首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an established target in immunosuppression following organ transplantation. In lymphocytes, reversible inhibition of this enzyme by mycophenolic acid (MPA) results in reduced production of guanine and deoxyguanine nucleotides and thereby retarded proliferation of activated cells. In order to examine MPA pharmacodynamics in renal allograft recipients, the authors have developed an assay for the determination of IMPDH activity in CD4+ cells directly isolated from a small blood volume.Paramagnetic beads coated with anti-CD4 antibodies were utilized for the cell isolation. The intracellular MPA concentration was restored by incubating the cells in microfiltrated plasma from the original sample. Inosine 5'-monophosphate (IMP; substrate) and nicotine adenine dinucleotide (NAD; co-factor) were added to cell lysates, and IMPDH activity was quantified as the xanthosine 5'-monophosphate (XMP) production rate (pmol/10 cells/min) determined by liquid chromatography after hydrolytic cleavage to xanthine.The reaction kinetics were saturated with IMP and NAD concentrations of 1.79 micromol/L and 0.38 micromol/L, respectively. The production rate was linear in the interval 0.13 to 8.7 pmol XMP/min. Total interseries CVs based on seven replicates at each MPA concentration 0, 2.2, and 8.6 microg/mL were 25%, 16%, and 13%, respectively. When a single 1 gram mycophenolate mofetil dose was administered to a healthy individual, the measured IMPDH activity was 13% of predose value at the MPA peak concentration.The present assay allows reliable determination of IMPDH activity in CD4+ cells during MPA exposure, reducing the potential influence of sample preparation on the measured enzyme activity to a minimum. The assay may be applied to assess MPA pharmacodynamics during immunosuppressive treatment, maintaining the influence of intracellular MPA on the IMPDH activity.  相似文献   

2.
OBJECTIVE: Mycophenolate mofetil (MMF) is routinely used as an immunosuppressant in a fixed daily dose regimen although it shows marked fluctuations in pharmacokinetics, and despite the fact that in regard to the active metabolite, mycophenolic acid (MPA), there is a well-known association between the pharmacokinetic parameters and clinical outcome. METHOD: In order to determine the time course and the variability in cellular target of MPA after renal transplantation, we investigated the pharmacodynamic response in 8 patients receiving 1 g MMF for the first time prior to renal transplantation and in 8 stable renal transplant patients maintained on long-term MMF therapy (1 g b.i.d.) for more than 1 year. The pharmacodynamic response was measured using inosine 5'-monophosphate dehydrogenase (IMPDH) activity in peripheral mononuclear cells. MPA plasma concentrations were measured in parallel, IMPDH activity in 89 healthy blood donors was used as a control. RESULTS: We observed a high interindividual variability in IMPDH activity in the 89 untreated healthy volunteers (4.0 - 32.9 nmol/h/mg protein), in 8 patients on dialysis (5.3 - 18.9 nmol/h/mg protein) and in 8 renal transplant patients under long-term MMF treatment (2.3 - 14.4 nmol/h/mg protein). The mean AUC0-12h for mycophenolic acid was 2-fold higher in patients receiving long-term treatment with MMF (62.2 +/- 16.6 mg x h/ml) compared to dialysis patients receiving 1 g MMF for the first time (31.5 +/- 15.6 mg x h/ml). Despite this pharmacokinetic difference there were no statistically significant differences in the cellular pharmacodynamic response. Minimal IMPDH activity (1.62 +/- 1.23 vs. 1.77 +/- 1.49 nmol/h/mg protein) and maximal IMPDH inhibition (87.5 +/- 0.08 vs. 77.4 +/- 18.8%) during the dosing interval were similar. CONCLUSIONS: The considerable interindividual variability in the pharmacokinetics of MMF as well as in the drug target support the use of pharmacodynamic drug monitoring to optimize MMF dosing and to reduce the risk of graft rejection and side effects.  相似文献   

3.
This review aims to provide an extensive overview of the literature on the clinical pharmacokinetics of mycophenolate in solid organ transplantation and a briefer summary of current pharmacodynamic information. Strategies are suggested for further optimisation of mycophenolate therapy and areas where additional research is warranted are highlighted. Mycophenolate has gained widespread acceptance as the antimetabolite immunosuppressant of choice in organ transplant regimens. Mycophenolic acid (MPA) is the active drug moiety. Currently, two mycophenolate compounds are available, mycophenolate mofetil and enteric-coated (EC) mycophenolate sodium. MPA is a potent, selective and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), leading to eventual arrest of T- and B-lymphocyte proliferation. Mycophenolate mofetil and EC-mycophenolate sodium are essentially completely hydrolysed to MPA by esterases in the gut wall, blood, liver and tissue. Oral bioavailability of MPA, subsequent to mycophenolate mofetil administration, ranges from 80.7% to 94%. EC-mycophenolate sodium has an absolute bioavailability of MPA of approximately 72%. MPA binds 97-99% to serum albumin in patients with normal renal and liver function. It is metabolised in the liver, gastrointestinal tract and kidney by uridine diphosphate gluconosyltransferases (UGTs). 7-O-MPA-glucuronide (MPAG) is the major metabolite of MPA. MPAG is usually present in the plasma at 20- to 100-fold higher concentrations than MPA, but it is not pharmacologically active. At least three minor metabolites are also formed, of which an acyl-glucuronide has pharmacological potency comparable to MPA. MPAG is excreted into the urine via active tubular secretion and into the bile by multi-drug resistance protein 2 (MRP-2). MPAG is de-conjugated back to MPA by gut bacteria and then reabsorbed in the colon. Mycophenolate mofetil and EC-mycophenolate sodium display linear pharmacokinetics. Following mycophenolate mofetil administration, MPA maximum concentration usually occurs in 1-2 hours. EC-mycophenolate sodium exhibits a median lag time in absorption of MPA from 0.25 to 1.25 hours. A secondary peak in the concentration-time profile of MPA, due to enterohepatic recirculation, often appears 6-12 hours after dosing. This contributes approximately 40% to the area under the plasma concentration-time curve (AUC). The mean elimination half-life of MPA ranges from 9 to 17 hours. MPA displays large between- and within-subject pharmacokinetic variability. Dose-normalised MPA AUC can vary more than 10-fold. Total MPA concentrations should be interpreted with caution in patients with severe renal impairment, liver disease and hypoalbuminaemia. In such individuals, MPA and MPAG plasma protein binding may be altered, changing the fraction of free MPA available. Apparent oral clearance (CL/F) of total MPA appears to increase in proportion to the increased free fraction, with a reduction in total MPA AUC. However, there may be little change in the MPA free concentration. Ciclosporin inhibits biliary excretion of MPAG by MRP-2, reducing enterohepatic recirculation of MPA. Exposure to MPA when mycophenolate mofetil is given in combination with ciclosporin is approximately 30-40% lower than when given alone or with tacrolimus or sirolimus. High dosages of corticosteroids may induce expression of UGT, reducing exposure to MPA. Other co-medications can interfere with the absorption, enterohepatic recycling and metabolism of mycophenolate. Most pharmacokinetic investigations of MPA have involved mycophenolate mofetil rather than EC-mycophenolate sodium therapy. In population pharmacokinetic studies, MPA CL/F in adults ranges from 14.1 to 34.9 L/h (ciclosporin co-therapy) and from 11.9 to 25.4 L/h (tacrolimus co-therapy). Patient bodyweight, serum albumin concentration and immunosuppressant co-therapy have a significant influence on CL/F. The majority of pharmacodynamic data on MPA have been obtained in patients receiving mycophenolate mofetil therapy in the first year after kidney transplantation. Low MPA AUC is associated with increased incidence of biopsy-proven acute rejection. Gastrointestinal adverse events may be dose related. Leukopenia and anaemia have been associated with high MPA AUC, trough concentration and metabolite concentrations in some, but not all, studies. High free MPA exposure has been identified as a risk factor for leukopenia in some investigations. Targeting a total MPA AUC from 0 to 12 hours (AUC12) of 30-60 mg.hr/L is likely to minimise the risk of acute rejection and may reduce toxicity. IMPDH monitoring is in the early experimental stage. Individualisation of mycophenolate therapy should lead to improved patient outcomes. MPA AUC12 appears to be the most useful exposure measure for such individualisation. Limited sampling strategies and Bayesian forecasting are practical means of estimating MPA AUC12 without full concentration-time profiling. Target concentration intervention may be particularly useful in the first few months post-transplant and prior to major changes in anti-rejection therapy. In patients with impaired renal or hepatic function or hypoalbuminaemia, free drug measurement could be valuable in further interpretation of MPA exposure.  相似文献   

4.

Purpose

Since many drug targets and metabolizing enzymes are developmentally regulated, we investigated a potential comparable regulation of inosine 5’-monophosphate dehydrogenase (IMPDH) activity that has recently been advocated as a pharmacodynamic biomarker of mycophenolic acid (MPA) effects in the paediatric population. Since the field of pharmacodynamic monitoring of MPA is evolving, we also analyzed the response of IMPDH activity on MPA in children vs adolescents after renal transplantation.

Methods

We analyzed IMPDH activity in peripheral blood mononuclear cells (PBMCs) in 79 healthy children aged 2.0–17.9?years in comparison to 106 healthy adults. Pharmacokinetic/pharmacodynamic profiles of MPA and IMPDH over 6 or 12?h after mycophenolate mofetil dosing were performed in 17 paediatric renal transplant recipients. IMPDH activity was measured by HPLC and normalized to the adenosine monophosphate (AMP) content of the cells, MPA plasma concentrations were measured by HPLC.

Results

Inosine 5’-monophosphate dehydrogenase activity displayed a high inter-individual variability (coefficient of variation 40.2%) throughout the entire age range studied. Median IMPDH did not differ significantly in healthy pre-school children (82 [range, 42–184] μmol/s/mol AMP), school-age children (61 [30–153]), adolescents (83 [43–154]) and healthy adults (83 [26–215]). Similar to adults, IMPDH activity in children and adolescents was inversely correlated with MPA plasma concentration.

Conclusions

In conclusion, our data do not show a pronounced developmental regulation of IMPDH activity in PBMCs in the paediatric population and there is a comparable inhibition of IMPDH activity by MPA in children and adolescents after renal transplantation.  相似文献   

5.
Effect of diabetes mellitus on mycophenolic acid (MPA) pharmacokinetics and catalytic activity of inosine monophosphate dehydrogenase (IMPDH) was investigated in maintenance kidney transplant recipients. Demographically matched diabetic (n=9) and nondiabetic (n=9) patients were included in a 12-hour open-label, steady-state study after oral administration of enteric-coated mycophenolate sodium. Concentrations of total MPA and free MPA, MPA-glucuronide, and acyl-MPA-glucuronide were measured and oral acetaminophen absorption was used as a marker for gastric-emptying rate. Median (range) of MPA area under the curve(0-12) was 36.7 (range, 16.4-116.4) mg*h/L in diabetic and 48.2 (range, 34.9-80.1) mg*h/L in nondiabetic patients (P=0.49). All other primary pharmacokinetic parameters, including time to maximum concentration, for total or unbound MPA as well as MPA metabolites were comparable. In contrast, IMPDH activity was 17.5+/-2.8 versus 46.6+/-2.5 nmol XMP/h/microg protein in diabetics and nondiabetics, respectively (P<0.0001) and was significantly lower in the diabetics irrespective of concomitant therapy with cyclosporine or tacrolimus. This study demonstrated that diabetes does not alter MPA pharmacokinetics when administered as enteric-coated mycophenolate sodium; however, IMPDH activity appeared to be significantly lower in patients with diabetes independent of the unbound or total concentrations of MPA. Further investigations are warranted to investigate the regulation of IMPDH enzyme in patients with diabetes.  相似文献   

6.
Mycophenolate mofetil (MMF), a prodrug of mycophenolic acid (MPA), is increasingly used in the prophylaxis of graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation (HCT). Few pharmacokinetic data are available about the use of MMF for this indication. This case series aimed at analyzing the pharmacokinetics of MMF in a population of HCT recipients representative for everyday practice. From 15 HCT recipients, serial plasma samples were taken after twice-daily oral intake of MMF. Plasma concentrations of total MPA and its glucuronide metabolites, as well as free MPA, were quantified. Median apparent oral MPA clearance (CL/F), apparent half-life, and total MPA area under the curve for hours 0 to 12 (AUC0-12, normalized to 1000 mg MMF) were, respectively, 56 L/h (range: 29-98 L/h), 2.3 hours (range: 0.8-5.7 hours), and 18.0 mg*h/L (range: 10-35 mg*h/L). Total MPA concentrations were below 2 mg/L 8 hours after MMF administration, indicating reduced enterohepatic recirculation. Median free MPA AUC0-12 (normalized to 1000 mg MMF) was 224 microg*h/L (range: 56-411 microg*h/L). Because of high CL/F, total MPA exposure in HCT recipients is low and apparent half-life is short in comparison with reference values from renal transplantation. Exposure may be improved in HCT recipients by higher or more frequent MMF dosing.  相似文献   

7.
The need for mycophenolic acid (MPA) monitoring is still under discussion. Key issues for the PK/PD relationships of this drug are: the role of metabolites, the usefulness of AUC versus predose levels, and the need to monitor the free concentration of MPA (f-MPA). Recent advances have revealed that, in addition to 7-O-MPAG, three additional MPA metabolites are present in the plasma of transplant recipients. One of these metabolites (M-2), identified as an acyl glucuronide of MPA, was found to inhibit IMPDH-II in vitro. This active metabolite was also found to cross-react in the Emit assay for MPA. In an ongoing multicenter study, the authors are evaluating the relevance of monitoring total (t-MPA) and free mycophenolic acid (f-MPA) in pediatric renal transplant recipients. As in adults, a time-dependent increase of t-MPA-AUC(0-12h) within the first 3 months posttransplant (35 versus 64 mg x h/L, [corrected] 3 weeks versus 3 months respectively; daily dosage: 0.6 g/m2 bid) was seen. Receiver operating characteristics curve analyses were used to test the ability of predose levels or AUC(0-12h) to discriminate between cases with no complications and those with acute rejection, adverse events (severe infections, leukopenia), or gastrointestinal disorders observed during the early posttransplant course. In agreement with observations in adults, a significant (p = 0.001) association was observed between AUC(0-12h) and acute rejection. A t-MPA-AUC(0-12h) of approximately 30-60 mg x h/L [corrected], as determined by HPLC, seems to be a reasonable target for the early posttransplant period. It remains to be elucidated whether regular predose level monitoring may be of more practical value. A higher incidence of rejection was observed at predose MPA concentrations < or = 1 mg/L, as measured by HPLC. In contrast to t-MPA, f-MPA-AUC(0-12h) was significantly related to severe infections and leukopenia. The risk for severe adverse events was increased at f-MPA- AUC(0-12h) values > or =600 microg x h/L [corrected]. On the basis of these data and the observed variability in the pharmacokinetics of MPA, the development of monitoring strategies for this drug appears to be promising.  相似文献   

8.
Summary Mycophenolate mofetil (MMF), the morpholinoethyl ester of mycophenolic acid (MPA), is investigated in clinical trials for the prevention of organ and tissue rejection in transplantation. Esterification of MPA to the prodrug MMF improves its bioavailability. MMF prolongs allograft survival and reverses ongoing rejection in animal studies, and has shown preliminary efficacy in human clinical trials in combination with established therapies for transplantation. The immunosuppressive activity of MPA results from the potent reversible inhibition of IMP dehydrogenase (IMPDH). Inhibition of IMPDH by MPA causes the depletion of intracellular GTP pools and inhibits proliferation of lymphocytes. IMPDH is the first enzyme in the committed pathway of de novo synthesis of guanine nucleotides. Two isoforms of human IMPDH are known. The type I enzyme is constitutively expressed, while the type II isozyme is induced in activated lymphocytes and other proliferating cells. MPA inhibits the type II enzyme with fivefold greater affinity than the type I enzyme (Ki=7 nM against type II IMPDH). Against the human enzymes, the kinetics of inhibition by MPA are uncompetitive with respect to both substrates IMP and NAD. Uncompetitive inhibition indicates that MPA preferentially binds to the enzyme after substrates, perhaps to an enzyme-IMP-NAD ternary complex or to an enzyme-XMP binary complex in the product side of the reaction. Uncompetitive inhibition by MPA cannot be overcome by increases in intracellular concentrations of the substrates. The immunosuppressive mechanisms of MPA are discussed in relation to lymphocyte proliferation, alterations of pools of other nucleotides coincident with GTP depletion, and inhibition of other GTP-dependent biochemical events.  相似文献   

9.
Mycophenolic acid (MPA) is a reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH) and, in combination with other immunosuppressive drugs, effectively inhibits rejection in solid organ transplant recipients. MPA has a relatively narrow therapeutic window and exhibits wide inter- and intrapatient pharmacokinetic (PK) variability. This has stimulated the use of therapeutic drug monitoring as a strategy to tailor the MPA exposure to each patient's individual needs. Despite increasing therapeutic drug monitoring use, PK-assisted dosing is not universally adopted in part because of MPA's complex PK behavior. Targeting inosine monophosphate IMPDH activity as a surrogate pharmacodynamic (PD) marker of MPA-induced immunosuppression may allow for increased precision when used in an integrated PK-PD fashion, providing a more accurate assessment of efficacy and aid in limiting toxicity. IMPDH activity displays wide interpatient variability but relatively small intrapatient variability even after long-term administration of MPA. The advent of calcineurin and corticosteroid-sparing regimens necessitates more patient-specific PK-PD parameters, which can be used throughout the posttransplant period to optimize MPA exposure and immediate and long-term graft and patient outcomes. Quantification of IMPDH posttransplant may serve as a stable, surrogate PD marker of MPA-induced immunosuppression when combined with current PK and monitoring strategies.  相似文献   

10.
OBJECTIVES: To investigate the pharmacokinetics of mycophenolic acid (MPA) in Chinese adult renal allograft recipients, and to generate the validated model equations for estimation of the MPA area under the plasma concentration-time curve from 0 to 12 hours (AUC(12)) with a limited sampling strategy. PATIENTS AND METHODS: The pharmacokinetics in 75 Chinese renal allograft recipients treated with mycophenolate mofetil 2 g/day in combination with cyclosporin and corticosteroids were determined. The MPA concentration was assayed by high-performance liquid chromatography at pre-dose (C(0)) and at 0.5 (C(0.5)), 1 (C(1)), 1.5 (C(1.5)), 2 (C(2)), 4 (C(4)), 6 (C(6)), 8 (C(8)), 10 (C(10)) and 12 (C(12)) hours after dosing on day 14 post-transplant. Patients were randomly divided into: (i) a model group (n = 50) to generate the model equations by multiple stepwise regression analysis for estimation of the MPA AUC by a limited sampling strategy; and (ii) a validation group (n = 25) to evaluate the predictive performance of the model equations. RESULTS: The mean MPA AUC(12) was 52.97 +/- 15.09 mg . h/L, ranging from 24.0 to 102.3 mg . h/L. The patient's age and serum albumin level had a significant impact on the MPA AUC(12). The correlation between the pre-dose MPA trough level (C(0)) and the MPA AUC(12) was poor (r(2) = 0.02, p = 0.33). Model equations 7 (MPA AUC(12) = 14.81 + 0.80 . C(0.5) + 1.56 . C(2) + 4.80 . C(4), r(2) = 0.70) and 11 (MPA AUC(12) = 11.29 + 0.51 . C(0.5) + 2.13 . C(2) + 8.15 . C(8), r(2) = 0.88) were selected for MPA AUC calculation in Chinese patients, resulting in good agreements between the estimated MPA AUC and the full MPA AUC(12), with a mean prediction error of +/-10.1 and +/-6.9 mg . h/L, respectively. CONCLUSION: In Chinese renal allograft recipients, MPA pharmacokinetics manifest substantial interindividual variability, and the MPA AUC(12) tends to be higher than that in Caucasian patients receiving the same dose of mycophenolate mofetil. Two validated model equations with three sampling timepoints are recommended for MPA AUC estimation in Chinese patients.  相似文献   

11.
Determinants of the wide interindividual variability of the pharmacokinetics of mycophenolic acid (MPA) in 21 stable pediatric liver transplant recipients were investigated in relation to the kinetics of the drug's major phenolic glucuronide metabolite (MPAG), cyclosporin (CsA), or tacrolimus (Tac) co-medication and liver and renal function. Trough concentrations (C(0) ) most reliably predicted the area under the curve (AUC) of 0-7 hours MPA plasma concentrations (r (2) = 0.650). Co-medication with CsA demanded higher MPA mofetil (MMF) doses to achieve equivalent trough levels than Tac (362 vs. 178 mg per mg/L, P= 0.004). Median MPA C(0) (range) was significantly lower during CsA co-therapy when corrected for MMF dose (2.8 vs. 5.6 mg MPA/L for Tac, P= 0.006). The AUC of MPAG was correspondingly higher during CsA co-medication (229 vs. 94 mg/L/h for Tac, P = 0.012) with the MPA-to-MPAG ratio at C(0) correspondingly lower (0.10 vs. 0.14, respectively, P = 0.04). This suggested contrasting effects of CsA and Tac on MPA glucuronidation or its excretion and enterohepatic recirculation. MPAG AUC was correlated to body weight and creatinine clearance. Children with elevated aspartate transaminase (AST; but with no evidence of rejection on liver biopsy, n = 7) had significantly lower MPA trough levels compared with those in whom AST was normal (0. 77 vs. 1.76 mg/L, P = 0.05), but there was no difference in the MMF dose per body weight. Examination of the MPA profiles in these subjects showed significantly lower MPA concentrations from 120 minutes after dose until the end of the 7-hour profile and suggest an accelerated clearance or decreased enterohepatic recirculation.)  相似文献   

12.
Mycophenolate mofetil, an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy in pediatric renal transplant recipients. However, little is known about the pharmacokinetics of MPA in this patient population in the stable transplant phase, and dosage guidelines are preliminary. The authors therefore compared the pharmacokinetics of MPA, free MPA, and the renal metabolite MPA glucuronide (MPAG) in the initial (sampling at 1 and 3 weeks) and stable phases (sampling at 3 and 6 months) posttransplant in 17 children (age, 12.0 +/- 0.77 years; range, 5.9 to 15.8 years), receiving the currently recommended dose of 600 mg MMF/m2 body surface area (BSA) twice a day. Plasma concentrations of MPA and MPAG were measured by reverse phase HPLC. Because MPA is extensively bound to serum albumin and only the free drug is presumed to be pharmacologically active, the authors also analyzed the MPA free fraction by HPLC after separation by ultrafiltration. The intraindividual variability of the area under the concentration-time curves (AUC0-12) of MPA throughout the 12-hour dosing interval was high in the immediate posttransplant period, but declined in the stable phase, whereas the interindividual variability remained unchanged. The median MPA-AUC0-12 values increased 2-fold from 32.4 (range, 13.9 to 57.0) mg x h/L at 3 weeks to 65.1 (range, 32.6 to 114) mg x h/L at 3 months after transplantation, whereas the median AUC0-12 values of free MPA did not significantly change over time. This discrepancy can be attributed to a 35% decline of the MPA free fraction from 1.4% in the initial phase posttransplant to 0.9% (p < 0.01) in the stable phase. In conclusion, pediatric renal transplant recipients given a fixed MMF dose exhibit a 2-fold increase of the AUC0-12 of total MPA in the stable phase posttransplant and a 35% decrease of the MPA free fraction, whereas the AUC0-12 of free MPA remains unchanged over time. Because the latter pharmacokinetic variable is theoretically best predictive of the clinical immunosuppressive efficacy of MMF, these findings may have consequences for the dosing recommendations of MMF in renal transplant recipients.  相似文献   

13.
A 58-year-old man with end-stage renal failure secondary to polycystic kidney disease developed a profoundly elevated mycophenolic acid (MPA) free fraction and associated severe toxicity after cadaveric renal transplantation. Initial immunosuppressive therapy was 4 mg/kg body weight bid cyclosporin (Neoral; Novartis Pharmaceutical Co Ltd, Sydney, Australia) given orally with 1 g bid mycophenolate mofetil (MMF) (CellCept; Roche Products Pty Ltd, Sydney, Australia). In the first 5 days posttransplantation, the serum creatinine concentration fell, and the patient developed profound hypoalbuminemia (serum albumin <20 g/L) and hyperbilirubinemia (serum bilirubin >150 micromol/L) that resulted from progressing biliary obstruction. On day 5 posttransplantation, the 2-hour whole-blood cyclosporin concentration and total MPA area under the curve (AUC(0-6)) were low (837 microg/L and 12.6 mg x h/L, respectively), while the total mycophenolic acid glucuronide (MPAG) AUC(0-6) was elevated (1317 mg x h/L). MMF was continued at the same dose, but tacrolimus substituted for cyclosporin. The patient subsequently experienced severe nausea, vomiting, hematemesis, and pancytopenia (nadir white cell count 1.6 x 10(9)/L, platelet count 32 x 10(9)/L, and hemoglobin 73 g/L) that were normalized after cessation of MMF. Retrospective measurement of the free MPA concentration on day 5 showed that free MPA AUC(0-6) was markedly elevated at 2.3 mg x h/L, as was the free fraction, at 18.3%. This case illustrates how altered protein binding can be associated with severe MMF toxicity caused by an increased free MPA concentration despite relatively low total MPA. These data support the monitoring of free MPA concentrations in those patients considered at risk for MMF-related toxicity.  相似文献   

14.
Chen H  Peng C  Yu Z  Shen B  Deng X  Qiu W  Fei Y  Shen C  Zhou G  Yang W  Li H 《Clinical pharmacokinetics》2007,46(2):175-185
OBJECTIVES: This study aimed to: (i) define the clinical pharmacokinetics of mycophenolic acid (MPA) in Chinese liver transplant recipients; and (ii) develop a regression model best fitted for the prediction of MPA area under the plasma concentration-time curve from 0 to 12 hours (AUC(12)) by abbreviated sampling strategy. METHODS: Forty liver transplant patients received mycophenolate mofetil 1g as a single dose twice daily in combination with tacrolimus. MPA concentrations were determined by high-performance liquid chromatography before dose (C(0)) and at 0.5 (C(0.5)), 1 (C(1)), 1.5 (C(1.5)), 2 (C(2)), 4 (C(4)), 6 (C(6)), 8 (C(8)), 10 (C(10)) and 12 (C(12)) hours after administration on days 7 and 14. A total of 72 pharmacokinetic profiles were obtained. MPA AUC(12) was calculated with 3P97 software. The trough concentrations (C(0)) of tacrolimus and hepatic function were also measured simultaneously. Multiple linear regression analysis was used to establish the models for estimated MPA AUC(12). The agreement between predicted MPA AUC(12) and observed MPA AUC(12) was investigated by Bland-Altman analysis. RESULTS: The pattern of MPA concentrations during the 12-hour interval on day 7 was very similar to that on day 14. In the total of 72 profiles, the mean maximum plasma concentration (C(max)) and time to reach C(max) (t(max)) were 9.79 +/- 5.26 mg/L and 1.43 +/- 0.78 hours, respectively. The mean MPA AUC(12) was 46.50 +/- 17.42 mg . h/L (range 17.99-98.73 mg . h/L). Correlation between MPA C(0) and MPA AUC(12) was poor (r(2) = 0.300, p = 0.0001). The best model for prediction of MPA AUC(12) was by using 1, 2, 6 and 8 hour timepoint MPA concentrations (r(2) = 0.921, p = 0.0001). The regression equation for estimated MPA AUC(12) was 5.503 + 0.919 . C(1) + 1.871 . C(2) + 3.176 . C(6) + 3.664 . C(8).This model had minimal mean prediction error (1.24 +/- 11.19%) and minimal mean absolute prediction error (8.24 +/- 7.61%). Sixty-three of 72 (88%) estimated MPA AUC(12) were within 15% of MPA AUC(12). Bland-Altman analysis also revealed the best agreement of this model compared with the others and a mean error of +/-9.89 mg . h/mL. CONCLUSION: This study showed the wide variability in MPA AUC(12) in Chinese liver transplant recipients. Single timepoint MPA concentration during the 12-hour dosing interval cannot reflect MPA AUC(12). MPA AUC(12) could be predicted accurately using 1, 2, 6 and 8 hour timepoint MPA concentrations by abbreviated sampling strategy.  相似文献   

15.
黄珈雯  刘岩峰  李嘉丽  王利  王长希  钟国平  黄民 《中国基层医药》2011,18(13):1729-1731,I0003
目的建立同时检测人血浆中霉酚酸(MPA)及其葡糖苷酸代谢物浓度的高效液相色谱法(HPLC),并将其应用于肾移植术后患者霉酚酸酯(MMF)的治疗药物监测。方法以蛋白沉淀剂甲醇-5%硫酸锌(70:30,V:V)溶液进行血浆样品药物提取;内标物为萘普生;色谱柱为C18(4.6mm×250mm,5μm);流动相为甲醇-水(含0.1%三氟乙酸)(65:35,V:V);流速0.8mE/rain;检测波长215nm。结果MPA与其葡糖苷酸代谢物MPAG的线性范围分别为0.1—50mg/L及0.5—200mg/L,r2〉0.999;绝对回收率分别为63.95%~83.76%及57.14%-66.19%;两者日间及日内的相对标准偏差(RSD)均小于10%。6例。肾移植术后早期患者服用1.5g/d霉酚酸酯胶囊达药物稳态后,MPA及MPAG的Tmax分别为(1.08±0.74)h及(2.58±1.24)h,Cmax分别为(21.33±8.61)mg/L及(106.98±31.91)mg/L,AUC0-t分别为(58.73±16.26)及(833.32±215.03)mg·L^-1·h^-1。结论HPLC检测方法准确、灵敏、特异性好,并成功应用在。肾移植术后早期患者的治疗药物监测(TDM)中。  相似文献   

16.
17.

AIMS

Long-term mycophenolate mofetil (MMF) therapy may induce inosine 5′-monophosphate dehydrogenase (IMPDH) activity in peripheral blood mononuclear cells (PBMCs), thus decreasing MMF immunosuppressive properties. Pharmacodynamic monitoring was used to investigate whether biological activity is altered after long-term therapy.

METHODS

IMPDH activity was measured in PBMC samples from 54 stable kidney transplant patients, already on MMF (for at least 3 months), before (t0) and 2 h after (t2) MMF morning dose administration; levels were monitored for up to 15 months, together with total mycophenolic acid (MPA) and free MPA concentrations.

RESULTS

During the 15 months'' monitoring, t0 IMPDH activity in transplant recipients increased from 5.9 ± 3.7 nmol h−1 mg−1[95% confidence interval (CI) 4.9, 6.9] to 9.0 ± 3.9 nmol h−1 mg−1 (95% CI 7.2, 10.8), with an intra- and interpatient variability of 28% and 42%. Five patients experienced acute rejection during the follow-up: t0 IMPDH activity was increased during rejection vs. nonrejection, and the trend was significantly higher in rejecting than in nonrejecting subjects for the whole monitoring period.

CONCLUSIONS

Even though a correlation has been found between IMPDH activity and rejection, its efficacy as a predictive tool in long-term transplant outcomes may be affected by high interpatient variability; on the other hand, continuous monitoring of the IMPDH trend could make an effective prognostic parameter of rejection. Other trials also including pre-transplant data on both IMPDH expression and activity are warranted to better assess their role as biomarkers for MPA effect in clinical practice.  相似文献   

18.
A juvenile, female renal transplant recipient suffered two acute rejection episodes: the first on posttransplant day 31 while taking cyclosporine, prednisone, and mycophenolate mofetil (MMF); and the second on posttransplant day 67, when she was taking tacrolimus, prednisone, and MMF. Dosage of MMF was initially started at 2 g/d (corresponding to 600 mg MMF/m(2) twice daily.), but was reduced to 250 mg/d to 500 mg/d after severe diarrhea and a paralytic ileus on posttransplant day 16. During therapy with tacrolimus, prednisone, and MMF, predose plasma mycophenolic acid (MPA) concentrations varied from 1.1 mg/L to 8.2 mg/L (median 3.0 mg/L). On posttransplant day 91, a 12-hour pharmacokinetic profile was obtained. The concentrations of MPA and its metabolites were determined with a validated high-performance liquid chromatography (HPLC) procedure. After oral MMF (250 mg) administration, the MPA concentration showed an atypical decline from a predose concentration of 6.0 mg/L to a value of 3.8 mg/L at 75 minutes postdose, and 3.4 mg/L at 6 hours postdose, before returning to 6.0 mg/L after 12 hours. The 12-hour area under the concentration-time curve (AUC) values for MPA and its major metabolite the phenolic glucuronide MPAG were 55.1 mg.h/L and 800 mg.h/L, respectively. An unusually high concentration (12-h AUC, 165 mg.h/L) of the phenolic glucose conjugate of MPA was found. The apparent renal clearance of MPAG was only 2.2 mL/min. Her creatinine clearance was 30 mL/min. MPAG clearances have been reported to range from approximately. 5.5 mL/min to 35 mL/min at a creatinine clearance of approximately 30 mL/min in renal transplant recipients. The authors' findings suggest that conjugation and clearance of MPA through the kidney is strongly impaired in this patient. The relatively high predose MPA concentrations could result from an enhanced enterohepatic circulation of MPA and its metabolites.  相似文献   

19.
20.
Abstract: The risk of acute rejection in patients with higher exposure to mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), might be due to inosine 5′‐monophosphate dehydrogenase (IMPDH) polymorphisms. The correlations with subclinical acute rejection, IMPDH1 polymorphisms and MPA exposure on day 28 post‐transplantation were investigated in 82 Japanese recipients. Renal transplant recipients were given combination immunosuppressive therapy consisting of tacrolimus and 1.0, 1.5 or 2.0 g/day of MMF in equally divided doses every 12 hr at designated times. There were no significant differences in the incidence of subclinical acute rejection between IMPDH1 rs2278293 or rs2278294 polymorphisms (p = 0.243 and 0.735, respectively). However, in the high MPA night‐time exposure range (AUC >60 μg·h/ml and C0 1.9 μg/ml), there was a significant difference in the incidence of subclinical acute rejection between IMPDH1 rs2278293 A/A, A/G and G/G genotypes (each p = 0.019), but not the IMPDH1 rs2278294 genotype. In the higher daytime MPA exposure range, patients with the IMPDH1 rs2278293 G/G genotype also tended to develop subclinical acute rejection. In patients with the IMPDH rs2278293 A/A genotype, the risk of subclinical acute rejection episode tends to be low and the administration of MMF was effective. The risk of subclinical acute rejection for recipients who cannot adapt in therapeutic drug monitoring (TDM) of MPA seems to be influenced by IMPDH1 rs2278293 polymorphism. The prospective analysis of IMPDH1 rs2278293 polymorphism as well as monitoring of MPA plasma concentration after transplantation might help to improve MMF therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号