首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oestrogen receptor-alpha (ERalpha) is an important prognostic marker in breast cancer and endocrine therapies are designed to inhibit or prevent ERalpha activity. In vitro studies have indicated that phosphorylation of ERalpha, in particular on serine 118 (S118), can result in activation in a ligand-independent manner, thereby potentially contributing to resistance to endocrine agents, such as tamoxifen and aromatase inhibitors. Here we report the immunohistochemistry (IHC) of S118 phosphorylation in 301 primary breast tumour biopsies. Surprisingly, this analysis shows that S118 phosphorylation is higher in more differentiated tumours, suggesting that phosphorylation at this site is associated with a good prognosis in patients not previously treated with endocrine agents. However, we also report that S118 phosphorylation was elevated in tumour biopsies taken from patients who had relapsed following tamoxifen treatment, when compared to pre-treatment biopsies. Taken together, these data are consistent with the view that S118 phosphorylation is a feature of normal ERalpha function and that increases in levels of phosphorylation at this site may play a key role in the emergence of endocrine resistance in breast cancer.  相似文献   

3.
Tang HY  Lin HY  Zhang S  Davis FB  Davis PJ 《Endocrinology》2004,145(7):3265-3272
Activated by thyroid hormone, the MAPK (ERK1/2) signaling pathway causes serine phosphorylation by MAPK of several nucleoproteins, including the nuclear thyroid hormone receptor beta1. Because estrogen can activate MAPK and cause MAPK-dependent serine phosphorylation of nuclear estrogen receptor (ER)alpha, we studied whether thyroid hormone also promoted MAPK-mediated ERalpha phosphorylation. Human breast cancer (MCF-7) cells were incubated with physiological concentrations of l-T(4) or 17beta-estradiol (E(2)) for 15 min to 24 h, and nuclear ERalpha and serine-118-phosphorylated ERalpha were identified by Western blotting. Serine-118-phosphorylated ERalpha was recovered at 15 min in nuclei of MCF-7 cells exposed to either T(4) or E(2). The T(4) effect was apparent at 15 min and peaked at 2 h, whereas the E(2) effect was maximal at 4-6 h. T(4)-agarose was as effective as T(4) in causing phosphorylation of ERalpha. T(4) action on ERalpha was inhibited by PD 98059, an inhibitor of ERK1/2 phosphorylation, and by tetraiodothyroacetic acid, a T(4) analog that blocks cell surface-initiated actions of T(4) but is not itself an agonist. Electrophoretic mobility shift assay of nuclear extracts from T(4)-treated and E(2)-treated cells showed similar specific protein-DNA-binding. Indexed by [(3)H]thymidine incorporation and nuclear proliferating cell nuclear antigen, MCF-7 cell proliferation was stimulated by T(4) and T(4)-agarose to an extent comparable with the effect of E(2). This T(4) effect was blocked by either PD 98059 or ICI 182,780, an ER antagonist. Thus, T(4), like E(2), causes phosphorylation by MAPK of nuclear ERalpha at serine-118 in MCF-7 cells and promotes cell proliferation through the ER by a MAPK-dependent pathway.  相似文献   

4.
Estrogen receptor (ER)-negative breast carcinomas do not respond to hormone therapy, making their effective treatment very difficult. The re-expression of ERalpha in ER-negative MDA-MB-231 breast cancer cells has been used as a model system, in which hormone-dependent responses can be restored. Paradoxically, in contrast to the mitogenic activity of 17beta-estradiol (E2) in ER-positive breast cancer cells, E2 suppresses proliferation in ER-negative breast cancer cells in which ERalpha has been re-expressed. We have used global gene expression profiling to investigate the mechanism by which E2 suppresses proliferation in MDA-MB-231 cells that express ERalpha through adenoviral infection. We show that a number of genes known to promote cell proliferation and survival are repressed by E2 in these cells. These include genes encoding the anti-apoptosis factor SURVIVIN, positive cell cycle regulators (CDC2, CYCLIN B1, CYCLIN B2, CYCLIN G1, CHK1, BUB3, STK6, SKB1, CSE1 L) and chromosome replication proteins (MCM2, MCM3, FEN1, RRM2, TOP2A, RFC1). In parallel, E2-induced the expression of the negative cell cycle regulators KIP2 and QUIESCIN Q6, and the tumour-suppressor genes E-CADHERIN and NBL1. Strikingly, the expression of several of these genes is regulated in the opposite direction by E2 compared with their regulation in ER-positive MCF-7 cells. Together, these data suggest a mechanism for the E2-dependent suppression of proliferation in ER-negative breast cancer cells into which ERalpha has been reintroduced.  相似文献   

5.
Cheng J  Zhang C  Shapiro DJ 《Endocrinology》2007,148(10):4634-4641
To evaluate the contribution of ERK1/2 phosphorylation of estrogen receptor (ER)-alpha to activation and repression of endogenous genes, we produced stably transfected lines of HeLa cells with functional ERK1/2 pathways that express similar levels of wild-type human ERalpha and ERalpha mutated to inactivate the well-known MAPK site at serine 118 (ERalphaS118A). We compared effects of the S118A mutation on 17beta-estradiol (E(2))-mediated transactivation, which is heavily dependent on activation function (AF) 2 of ERalpha and on 4-hydroxytamoxifen (OHT)-mediated transactivation, which is heavily dependent on AF1, which includes S118. To examine whether S118 was the key ERK/MAPK phosphorylation site in ERalpha action, we compared the effects of the S118A mutant and the ERK inhibitor U0126 on expression of endogenous genes. In several estrogen response element-containing genes, the S118A mutation strongly reduced induction by E(2), and U0126 did not further reduce expression. Expression of another group of estrogen response element-containing genes was largely unaffected by the S118A mutation. The S118A mutation had variable effects on genes induced by ER tethering or binding near specificity protein-1 and activator protein-1 sites. For five mRNAs whose expression is strongly down-regulated by E(2) and partially or completely down-regulated by OHT, the S118A mutation reduced or abolished down-regulation by E(2) and nearly abolished down-regulation by OHT. In contrast, for Sma and mothers against decapentaplegic-3-related, which is down-regulated by E(2) and not OHT, the S118A mutation had little effect. These data suggest that there may be distinct groups of genes down-regulated by ERalpha and suggest a novel role for ERK phosphorylation at serine 118 in AF1 in regulating expression of the set of genes down-regulated by OHT.  相似文献   

6.
7.
Adenosine deaminase (ADA) regulates cellular levels of adenosine and deoxyadenosine, and 17beta-estradiol (E(2)) induces ADA mRNA in MCF-7 human breast cancer cells. IGF-I also induces ADA gene expression in these cells, and induction of this response through IGF activation of estrogen receptor alpha (ERalpha) was further investigated. IGF and other polypeptide growth factors induce reporter gene expression in MCF-7 cells cotransfected with ERalpha expression plasmid and pADA211, a construct containing the -211 to +11 region of the ADA gene promoter which is required for high basal and E(2)-inducible activity. Deletion analysis of this promoter demonstrates that IGF activates ERalpha/Sp1 interactions with multiple GC-rich sites in the promoter and this response is abrogated in cells transfected with ERalpha containing mutations at Ser(118) or Ser(163). IGF induces both MAPK (mitogen-activated protein kinase) and PI3-K (phosphatidylinositol-3-kinase) phosphorylation cascades in MCF-7 cells; however, using a series of inhibitors and dominant negative constructs, our results show that induction of ADA by IGF activation of ERalpha/Sp1 is dependent on the MAPK signaling pathway.  相似文献   

8.
9.
10.
Black tea has been shown to improve endothelial function in patients with coronary artery disease and recent data indicate the polyphenol fraction of black tea enhances endothelial nitric oxide synthase (eNOS) activity through p38 MAP kinase (p38 MAPK) activation. Because the mechanisms for this phenomenon are not yet clear, we sought to elucidate the signaling events in response to black tea polyphenols. Bovine aortic endothelial cells (BAECs) exposed to black tea polyphenols demonstrated eNOS activation that was inhibited by the estrogen receptor (ER) antagonist ICI 182,780, and siRNA-mediated silencing of ER expression. Consistent with this observation, black tea polyphenols induced time-dependent phosphorylation of ERalpha on Ser-118 that was inhibited by ICI 182,780. Phosphorylation of ERalpha on Ser-118 was due to p38 MAP kinase (p38 MAPK) as, it was inhibited by SB203580 and overexpression of dominant-negative p38alpha MAPK. Conversely, constitutively active MKK6 induced p38 MAPK activation that recapitulated the effects of polyphenols by inducing ERalpha phosphorylation and downstream activation of Akt, and eNOS. The key role of ERalpha Ser-118 phosphorylation was confirmed in eNOS-transfected COS-7 cells, as polyphenol-induced eNOS activation required cotransfection with ERalpha subject to phosphorylation at Ser-118. This residue appeared critical for functional association of ERalpha with p38 MAPK as ERalpha with Ser-118 mutated to alanine could not form a complex with p38 MAPK. These findings suggest p38 MAP kinase-mediated eNOS activation requires ERalpha and these data uncover a new mechanism of ERalpha activation that has broad implications for NO bioactivity and endothelial cell phenotype.  相似文献   

11.
Elevated phosphorylation of estrogen receptor α (ERα) at serines 118 (S118) and 167 (S167) is associated with favorable outcome for tamoxifen adjuvant therapy and may serve as surrogate markers for a functional ERα signaling pathway in breast cancer. It is possible that loss of phosphorylation at S118 and/or S167 could disrupt ERα signaling, resulting in aggressive ERα-independent breast cancer cells. To this end, MCF-7 breast cancer cells were stably transfected with an ERα-specific short hairpin RNA that reduced endogenous ERα. The resulting cell line was stably transfected with wild-type ERα (ER-AB cells), or ERα containing serine to alanine mutation at S118 or S167 (S118A cells and S167A cells, respectively). These stable cell lines expressed approximately equivalent ERα compared with parental MCF-7 cells and were evaluated for growth, morphology, migration/invasion, and ERα-regulated gene expression. S118A cells and S167A cells exhibited increased growth and migration/invasion in vitro. Forward- and side-scatter flow cytometry revealed that S167A cells were smaller in size, and both S118A and S167A cells exhibited less cellular complexity. S118A and S167A cells expressed pancytokeratin and membrane localization of β-catenin and did not express vimentin, indicating retention of epithelial lineage markers. Expression of ERα-target genes and other genes regulated by ERα signaling or involved in breast cancer were markedly altered in both S118A and S167A cells. In summary, attenuated phosphorylation of ERα at S118 and S167 significantly affected cellular physiology and behavior in MCF-7 breast cancer cells, resulting in increased growth, migration/invasion, compromised expression of ERα target genes, and markedly altered gene expression patterns.  相似文献   

12.
The purpose of this study is to investigate the role of carbonic anhydrase IX (CAIX) expression in predicting the response to epirubicin and disease-free survival (DFS) in breast cancer patients enrolled in a single institution trial of primary anthracycline and tamoxifen therapy. CAIX expression was assessed in 183 patients with T2-4 N0-1 breast cancer enrolled in a randomized trial comparing four cycles of single agent epirubicin versus epirubicin+tamoxifen as primary systemic treatment. All patients received postoperatively four cycles of the four weekly i.v. cyclophosphamide, methotrexate, 5-fluorouracil regimen. Patients with estrogen receptor (ER)-positive primary tumors received 5 years of adjuvant tamoxifen. Pretreatment, p53 (P=0.007), c-erbB2 (P<0.01), and Ki67 (P=0.02) were directly associated with CAIX expression, while bcl2 (P<0.000) and ER (P=0.000) and progesterone receptor (PgR; P<0.01) were inversely correlated. In multivariate analysis, only high p53 and low bcl2 were independently associated with CAIX positivity. CAIX immunostaining was significantly associated with poor outcome for DFS (P<0.002) and overall survival (P=0.001). In multivariate analysis, a significant interaction was found between CAIX and markers of hormone sensitivity, bcl2 (P=0.01), ER (P=0.02), PgR (P=0.02), and lymph node involvement (P=0.04), in predicting DFS. Presently, there are few clinical markers of resistance to tamoxifen treatment in ER-positive tumors. CAIX expression in breast cancer patients shows a negative predictive role of treatment efficacy in ER-positive patients on the adjuvant tamoxifen after primary chemo-endocrine therapy. Studies investigating the effects of pH on tamoxifen uptake and the effects of therapy with CA inhibitors are planned.  相似文献   

13.
14.
To investigate the effect of altered oestrogen receptor (ER)alpha and ERbeta expression on oestrogen and anti-oestrogen action in breast cancer, we have stably expressed an inducible ERbeta1 in MCF7 breast cancer cells. Stably expressing clones were isolated and over-expression of ERbeta1 correlated with increased levels of specific radiolabelled oestradiol (E2) binding. Increased ERbeta1 did not affect endogenous levels of ERalpha but increased progesterone receptor (PR) levels. Over-expression of ERbeta1 reduced growth responses to E2 in contrast to little if any effect of over-expression of ERalpha. In oestrogen-replete conditions, over-expression of ERbeta1 but not ERalpha reduced proliferation. Over-expression of ERbeta1 did not result in anti-oestrogen resistance but was associated with increased sensitivity to 4-hydroxytamoxifen. Our results suggested that over-expression of ERbeta1 in the presence of an endogenously expressed ERalpha was associated with tamoxifen sensitivity but may negatively modulate ERalpha-mediated growth. However, not all ERalpha activities were inhibited since endogenous PR expression was increased by both ERalpha and ERbeta1 over-expression. These data paralleled those seen in some in vivo studies showing a relationship between PR and ERbeta expression as well as ERbeta expression and tamoxifen sensitivity of ER-positive breast cancer patients. These models are relevant and will be useful for dissecting the role of ERbeta1 expression in ER-positive breast cancer.  相似文献   

15.
De novo resistance to endocrine therapy is a near-universal feature of oestrogen receptor (ER)- negative breast cancer. Although many ER-positive breast cancers also show no response to tamoxifen or aromatase inhibitors on objective clinical grounds the large majority show reduced proliferation indicating that some oestrogen dependence is present in almost all ER-positive breast cancer. In neoadjuvant studies HER2 positivity is associated with poor response rates to tamoxifen but not aromatase inhibitors, consistent with preclinical models. Acquired resistance to tamoxifen is associated with decreases in ER positivity but most recurrent lesions remain ER-positive. A small proportion of these show increased HER2 expression and in these patients increased phospho-p38 may contribute to the tamoxifen-resistant phenotype. There is an unfortunate paucity of clinical and biological data on acquired resistance to aromatase inhibitors.  相似文献   

16.
Mitogen-activated protein kinase-mediated growth factor signals are known to augment the ligand-induced transactivation function of nuclear estrogen receptor alpha (ERalpha) through phosphorylation of Ser-118 within the ERalpha N-terminal transactivation (activation function-1) domain. We identified the spliceosome component splicing factor (SF)3a p120 as a coactivator specific for human ERalpha (hERalpha) activation function-1 that physically associated with ERalpha dependent on the phosphorylation state of Ser-118. SF3a p120 potentiated hERalpha-mediated RNA splicing, and notably, the potentiation of RNA splicing by SF3a p120 depended on hER Ser-118 phosphorylation. Thus, our findings suggest a mechanism by which growth factor signaling can regulate gene expression through the modulation of RNA splicing efficiency via phosphorylation of sequence-specific activators, after association between such activators and the spliceosome.  相似文献   

17.
p62 is a multi-functional protein, which induces nuclear factor-kappaB (NFkappaB) activation through multiple upstream signalling pathways, including those triggered by the epidermal growth factor (EGF) family of receptors. We hypothesised that p62 overexpression increased EGF family receptor expression and worse outcome in breast cancer would be associated. We stained a tissue microarray representing 523 breast cancers using a commercial guinea pig anti-human p62 sera and standard immunohistochemical methods to address this. Out of n = 106 tumours, 20.3% stained positively. p62 expression correlated with grade (P = 0.010) and distant metastasis (P = 0.04) and EGF receptor (EGFR) (P = 0.012), HER2 (P = 0.016), HER3 (P = 0.007) and HER4 (0.002) expressions. Though expression correlated with reduced 5-year survival (58.5 vs 73.6%), there was no association with overall disease specific survival. p62 expression may represent a marker of activation of the NFkappaB pathway.  相似文献   

18.
19.
20.
The phosphoinositide 3-kinase/Akt signalling pathway is a recently recognized important parameter in the prognosis and the response to treatment of acute myeloid leukaemia (AML). Akt kinase is activated by phosphorylation on Thr 308 and Ser 473. Active Akt promotes cell growth and survival to apoptotic insults. Thus, it seems important to evaluate Akt phosphorylation in AML blasts. This work aimed to establish whether it was possible to detect Akt phosphorylation on Ser 473 of AML blasts by means of flow cytometry. High levels of Akt activity and phosphorylation were detected in 13 of 15 cases of AML. Flow cytometric analysis revealed similar patterns of Ser 473 expression as was observed with Akt kinase activity and Western blot analysis of Thr 308 and Ser 473 phosphorylation. Double immunostaining enabled the simultaneous flow cytometric detection of an AML-associated antigen (CD33) and Ser 473 phosphorylated Akt in leukaemic blast populations. Our results indicate that flow cytometry enabled the rapid and quantitative assessment of Ser 473 phosphorylated Akt of AML blasts that, when used in combination with cell surface staining, can provide more accurate phenotyping of AML blasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号