrontal regions involved in emotion regulation, in PTSD as compared to HC. These findings not only highlight the crucial role of each cerebellar region examined in the psychopathology of PTSD but also reveal unique alterations in functional connectivity distinguishing the dissociative subtype of PTSD versus PTSD.  相似文献   

9.
Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual?Cspatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of ??cognitive?? networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition??as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks??remains a challenge for future investigations.  相似文献   

10.
In 13 cats injections of horseradish peroxidase (HRP) in various parts of the cerebral cortex were combined with injections of HRP in the cerebellar crus I in the same animal in order to study the cortical regions which may influence the crus I via the pontine nuclei. In the pons terminal regions anterogradely labeled from the cerebral cortex and cell groups retrogradely labeled from crus I were carefully plotted. Overlap between sites of ending of cortical fibers and sites of origin of fibers to crus I was relatively modest in all experiments. On the other hand, partial overlap was usually found at multiple sites. The largest single input to crus I appears to come from the parietal region, particularly the anterior part of the suprasylvian gyrus, while the sensorimotor region contributes much less. Area 6, the second somatosensory cortex and the orbital gyrus, all seem able to influence pontine cells projecting to crus I. Least overlap is found after injections of the visual cortex. The size and orientation of the dendritic fields of pontine cells were studied in Golgi-impregnated material. The dendritic fields average 187 X 339 microns in the transverse plane and are so small that they will only moderately increase the overlap. It is concluded that small subgroups of neurons projecting to crus I receive somewhat different sets of cortical afferents. The input to crus I must originate in wide areas of the cerebral cortex, and probably exhibits a high degree of spatial order, with an intricate pattern of specific divergence and convergence. The present results are compatible with previous physiological evidence from micromapping studies of a precise and complicated mosaic pattern of connections to the cerebellar hemispheres.  相似文献   

11.
《Clinical neurophysiology》2020,131(2):361-367
ObjectiveTo investigate if changes in brain network function and connectivity contribute to the abnormalities in visual event related potentials (ERP) in relapsing-remitting multiple sclerosis (RRMS), and explore their relation to a decrease in cognitive performance.MethodsWe evaluated 72 patients with RRMS and 89 healthy control subjects in a cross-sectional study. Visual ERP were generated using illusory and non-illusory stimuli and recorded using 21 EEG scalp electrodes. The measured activity was modelled using Dynamic Causal Modelling. The model network consisted of 4 symmetric nodes including the primary visual cortex (V1/V2) and the Lateral Occipital Complex. Patients and controls were tested with a neuropsychological test battery consisting of 18 cognitive tests covering six cognitive domains.ResultsWe found reduced cortical connectivity in bottom-up and interhemispheric connections to the right lateral occipital complex in patients (p < 0.001). Furthermore, interhemispherical connections were related to cognitive dysfunction in several domains (attention, executive function, visual perception and organization, processing speed and global cognition) for patients (p < 0.05). No relation was seen between cortical network connectivity and cognitive function in the healthy control subjects.ConclusionChanges in the functional connectivity to higher cortical regions provide a neurobiological explanation for the changes of the visual ERP in RRMS.SignificanceThis study suggests that changes in connectivity to higher cortical regions partly explain visual network dysfunction in RRMS where a lower interhemispheric connectivity may contribute to impaired cognitive function.  相似文献   

12.
Visual stability refers to our stable visuospatial perceptions despite the unstable visual input caused by saccades. Functional neuroimaging results, studies on patients with posterior parietal cortex (PPC) lesions, and single-unit recordings in the lateral intraparietal sulcus of primates indirectly suggest that the PPC might be a potential locus of visual stability through its involvement with spatial remapping. Here we directly explored the role of the PPC in visual stability by applying transcranial magnetic stimulation (TMS) while participants performed a perisaccadic displacement detection task. We show that TMS over the PPC but not a frontal control site alters sensitivity to displacement detection when administered just before contralateral saccades and that a general impairment in attention or in the perception of apparent motion cannot account for the decreased sensitivity. The specific relationship between the timing of TMS and saccade direction demonstrates that saccadic suppression of displacement (SSD) is likely a consequence of noisy contralateral spatial representations in the PPC around the time of a saccade. The same mechanism may keep the unstable visual world in the temporal proximity of saccades from reaching our consciousness.  相似文献   

13.
Corticostriatal projections to the dorsocentral striatum (DCS) were investigated using retrograde fluorescent axonal tracing. The DCS is of interest because of its role in directed attention and recovery from multimodal hemispatial neglect following cortical lesions of medial agranular cortex (AGm), an association area that is its major source of cortical input. A key finding was that the multimodal posterior parietal cortex (PPC) also contributes substantial input to DCS. This is significant because PPC and AGm are linked by corticocortical connections and are both critical components of the circuitry involved in spatial processing and directed attention. Other cortical areas providing input to DCS include visual association areas, lateral agranular cortex and orbital cortex. These areas also have reciprocal connections with AGm and PPC. Less consistent labeling was seen in somatic sensorimotor areas FL, HL and Par 1. Thalamic afferents to DCS are prominent from the intralaminar, ventrolateral, mediodorsal, ventromedial, laterodorsal (LD) and lateral posterior (LP) nuclei. Collectively, these nuclei constitute the sources of thalamic input to cortical areas AGm and PPC. Nuclei LD and LP are only labeled with injections in dorsal DCS, the site of major input from PPC, and PPC receives its thalamic input from LD and LP. We conclude that DCS receives inputs from cortical and thalamic areas that are themselves linked by corticocortical and thalamocortical connections. These findings support the hypothesis that DCS is a key component of an associative network of cortical, striatal and thalamic regions involved in multimodal processing and directed attention.  相似文献   

14.
The posterior parietal cortex (PPC) is implicated in directing and maintaining visual attention to locations in space. We hypothesized that the PPC also engages other cognitive processes in the transformation of behaviorally relevant visual inputs into appropriate actions, for example, monitoring of multiple locations, selection of responses to locations in space, and monitoring the outcome of response selections. We recorded single cells and local field potentials in the rat PPC during performance on a novel visuospatial attention (VSA) task that requires visually monitoring locations in space in order to make appropriate stimulus‐guided locomotor responses. In each trial, rats attended to four locations on the floor of a maze. A randomly chosen location was briefly illuminated. Approach to the correct target location was followed by food reward. We observed that PPC activity correlated with multiple phases of the VSA task, including monitoring for stimulus onset, detection of a target, spatial location of the target, and target choice. A substantial proportion of cells with behavioral correlates were also modulated by outcome of the trial. Our analyses of local field potentials revealed strong oscillatory rhythms in the theta frequency band, and more than a third of PPC neurons were phase locked to theta oscillations. As in other brain regions, theta power correlated with running speed. Peak theta power was higher in superficial layers than deep layers providing evidence against volume conduction from the hippocampus. In addition, theta power was sensitive to the outcome of a choice. Theta power was significantly higher following incorrect choices compared with correct choices, possibly providing a prediction error signal. Our study provides evidence that the rat PPC has multiple roles in the translation of visual information into appropriate behavioral actions. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Repetitive tactile sensory stimulation of the right mystacial vibrissae (whiskers) was performed in awake, adult rats. Regions of increased (14C) 2-deoxyglucose (2DG) uptake were mapped autoradiographically in cerebellum. Predominantly ipsilateral activation of multiple discrete granule cell regions occurred in paramedian lobule, crus 2, crus 1, lobulus simplex, and anterior lobe hemisphere. Bilateral and contralateral activation of cerebellum did occur. Multiple small patches, as well as large granule cell regions, were activated. Mossy fiber afferents from the spinal trigeminal nuclei (particularly interpolaris), principal trigeminal sensory nucleus, and superior colliculus could account for metabolic activation of the granular layer. The slight metabolic activation of the molecular layer could have occurred from climbing or parallel fibers. Comparisons of the paramedian lobule granule cell regions activated during repetitive sensory stimulation of the vibrissae (RSSV) to those activated during vibrissae motor cortex stimulation (VMIS) showed regions only activated by RSSV, regions only activated by VMIS, and regions activated by both RSSV and VMIS. The granule cell regions activated during RSSV and VMIS were usually adjacent to or overlapping each other. Regions only activated during RSSV or only during VMIS could represent technical problems in trying to compare vibrissae motor and sensory pathways in two different groups of animals. Alternatively, cerebellar regions activated only during RSSV could process vibrissae tactile inputs. Regions activated only during VMIS could process vibrissae motor and perhaps proprioceptive sensory input. Regions activated during both RSSV and VMIS might process vibrissae proprioceptive sensory input and/or might represent loci where vibrissae motor, proprioceptive sensory, and tactile sensory convergence occur. The results raise the possibility that vibrissae motor, proprioceptive sensory, and tactile sensory pathways could be processed in separate granule cell patches in parts of cerebellum and in the same granule cell patches in other parts of cerebellum.  相似文献   

16.
In addition to the role of planning and executing movement, the cerebellum greatly contributes to cognitive process. Numerous studies have reported structural and functional abnormalities in the cerebellum for HIV-infected patients, but little is known about the altered functional connectivity of particular cerebellar subregions and the cerebrum. Therefore, this study aimed to explore the resting-state functional connectivity (rsFC) changes of the cerebellum and further analyze the relationship between the rsFC changes and the neuropsychological evaluation. The experiment involved 26 HIV-infected men with asymptomatic neurocognitive impairment (ANI) and 28 healthy controls (HC). We selected bilateral hemispheric lobule VI and lobule IX as seed regions and mapped the whole-brain rsFC for each subregion. Results revealed that right lobule VI showed significant increased rsFC with the anterior cingulate cortex (ACC) in HIV-infected subjects. In addition, the correlation analysis on HIV-infected subjects illustrated the increased rsFC was negatively correlated with the attention/working memory score. Moreover, significantly increased cerebellar rsFCs were also observed in HIV-infected patients related to right inferior frontal gyrus (IFG) and right superior medial gyrus (SMG) while decreased rsFC was just found between right lobule VI and the left hippocampus (HIP). These findings suggested that, abnormalities of cerebro-cerebellar functional connectivity might be associated with cognitive dysfunction in HIV-infected men, particularly working memory impairment. It could also be the underlying mechanism of ANI, providing further evidence for early injury in the neural substrate of HIV-infected patients.  相似文献   

17.
Although the fear of being scrutinized by others in a social context is a key symptom in social anxiety disorder (SAD), the neural processes underlying the perception of scrutiny have not previously been studied by functional magnetic resonance imaging (fMRI). We used fMRI to map brain activation during a perception-of-scrutiny task in 20 SAD patients and 20 controls. A multi-dimensional analytic approach was used. Scrutiny perception was mediated by activation of the medial frontal cortex, insula-operculum region and cerebellum, and the additional recruitment of visual areas and the thalamus in patients. Between-group comparison demonstrated significantly enhanced brain activation in patients in the primary visual cortex and cerebellum. Functional connectivity mapping demonstrated an abnormal connectivity between regions underlying general arousal and attention. SAD patients showed significantly greater task-induced functional connectivity in the thalamo-cortical and the fronto-striatal circuits. A statistically significant increase in task-induced functional connectivity between the anterior cingulate cortex and scrutiny-perception-related regions was observed in the SAD patients, suggesting the existence of enhanced behavior-inhibitory control. The presented data indicate that scrutiny perception in SAD enhances brain activity in arousal-attention systems, suggesting that fMRI may be a useful tool to explore such a behavioral dimension.  相似文献   

18.
The cerebellum has been traditionally considered a sensory-motor structure, but more recently has been related to other cognitive and affective functions. Previous research and meta-analytic studies suggested that it could be involved in pain processing. Our aim was to distinguish the functional networks subserved by the cerebellum during pain processing. We used functional magnetic resonance imaging (fMRI) on 12 subjects undergoing mechanical pain stimulation and resting state acquisition. For the analysis of data, we used fuzzy c-mean to cluster cerebellar activity of each participant during nociception. The mean time courses of the clusters were used as regressors in a general linear model (GLM) analysis to explore brain functional connectivity (FC) of the cerebellar clusters. We compared our results with the resting state FC of the same cluster and explored with meta-analysis the behavior profile of the FC networks. We identified three significant clusters: cluster V, involving the culmen and quadrangular lobules (vermis IV-V, hemispheres IV-V-VI); cluster VI, involving the posterior quadrangular lobule and superior semilunar lobule (hemisphere VI, crus 1, crus 2), and cluster VII, involving the inferior semilunar lobule (VIIb, crus1, crus 2). Cluster V was more connected during pain with sensory-motor areas, cluster VI with cognitive areas, and cluster VII with emotional areas. Our results indicate that during the application of mechanical punctate stimuli, the cerebellum is not only involved in sensory functions but also with areas typically associated with cognitive and affective functions. Cerebellum seems to be involved in various aspects of nociception, reflecting the multidimensionality of pain perception.  相似文献   

19.
Faces convey social information such as emotion and speech. Facial emotion processing is supported via interactions between dorsal‐movement and ventral‐form visual cortex regions. Here, we explored, for the first time, whether similar dorsal–ventral interactions (assessed via functional connectivity), might also exist for visual‐speech processing. We then examined whether altered dorsal–ventral connectivity is observed in adults with high‐functioning autism spectrum disorder (ASD), a disorder associated with impaired visual‐speech recognition. We acquired functional magnetic resonance imaging (fMRI) data with concurrent eye tracking in pairwise matched control and ASD participants. In both groups, dorsal‐movement regions in the visual motion area 5 (V5/MT) and the temporal visual speech area (TVSA) were functionally connected to ventral‐form regions (i.e., the occipital face area [OFA] and the fusiform face area [FFA]) during the recognition of visual speech, in contrast to the recognition of face identity. Notably, parts of this functional connectivity were decreased in the ASD group compared to the controls (i.e., right V5/MT—right OFA, left TVSA—left FFA). The results confirmed our hypothesis that functional connectivity between dorsal‐movement and ventral‐form regions exists during visual‐speech processing. Its partial dysfunction in ASD might contribute to difficulties in the recognition of dynamic face information relevant for successful face‐to‐face communication.  相似文献   

20.
A role for the cerebellum in cognition has been proposed based on studies suggesting a profile of cognitive deficits due to cerebellar stroke. Such studies are limited in the determination of the detailed organisation of cerebellar subregions that are critical for different aspects of cognition. In this study we examined the correlation between cognitive performance and cerebellar integrity in a specific degeneration of the cerebellar cortex: Spinocerebellar Ataxia type 6 (SCA6). The results demonstrate a critical relationship between verbal working memory and grey matter density in superior (bilateral lobules VI and crus I of lobule VII) and inferior (bilateral lobules VIIIa and VIIIb, and right lobule IX) parts of the cerebellum. We demonstrate that distinct cerebellar regions subserve different components of the prevalent psychological model for verbal working memory based on a phonological loop. The work confirms the involvement of the cerebellum in verbal working memory and defines specific subsystems for this within the cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号