首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
Pharmacological modulation of the transient receptor potential vanilloid-1 (TRPV1) receptor function offers a promising means of producing pain relief at the level of the primary sensory neuron. In this issue of the BJP, the pharmacological approaches and the available experimental data that focus on the TRPV1 receptor to achieve therapeutically useful alleviation of pain and inflammation are reviewed. The potentials to inactivate TRPV1 receptor function by site- and modality-specific TRPV1 antagonists, uncompetitive TRPV1 blockers and drugs interfering with TRPV1 sensitization, are evaluated. A crucial issue of producing pain relief at the level of the nocisensor remains whether it can be achieved solely through inactivation of the TRPV1 receptor or TRPV1 agonist-induced defunctionalization of the whole primary afferent neuron is required. The accumulated evidence indicates that both pharmacological modulation of the intracellular trafficking of the TRPV1 receptor and defunctionalization of the nocisensors by TRPV1 agonists are promising novel approaches to tame the TRPV1 receptor.  相似文献   

2.
Identification of C-polymodal nociceptors and the selective action of capsaicin on them by acting on a putative receptor, which has been cloned 11 years ago, initiated a burst of interest in pharmacology of nociceptors. Capsaicin receptor transient receptor potential vanilloid-1 (TRPV1) being a noxious heat-gated cation channel gated also by several exogenous and endogenous substances serves as a nocisensor to generate graded receptor potentials in these sense organs. Impressive data on pathways involved in sensitization/desensitization of the channel revealed in isolated cells should also validate at the level of nerve endings and lipid raft around TRPV1 could modify the channel gating. Capsaicin-sensitive nociceptors subserve dual sensory-efferent functions: tachykinins and calcitonin gene-related peptide released from them elicit local tissue responses as neurogenic inflammation and release of somatostatin evokes systemic anti-inflammatory and antihyperalgesic effects. TRPV1 gene-deleted mice show subtle changes in physiological regulations, therefore TRPV1 is a promising but challenging target for drug research.  相似文献   

3.
Vanilloid receptor-1 (TRPV1) is a non-selective cation channel, predominantly expressed by peripheral sensory neurones, which is known to play a key role in the detection of noxious painful stimuli, such as capsaicin, acid and heat. To date, a number of antagonists have been used to study the physiological role of TRPV1; however, antagonists such as capsazepine are somewhat compromised by non-selective actions at other receptors and apparent modality-specific properties. SB-366791 is a novel, potent, and selective, cinnamide TRPV1 antagonist isolated via high-throughput screening of a large chemical library. In a FLIPR-based Ca(2+)-assay, SB-366791 produced a concentration-dependent inhibition of the response to capsaicin with an apparent pK(b) of 7.74 +/- 0.08. Schild analysis indicated a competitive mechanism of action with a pA2 of 7.71. In electrophysiological experiments, SB-366791 was demonstrated to be an effective antagonist of hTRPV1 when activated by different modalities, such as capsaicin, acid or noxious heat (50 degrees C). Unlike capsazepine, SB-366791 was also an effective antagonist vs. the acid-mediated activation of rTRPV1. With the aim of defining a useful tool compound, we also profiled SB-366791 in a wide range of selectivity assays. SB-366791 had a good selectivity profile exhibiting little or no effect in a panel of 47 binding assays (containing a wide range of G-protein-coupled receptors and ion channels) and a number of electrophysiological assays including hippocampal synaptic transmission and action potential firing of locus coeruleus or dorsal raphe neurones. Furthermore, unlike capsazepine, SB-366791 had no effect on either the hyperpolarisation-activated current (I(h)) or Voltage-gated Ca(2+)-channels (VGCC) in cultured rodent sensory neurones. In summary, SB-366791 is a new TRPV1 antagonist with high potency and an improved selectivity profile with respect to other commonly used TRPV1 antagonists. SB-366791 may therefore prove to be a useful tool to further study the biology of TRPV1.  相似文献   

4.
Introduction: In the lower urinary tract (LUT) several members of the TRP superfamily are involved in nociception and mechanosensory transduction. Animal studies have suggested a therapeutic potential of some of these channels, including TRPV1, TRPV4, TRPM8, TRPA1, and TRPM4, for treatment of bladder over- and underactivity and bladder pain disorders, but translation of this information to clinical application has been slow.

Areas covered: An update on and discussion of current information on the potential clinical use of TRP channel agonists/antagonists in the treatment of different types of bladder dysfunction. The electronic databases PubMed and Scopus were used to identify relevant clinical and animal studies.

Expert opinion: The therapeutic effect of TRPV1 channel desensitizing agonists (capsaicin, resiniferatoxin, given intravesically) has been convincingly demonstrated in some forms of bladder overactivity. However, so far, the potential of any of the small-molecule TRP channel blockers developed for non-bladder indications and tested in early human trials for safety has not been explored clinically in LUT dysfunction. The adverse effects of hyperthermia and reduction of noxious heat sensation of the first generation TRPV1 blockers have delayed development. Despite lack of translational information, TRP channels remain interesting targets for future LUT drugs.  相似文献   

5.
The transient receptor potential vanilloid 1 (TRPV1) channel belongs to the transient receptor potential channel superfamily and participates in many physiological processes. TRPV1 modulators (both agonists and antagonists) can effectively inhibit pain caused by various factors and have curative effects in various diseases, such as itch, cancer, and cardiovascular diseases. Therefore, the development of TRPV1 channel modulators is of great importance. In this study, the structure-based virtual screening and ligand-based virtual screening methods were used to screen compound databases respectively. In the structure-based virtual screening route, a full-length human TRPV1 protein was first constructed, three molecular docking methods with different precisions were performed based on the hTRPV1 structure, and a machine learning-based rescoring model by the XGBoost algorithm was constructed to enrich active compounds. In the ligand-based virtual screening route, the ROCS program was used for 3D shape similarity searching and the EON program was used for electrostatic similarity searching. Final 77 compounds were selected from two routes for in vitro assays. The results showed that 8 of them were identified as active compounds, including three hits with IC50 values close to capsazepine. In addition, one hit is a partial agonist with both agonistic and antagonistic activity. The mechanisms of some active compounds were investigated by molecular dynamics simulation, which explained their agonism or antagonism.  相似文献   

6.
The TRPV1 receptor: target of toxicants and therapeutics.   总被引:2,自引:0,他引:2  
Understanding the structural and functional complexities of the transient receptor potential vanilloid receptor (TRPV1) is essential to the therapeutic modulation of inflammation and pain. Because of its central role in initiating inflammatory processes and integrating painful stimuli, there is an understandable interest in its pharmacological manipulation (sensitization/desensitization). The present Highlight entitled "TRPV1 antagonists elevate cell surface populations of receptor protein and exacerbate TRPV1 mediated toxicities in human lung epithelial cells" describes how exposure to various antagonists produces TRPV1 sensitization and proposes a possible mechanistic explanation to that sensitization.  相似文献   

7.
8.
Background: The capsaicin receptor TRPV1, a polymodal nociceptor whose expression is up-regulated in a number of painful inflammatory disorders, represents a promising therapeutic target for pain relief. Potent small molecule TRPV1 antagonists are now undergoing clinical trials in patients with inflammatory or neuropathic pain. This review focuses on the multiplicity of factors regulating this channel and on their contributions to the emerging complexity of responses to TRPV1 and partial antagonists. For example, it is now clear that antagonists of capsaicin response can also antagonize, have no effect, or stimulate response to heat or protons. The complexity of TRPV1 regulation affords the potential to optimize agents for a specific therapeutic indication. An encouraging advance is the dissection of therapeutic efficacy of antagonists from induction of hyperthermia, a side effect that initially had raised concerns about the suitability of systemically administered TRPV1 antagonists for therapy. Objectives and methods: To discuss the challenges facing the development of clinically useful TRPV1 antagonists based on our experience and a comprehensive review of the literature. Results/conclusions: TRPV1 is a polymodal receptor. Some antagonists block all modalities of TRPV1 stimulation whereas others are more selective in their pharmacological profile. A number of antagonists can, conversely, potentiate certain modes of TRPV1 activation (e.g., protons and heat). The selectivity of TRPV1 antagonists is species-dependent, posing a problem for extrapolation from animal models to patients. At present, this rich pharmacology of TRPV1 antagonists complicates drug development but for the future it promises great opportunities for drug design.  相似文献   

9.
The transient receptor potential V1 channel (vanilloid receptor, TRPV1) represents a promising therapeutic target for inflammatory pain and other conditions involving C-fiber sensory afferent neurons. Sensitivity of TRPV1 is known to be subject to modulation by numerous signaling pathways, in particular by phosphorylation, and we wished to determine whether TRPV1 structure activity relations could be differentially affected. We demonstrate here that the structure activity relations of TRPV1, as determined by 45Ca2 uptake, were substantially altered by treatment of the cells with cyclosporin A, an inhibitor of protein phosphatase 2B. Whereas the potency of resiniferatoxin for stimulation of 45Ca2 was not altered by cyclosporin A treatment, the potencies of some other agonists were increased up to 8-fold. Among the antagonists examined, potencies were reduced to a lesser extent, ranging from 1- to 2.5-fold. Finally, the efficacy of partial agonists was increased. In contrast to cyclosporin A, okadaic acid, an inhibitor of protein phosphatases 1 and 2A, had little effect on agonist potencies, and calyculin A, an inhibitor of protein phosphatases 1 and 2A but with somewhat different selectivity from that of okadaic acid, caused changes in structure activity relations distinct from those induced by cyclosporin A. Because phosphatase activity differentially modulates the structure activity relations of TRPV1 agonists and antagonists, our findings predict that it may be possible to design agonists and antagonists selective for TRPV1 in a specific regulatory environment. A further implication is that it may be desirable to tailor screening approaches for drug discovery to reflect the desired regulatory state of the targeted TRPV1.  相似文献   

10.
TRPA1 is a member of the transient receptor potential (TRP) channel family present in sensory neurons. Here we show that vanilloid receptor (TRPV1) stimulation with capsaicin and activation of TRPA1 with allyl isothiocyanate or cinnamaldehyde cause a graded contraction of the rat urinary bladder in vitro. Repeated applications of maximal concentrations of the agonists produce desensitization to their contractile effects. Moreover, contraction caused by TRPA1 agonists generates cross-desensitization with capsaicin. The TRP receptor antagonist ruthenium red (10-100 microM) inhibits capsaicin (0.03 microM), allyl isothiocyanate (100 microM) and cinnamaldehyde (300 microM)-induced contractions in the rat urinary bladder. The selective TRPV1 receptor antagonist SB 366791 (10 microM) blocks capsaicin-induced contraction, but partially reduces allyl isothiocyanate- or cinnamaldehyde-mediated contraction. However, allyl isothiocyanate and cinnamaldehyde (10-1000 microM) completely fail to interfere with the specific binding sites for the TRPV1 agonist [(3)H]-resiniferatoxin. Allyl isothiocyanate or cinnamaldehyde-mediated contractions of rat urinary bladder, which rely on external Ca(2+) influx, are significantly inhibited by tachykinin receptor antagonists as well as by tetrodotoxin (1 microM) or indomethacin (1 microM). Allyl isothiocyanate-induced contraction is not changed by atropine (1 microM) or suramin (300 microM). The exposure of urinary bladders to allyl isothiocyanate (100 microM) causes an increase in the prostaglandin E(2) and substance P levels. Taken together, these results indicate that TRPA1 agonists contract rat urinary bladder through sensory fibre stimulation, depending on extracellular Ca(2+) influx and release of tachykinins and cyclooxygenase metabolites, probably prostaglandin E(2). Thus, TRPA1 appears to exert an important role in urinary bladder function.  相似文献   

11.
Painful toxins acting at TRPV1.   总被引:1,自引:0,他引:1  
Many plant and animal toxins cause aversive behaviors in animals due to their pungent or unpleasant taste or because they cause other unpleasant senstations like pain. This article reviews the current state of knowledge of toxins that act at the TRPV1 ion channel, which is expressed in primary sensory neurons, is activated by multiple painful stimuli and is thought to be a key pain sensor and integrator. The recent finding that painful peptide "vanillotoxin" components of tarantula toxin activate the TRPV1 ion channel to cause pain led us to survey what is known about toxins that act at this receptor. Toxins from plants, spiders and jellyfish are considered. Where possible, structural information about sites of interaction is considered in relation to toxin-binding sites on the Kv ion channel, for which more structural information exists. We discuss a developing model where toxin agonists such as resiniferatoxin and vanillotoxins are proposed to interact with a region of TRPV1 that is homologous to the "voltage sensor" in the Kv1.2 ion channel, to open the channel and activate primary sensory nerves, causing pain.  相似文献   

12.
The anti-hyperalgesic effects of TRPV1 receptor antagonists are well documented in animal models of pain, however, the precise site of their action is not known. Here we have examined the effects of the selective TRPV1 antagonist SB-366791 on glutamatergic synaptic transmission in substantia gelatinosa using spinal cord slices from either control rats or animals that had undergone a peripheral inflammation induced by intraplantar injection of Freund's complete adjuvant (FCA). In control animals, SB-366791 (30 μM) had no effect on spontaneous excitatory post-synaptic currents (sEPSC) or evoked EPSCs. In slices from FCA-inflamed animals, SB-366791 decreased sEPSC frequency to 66 ± 8% of control in 5/10 neurones, and decreased miniature glutamatergic EPSCs (mEPSC) frequency to 63 ± 4% of control, in 6/7 neurones; with no significant effect on sEPSC or mEPSC amplitude. Dorsal root evoked EPSCs at C-fibre intensity were reduced to 72 ± 6% of control by SB-366791 (30 μM) in 3/4 neurones from FCA-treated animals. In conclusion, SB-366791 inhibited glutamatergic transmission in a subset of neurones via a pre-synaptic mechanism following peripheral inflammation. We hypothesise that during peripheral inflammation spinal TRPV1 becomes tonically active, promoting the synaptic release of glutamate. These results provide evidence for a mechanism by which TRPV1 contributes to inflammatory pain and provides a basis for the understanding of the efficacy of TRPV1 antagonists.  相似文献   

13.
The recent cloning of vanilloid receptor 1 (TRPV1) from multiple species, together with published results showing efficacy of TRPV1 antagonists in animal models of pain, has led to substantial patenting activity by several major pharmaceutical companies and academic institutions. This review is focused on the patent literature related to non-peptidic small molecule TRPV1 antagonists. A total of 105 published patent applications claiming TRPV1 antagonists are reviewed during 2002 – 2005. Human clinical trials using TRPV1 antagonists are in the earliest stages and interest in this approach toward the treatment of various pain conditions appears to be growing annually.  相似文献   

14.
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel gated by noxious heat, vanilloids and extracellular protons. TRPV1 is acting as an important signal integrator in sensory nociceptors under physiological and pathological conditions including inflammation and neuropathy. Because of its integrative signaling properties in response to inflammatory stimuli, TRPV1 agonists and antagonists are predicted to inhibit the sensation of ongoing or burning pain that is reported by patients suffering from chronic pain, therefore offering an unprecedented advantage in selectively inhibiting painful signaling from where it is initiated. In this article, we firstly summarize recent advances in the understanding of the role of TRPV1 in pain signaling, including a overview of clinical pharmacological trials using TRPV1 agonists and antagonists. Finally, we also present an update on the mechanistic understanding and controlling of hyperthermia caused by TRPU1 antagonists, and provide perspective for future study.  相似文献   

15.
The cloning of the transient receptor potential vanilloid type-1 (TRPV1) receptor initiated the discovery of potent small molecule antagonists, many of which are in preclinical phase or already undergoing clinical trials. While animal experiments imply a therapeutic value for these compounds as novel analgesic-antiphlogistic drugs, new findings with TRPV1 deficient (trpv1 -/-) mice signal troubles for TRPV1 antagonists as clinical research gains impetus. An emerging concept with important implications for drug development is that TRPV1 may be differentially regulated under physiological and pathological conditions. If so, it is conceivable that such TRPV1 ligands can be synthesized that specifically target TRPV1 in diseased (e.g. inflamed or neoplastic) tissues but spare TRPV1 that subserves its physiological functions in healthy organs. This review explores the current status of this field and seeks an answer to the question how these new discoveries could be factored into TRPV1 drug discovery and development.  相似文献   

16.
Transient receptor potential V1 (TRPV1) is a nonspecific cation channel subject to polymodal activation. TRPV1, originally termed vanilloid receptor 1, can be activated by the prototypical vanilloid capsaicin as well as decreases in extracellular pH and increases in temperature. The neuronal expression and biology surrounding TRPV1 suggest that it plays a significant role in the establishment and maintenance of various pain states as well as a potential role for TRPV1 in cough and bladder function. This review outlines the potential mechanism(s) by which activation of TRPV1 leads to pain and hyperalgesia, lessons learned via the development of antagonists and the current status of the development of therapeutic entities for validation within a clinical setting.  相似文献   

17.
Epilepsy has 2-3% incidence worldwide. However, present antiepileptic drugs provide only partial control of seizures. Calcium ion accumulation in hippocampal neurons has long been known as a major contributor to the etiology of epilepsy. TRPV1 is a calcium-permeable channel and mediator of epilepsy in the hippocampus. TRPV1 is expressed in epileptic brain areas such as CA1 area and dentate gyrus of the hippocampus. Here the author reviews the patent literature on novel molecules targeting TRPV1 that are currently being investigated in the laboratory and are candidates for future clinical evaluation in the management of epilepsy. A limited number of recent reports have implicated TRPV1 in the induction or treatment of epilepsy suggesting that this may be new area for potential drugs targeting this debilitating disease. Thus activation of TRPV1 by oxidative stress, resiniferatoxin, cannabinoid receptor (CB1) activators (i.e. anandamide) or capsaicin induced epileptic effects, and these effects could be reduced by appropriate inhibitors, including capsazepine (CPZ), 5''-iodoresiniferatoxin (IRTX), resolvins, and CB1 antagonists. It has been also reported that CPZ and IRTX reduced spontaneous excitatory synaptic transmission through modulation of glutaminergic systems and desensitization of TRPV1 channels in the hippocampus of rats. Immunocytochemical studies indicated that TRPV1 channel expression increased in the hippocampus of mice and patients with temporal lobe epilepsyTaken together, findings in the current literature support a role for calcium ion accumulation through TRPV1 channels in the etiology of epileptic seizures, indicating that inhibition of TRPV1 in the hippocampus may possibly be a novel target for prevention of epileptic seizures.  相似文献   

18.
Capsaicin and other naturally occurring pungent molecules have been used for centuries as topical analgesics and rubefactants to treat a variety of chronically painful conditions. Recently, instillations of high-concentration capsaicin and resiniferatoxin solutions have been found to be useful for the management of persistent bladder pain or overactive bladder. However, only within the last 7 years has it been appreciated that the selective action of these compounds on a subset of sensory nerve fibres is mediated by agonist activity at a ligand-gated ion channel called the transient receptor potential vanilloid receptor 1 (TRPV1). Accordingly, this discovery has fueled intensive research and drug development efforts, mainly in a search for novel analgesic or anti-inflammatory therapies. Two different, but non-mutually exclusive, strategies are being pursued: optimisation of TRPV1 agonist-based therapies, which can functionally inactivate nociceptive nerve fibres, and identification of receptor antagonists, which would prevent nociceptive fibres from being activated by ongoing inflammatory stimuli. Available information on TRPV1 agonists in development and their biological rationale will be summarised in this review.  相似文献   

19.
The thermosensory transient receptor potential vanilloid 1 channel (TRPV1) is a polymodal receptor activated by physical and chemical stimuli. TRPV1 activity is drastically potentiated by proinflammatory agents released upon tissue damage. Given the pivotal role of TRPV1 in human pain, there is pressing need for improved TRPV1 antagonists, the development of which will require identification of new pharmacophore scaffolds. Uncompetitive antagonists acting as open-channel blockers might serve as activity-dependent blockers that preferentially modulate the activity of overactive channels, thus displaying fewer side effects than their competitive counterparts. Herein we report the design, synthesis, biological evaluation, and SAR analysis of a family of triazine-based compounds acting as TRPV1 uncompetitive antagonists. We identified the triazine 8aA as a potent, pure antagonist that inhibits TRPV1 channel activity with nanomolar efficacy and strong voltage dependency. It represents a new class of activity-dependent TRPV1 antagonists and may serve as the basis for lead optimization in the development of new analgesics.  相似文献   

20.
Importance of the field: Transient receptor potential vanilloid-1 (TRPV1, vanilloid receptor-1) is a nonspecific cation channel that can be activated by multiple endogenous stimuli and by capsaicin, the active ingredient in chili peppers. TRPV1 is expressed predominantly on sensory neurons where it is proposed to serve as a key nodal point in pain transmission pathways. Pharmacological blockade of TRPV1 represents a compelling strategy for the treatment of a variety of disease states, particularly those requiring chronic pain management.

Area covered in the review: This review summarizes patent literature and progress in defining the utility of small molecule TRPV1 antagonists during 2008 – 2009.

What the reader will gain: Representative compounds and key characterization data comprising multiple chemical series are highlighted.

Take home message: The continued profusion of reports, in both the primary and patent literature, attests to the sustained interest in the TRPV1 class of therapeutics. Although a number of compounds have now been brought forward for human clinical trials, the therapeutic utility of TRPV1 antagonists is yet to be validated unequivocally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号