首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang H  Li Y  Zuo Y  Li J  Ma S  Cheng L 《Biomaterials》2007,28(22):3338-3348
In this study, we prepared nano-hydroxyapatite/polyamide (n-HA/PA) composite scaffolds utilizing thermally induced phase inversion processing technique. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized. Mesenchymal stem cells (MSCs) derived from bone marrow of neonatal rabbits were cultured, expanded and seeded on n-HA/PA scaffolds. The MSC/scaffold constructs were cultured for up to 7 days and the adhesion, proliferation and differentiation of MSCs into osteoblastic phenotype were determined using MTT assay, alkaline phosphatase (ALP) activity and collagen type I (COL I) immunohistochemical staining and scanning electronic microscopy (SEM). The results confirm that n-HA/PA scaffolds are biocompatible and have no negative effects on the MSCs in vitro. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both pure n-HA/PA scaffolds and MSC/scaffold constructs were implanted in rabbit mandibles and studied histologically and microradiographically. The results show that n-HA/PA composite scaffolds exhibit good biocompatibility and extensive osteoconductivity with host bone. Moreover, the introduction of MSCs to the scaffolds dramatically enhanced the efficiency of new bone formation, especially at the initial stage after implantation. In long term (more than 12 weeks implantation), however, the pure scaffolds show as good biocompatibility and osteogenesis as the hybrid ones. All these results indicate that the scaffolds fulfill the basic requirements of bone tissue engineering scaffold, and have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery.  相似文献   

2.
Calcium phosphate ceramics have been widely used for filling bone defects to aid in the regeneration of new bone tissue. Addition of osteogenic cells to porous ceramic scaffolds may accelerate the bone repair process. This study demonstrates the feasibility of culturing marrow stromal cells (MSCs) on porous biphasic calcium phosphate ceramic scaffolds in a flow perfusion bioreactor. The flow of medium through the scaffold porosity benefits cell differentiation by enhancing nutrient transport to the scaffold interior and by providing mechanical stimulation to cells in the form of fluid shear. Primary rat MSCs were seeded onto porous ceramic (60% hydroxyapatite, 40% β-tricalcium phosphate) scaffolds, cultured for up to 16 days in static or flow perfusion conditions, and assessed for osteoblastic differentiation. Cells were distributed throughout the entire scaffold by 16 days of flow perfusion culture whereas they were located only along the scaffold perimeter in static culture. At all culture times, flow perfused constructs demonstrated greater osteoblastic differentiation than statically cultured constructs as evidenced by alkaline phosphatase activity, osteopontin secretion into the culture medium, and histological evaluation. These results demonstrate the feasibility and benefit of culturing cell/ceramic constructs in a flow perfusion bioreactor for bone tissue engineering applications.  相似文献   

3.
Xu C  Su P  Chen X  Meng Y  Yu W  Xiang AP  Wang Y 《Biomaterials》2011,32(4):1051-1058
A novel biomimetic composite scaffold Bioglass-Collagen-Phosphatidylserine (BG-COL-PS) was fabricated with a freeze-drying technique. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the BG-COL-PS scaffolds exhibited interconnected porous structures with pore sizes of several microns up to about 300 μm. The scaffolds have a porosity of 75.40% and the corresponding compressive strength of 1.5469 Mpa. Rat mesenchymal stem cells (rMSCs) were seeded on BG-COL-PS or BG-COL scaffolds and cultured for 21 days in vitro. Based on the results of SEM, dsDNA content, alkaline phosphatase (ALP) activity, osteogenic gene expression analysis and alizarin red staining, the responses of MSCs to the scaffold exhibited a higher degree of attachment, growth as well as osteogenic differentiation than those on BG-COL scaffolds in vitro. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both pure BG-COL-PS scaffolds and MSC/scaffold constructs were implanted in rat femurs defects for 6 weeks and studied histologically and radiographically. The in vivo results showed that BG-COL-PS composite scaffolds exhibited good biocompatibility and extensive osteoconductivity with host bone. Moreover, the BG-COL-PS/MSC constructs dramatically enhanced the efficiency of new bone formation than pure BG-COL-PS scaffolds or BG-COL/MSC constructs. All these results demonstrate the usefulness of PS composited BG-COL-PS scaffolds for inducing enhanced bone formation. The BG-COL-PS scaffolds fulfill the basic requirements of bone tissue engineering scaffold and have the potential to be applied in orthopedic and reconstructive surgery.  相似文献   

4.
5.
Alternative materials for bone grafts are gaining greater importance in dentistry and orthopaedics, as the limitations of conventional methods become more apparent. We are investigating the generation of osteoinductive matrix in vitro by culturing cell/scaffold constructs for tissue engineering applications. The main strategy involves the use of a scaffold composed of titanium (Ti) fibers seeded with progenitor cells. In this study, we investigated the effect of extracellular matrix (ECM) laid down by osteoblastic cells on the differentiation of marrow stromal cells (MSCs) towards osteoblasts. Primary rat MSCs were harvested from bone marrow, cultured in dexamethasone containing medium and seeded directly onto the scaffolds. Constructs were grown in static culture for 12 days and then decellularized by rapid freeze-thaw cycling. Decellularized scaffolds were re-seeded with pre-cultured MSCs at a density of 2.5 x 10(5) cells/construct and osteogenicity was determined according to DNA, alkaline phosphatase, calcium and osteopontin analysis. DNA content was higher for cells grown on decellularized scaffolds with a maximum content of about 1.3 x 10(6) cells/construct. Calcium was deposited at a greater rate by cells grown on decellularized scaffolds than the constructs with only one seeding on day-16. The Ti/MSC constructs showed negligible calcium content by day-16, compared with 213.2 (+/- 13.6) microg/construct for the Ti/ECM/MSC constructs cultured without any osteogenic supplements after 16 days. These results indicate that bone-like ECM synthesized in vitro can enhance the osteoblastic differentiation of MSCs.  相似文献   

6.
7.
Silk fibroin scaffolds were studied as a new biomaterial option for tissue-engineered cartilage-like tissue. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on silk, collagen, and crosslinked collagen scaffolds and cultured for 21 days in serum-free chondrogenic medium. Cells proliferated more rapidly on the silk fibroin scaffolds than on the collagen matrices. The total content of glycosaminoglycan deposition was three times higher on silk as compared to collagen scaffolds. Glycosaminoglycan deposition coincided with overexpression of collagen type II and aggrecan genes. Cartilage-like tissue was homogeneously distributed throughout the entire silk scaffolds, while on the collagen and crosslinked collagen systems tissue formation was restricted to the outer rim, leaving a doughnut appearance. Round or angular-shaped cells resided in deep lacunae in the silk systems and stained positively for collagen type II. The aggregate modulus of the tissue-engineered cartilage constructs was more than 2-fold higher than that of the unseeded silk scaffold controls. These results suggest that silk fibroin scaffolds are suitable biomaterial substrates for autologous cartilage tissue engineering in serum-free medium and enable mechanical improvements along with compositional features suitable for durable implants to generate or regenerate cartilage.  相似文献   

8.
New tissue-engineering tool for bone regeneration is described to facilitate homogeneous cell seeding and effective osteogenic development. Calcium phosphate (CaP) scaffolds with macrochanneled and well-defined pore structure was developed, however, a large portion of the cells seeded directly within the scaffold easily penetrates without good adhesion to the scaffold surface. To overcome this, a method was exploited to dispense cells evenly throughout the CaP scaffold using collagen hydrogel. Rat bone marrow-derived mesenchymal stem cells (MSCs) were mixed within a neutralized collagen solution, which was then infiltrated into the macrochanneled pore space and gelled to result in macrochanneled bioceramic scaffold combined with MSCs-hydrogel. MSCs contained within the hydrogel-CaP scaffolds were highly viable, with similar growth pattern to those in the collagen hydrogel. Cells seeded by this approach were initially almost double in number compared with those seeded directly onto the CaP scaffold and had an active proliferation more than 14 days. Assessments of the MSCs showed significantly higher alkaline phosphatase levels in the combined scaffold, which was accompanied by enhanced osteogenesis including the expression of genes [collagen type I, bone sialoprotein, and osteopontin (OPN)] and proteins (OPN and osteocalcin). Extracellular calcium was also elevated significantly in the combined scaffold compared to the CaP scaffold. In addition, mechanical strength of the constructs was improved significantly in the combined scaffold compared to the CaP scaffold. Based on these, the cell culturing and tissue engineering strategy within the macrochanneled bioactive ceramic scaffolds could be improved greatly by the combinatory approach of using collagen hydrogel.  相似文献   

9.
Abstract

Natural silk fibroin fiber scaffolds have excellent mechanical properties, but degrade slowly. In this study, we used poly(lactide-co-glycolide) (PLGA, 10:90) fibers to adjust the overall degradation rate of the scaffolds and filled them with collagen to reserve space for cell growth. Silk fibroin-PLGA (36:64) mesh scaffolds were prepared using weft-knitting, filled with type I collagen, and incubated with rabbit autologous bone marrow-derived mesenchymal stem cells (MSCs). These scaffold–cells composites were implanted into rabbit Achilles tendon defects. At 16 weeks after implantation, morphological and histological observations showed formation of tendon-like tissues that expressed type I collagen mRNA and a uniformly dense distribution of collagen fibers. The maximum load of the regenerated Achilles tendon was 58.32% of normal Achilles tendon, which was significantly higher than control group without MSCs. These findings suggest that it is feasible to construct tissue engineered tendon using weft-knitted silk fibroin-PLGA fiber mesh/collagen matrix seeded with MSCs for rabbit Achilles tendon defect repair.  相似文献   

10.
Flow perfusion culture of scaffold/cell constructs has been shown to enhance the osteoblastic differentiation of rat bone marrow stroma cells (MSCs) over static culture in the presence of osteogenic supplements including dexamethasone. Although dexamethasone is known to be a powerful induction agent of osteoblast differentiation in MSC, we hypothesied that the mechanical shear force caused by fluid flow in a flow perfusion bioreactor would be sufficient to induce osteoblast differentiation in the absence of dexamethasone. In this study, we examined the ability of MSCs seeded on titanium fiber mesh scaffolds to differentiate into osteoblasts in a flow perfusion bioreactor in both the presence and absence of dexamethasone. Scaffold/cell constructs were cultured for 8 or 16 days and osteoblastic differentiation was determined by analyzing the constructs for cellularity, alkaline phosphatase activity, and calcium content as well as media samples for osteopontin. For scaffold/cell constructs cultured under flow perfusion, there was greater scaffold cellularity, alkaline phosphatase activity, osteopontin secretion, and calcium deposition compared with static controls, even in the absence of dexamethasone. When dexamethasone was present in the cell culture medium under flow perfusion conditions, there was further enhancement of osteogenic differentiation as evidenced by lower scaffold cellularity, greater osteopontin secretion, and greater calcium deposition. These results suggest that flow perfusion culture alone induces osteogenic differentiation of rat MSCs and that there is a synergistic effect of enhanced osteogenic differentiation when both dexamethasone and flow perfusion culture are used.  相似文献   

11.
Wang Y  Kim UJ  Blasioli DJ  Kim HJ  Kaplan DL 《Biomaterials》2005,26(34):7082-7094
Adult cartilage tissue has limited self-repair capacity, especially in the case of severe damages caused by developmental abnormalities, trauma, or aging-related degeneration like osteoarthritis. Adult mesenchymal stem cells (MSCs) have the potential to differentiate into cells of different lineages including bone, cartilage, and fat. In vitro cartilage tissue engineering using autologous MSCs and three-dimensional (3-D) porous scaffolds has the potential for the successful repair of severe cartilage damage. Ideally, scaffolds designed for cartilage tissue engineering should have optimal structural and mechanical properties, excellent biocompatibility, controlled degradation rate, and good handling characteristics. In the present work, a novel, highly porous silk scaffold was developed by an aqueous process according to these criteria and subsequently combined with MSCs for in vitro cartilage tissue engineering. Chondrogenesis of MSCs in the silk scaffold was evident by real-time RT-PCR analysis for cartilage-specific ECM gene markers, histological and immunohistochemical evaluations of cartilage-specific ECM components. Dexamethasone and TGF-beta3 were essential for the survival, proliferation and chondrogenesis of MSCs in the silk scaffolds. The attachment, proliferation, and differentiation of MSCs in the silk scaffold showed unique characteristics. After 3 weeks of cultivation, the spatial cell arrangement and the collagen type-II distribution in the MSCs-silk scaffold constructs resembles those in native articular cartilage tissue, suggesting promise for these novel 3-D degradable silk-based scaffolds in MSC-based cartilage repair. Further in vivo evaluation is necessary to fully recognize the clinical relevance of these observations.  相似文献   

12.
13.
Growth factors have been shown to be potent mediators of osteogenesis. However, their use in tissue-engineered scaffolds not only can be costly but also can induce undesired responses in surrounding tissues. Thus, the ability to specifically induce osteogenic differentiation in the absence of exogenous growth factors through manipulation of scaffold material properties would be desirable for bone regeneration. Previous research indicates that addition of inorganic or hydrophobic components to organic, hydrophilic scaffolds can enhance multipotent stem cell (MSC) osteogenesis. However, the combined impact of scaffold inorganic content and hydrophobicity on MSC behavior has not been systematically explored, particularly in three-dimensional (3D) culture systems. The aim of the present study was therefore to examine the effects of simultaneous increases in scaffold hydrophobicity and inorganic content on MSC osteogenic fate decisions in a 3D culture environment toward the development of intrinsically osteoinductive scaffolds. Mouse 10T? MSCs were encapsulated in a series of novel scaffolds composed of varying levels of hydrophobic, inorganic poly(dimethylsiloxane) (PDMS) and hydrophilic, organic poly(ethylene glycol) (PEG). After 21 days of culture, increased levels of osteoblast markers, runx2 and osteocalcin, were observed in scaffolds with increased PDMS content. Bone extracellular matrix (ECM) molecules, collagen I and calcium phosphate, were also elevated in formulations with higher PDMS:PEG ratios. Importantly, this osteogenic response appeared to be specific in that markers for chondrocytic, smooth muscle cell, and adipocytic lineages were not similarly affected by variations in scaffold PDMS content. As anticipated, the increase in scaffold hydrophobicity accompanying increasing PDMS levels was associated with elevated scaffold serum protein adsorption. Thus, scaffold inorganic content combined with alterations in adsorbed serum proteins may underlie the observed cell behavior.  相似文献   

14.
Natural bone consists of cortical and trabecular morphologies, the latter having variable pore sizes. This study aims at engineering different bone-like structures using scaffolds with small pores (112-224 microm) in diameter on one side and large pores (400-500 microm) on the other, while keeping scaffold porosities constant among groups. We hypothesized that tissue engineered bone-like structure resulting from silk fibroin (SF) implants is pre-determined by the scaffolds' geometry. To test this hypothesis, SF scaffolds with different pore diameters were prepared and seeded with human mesenchymal stem cells (hMSC). As compared to static seeding, dynamic cell seeding in spinner flasks resulted in equal cell viability and proliferation, and better cell distribution throughout the scaffold as visualized by histology and confocal microscopy, and was, therefore, selected for subsequent differentiation studies. Differentiation of hMSC in osteogenic cell culture medium in spinner flasks for 3 and 5 weeks resulted in increased alkaline phosphatase activity and calcium deposition when compared to control medium. Micro-computed tomography (microCT) detailed the pore structures of the newly formed tissue and suggested that the structure of tissue-engineered bone was controlled by the underlying scaffold geometry.  相似文献   

15.
For successful tissue engineering, neovascularization of the implanted tissue is critical. Factors generated by endothelial cells are also considered crucial for the process of osteogenesis. The direct effects of supplementing tissue engineered constructs with cultured endothelial progenitor cells (EPCs) for enhancing bone regeneration have not been reported. In this study, we investigated the potential of EPCs to facilitate neovascularization in implants and evaluated their influence on bone regeneration. The influence of EPC soluble factors on osteogenic differentiation of mesenchymal stem cells (MSCs) was tested by adding EPC culture supernatant to MSC culture medium. To evaluate the influence of EPCs on MSC osteogenesis, canine MSCs-derived osteogenic cells and EPCs were seeded independently onto collagen fiber mesh scaffolds and co-transplanted to nude mice subcutaneously. Results from coimplant experiments were compared to implanted cells absent of EPCs 12 weeks after implantation. Factors from the culture supernatant of EPCs did not influence MSC differentiation. Coimplanted EPCs increased neovascularization and the capillary score was 1.6-fold higher as compared to the MSC only group (p < 0.05). Bone area was also greater in the MSC + EPC group (p < 0.05) and the bone thickness was 1.3-fold greater in the MSC + EPC group than the MSC only group (p < 0.05). These results suggest that soluble factors generated by EPCs may not facilitate the osteogenic differentiation of MSCs; however, newly formed vasculature may enhance regeneration of tissue-engineered bone.  相似文献   

16.
The objective of this study was to assess bone formation from mesenchymal stem cells (MSCs) on a novel nanofibrous scaffold in a rat model. A highly porous, degradable poly(epsilon-caprolactone) (PCL) scaffold with an extracellular matrix-like topography was produced by electrostatic fiber spinning. MSCs derived from the bone marrow of neonatal rats were cultured, expanded, and seeded on the scaffolds. The cell-polymer constructs were cultured with osteogenic supplements in a rotating bioreactor for 4 weeks, and subsequently implanted in the omenta of rats for 4 weeks. The constructs were explanted and characterized by histology, immunohistochemistry, and scanning electron microscopy. The constructs maintained the size and shape of the original scaffolds. Morphologically, the constructs were rigid and had a bone-like appearance. Cells and extracellular matrix (ECM) formation were observed throughout the constructs. In addition, mineralization and type I collagen were also detected. This study establishes the ability to develop bone grafts on electrospun nanofibrous scaffolds in a well-vascularized site using MSCs.  相似文献   

17.
A previous study demonstrated that the incorporation of bioactive glass (BG) into poly (lactic-co-glycolic acid) (PLGA) can promote the osteoblastic differentiation of marrow stromal cells (MSCs) on PLGA by promoting the formation of a calcium-phosphate-rich layer on its surface. To further understand the mechanisms underlying the osteogenic effect of PLGA-BG composite scaffolds, whether solution-mediated factors derived from composite scaffolds/hybrids can promote osteogenesis of marrow stromal cells was tested. The dissolution product from PLGA-30%BG scaffold stimulated osteogenesis of MSCs, as was confirmed by increased mRNA expression of osteoblastic markers such as osteocalcin (OCN), alkaline phosphatase (ALP), and bone sialoprotein (BSP). The three-dimensional structure of the scaffolds may contribute to the production of cell-derived factors that promoted distant MSC differentiation. Thus PLGA-BG composites demonstrate significant potential as a bone-replacement material.  相似文献   

18.
This article describes the development of an in vitro culture system to enhance the expression of a plasmid DNA for mesenchymal stem cells (MSCs) by a combination of plasmid DNA impregnation into three-dimensional cell scaffolds and culture methods. Gelatin was cationized by introducing spermine to the carboxyl groups for complexation with the plasmid DNA. As the MSC scaffold, poly(glycolic acid) (PGA) fiber fabrics, collagen sponges, and collagen sponges reinforced by incorporation of PGA fibers were used. A complex of cationized gelatin and plasmid DNA encoding bone morphogenetic protein 2 (BMP-2) was impregnated into the scaffolds. Plasmid DNA was released from PGA-reinforced collagen sponge for longer than from the other scaffolds. MCS were seeded into each type of scaffold and cultured by static, stirring, and perfusion methods. When MSCs were cultured in PGA-reinforced sponge, the level of BMP-2 expression was significantly enhanced by perfusion culture compared with the other culture methods, and the time of expression was prolonged. Irrespective of the culture method, the expression level was significantly higher from plasmid DNA impregnated in scaffold than by plasmid DNA in medium. The alkaline phosphatase activity and osteocalcin content of MSCs cultured in PGA-reinforced sponge by the perfusion method were significantly higher compared with those of other methods, and a significantly higher amount of plasmid DNA internalized into MSCs was observed. We conclude that a combination of plasmid DNA-impregnated PGA-reinforced sponge and the perfusion method was promising to promote in vitro gene expression for MSCs.  相似文献   

19.
Yoon SJ  Park KS  Kim MS  Rhee JM  Khang G  Lee HB 《Tissue engineering》2007,13(5):1125-1133
Calcitriol (1,25(OH)2D3)-loaded porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds prepared by solvent casting/salt leaching method were used to repair a 1.5 cm diaphyseal segmental bone defect as a fully absorbable osteogenic biomaterial. The in vitro release of sulforhodamine B (SRB) from PLGA scaffold was measured using spectrophotometer, considering SRB as a model drug. The SRB released from SRB-incorporated PLGA scaffold during 3 months was with relatively low initial burst. The calcitriol-loaded PLGA scaffolds with or without marrow stromal cells (MSCs) were implanted in a critical-sized intercalated bone defect in rabbit femur. Defects were assessed by radiographs until 9 weeks. The bony union of the defect was observed only in the calcitriol-loaded groups. RT-PCR results indicated that MSCs, which were seeded into calcitriol-loaded scaffold, expressed an increased level of alkaline phosphatase, osteonectin, and type I collagen mRNA at day 10. After 2 and 4 weeks, the implanted scaffolds were evaluated by histology. New osteoid matrix and direct calcium deposits were more evident in calcitriol/PLGA/MSC group. Three-dimensional computed tomography and frontal tomographic images of repaired femur showed that normal femur anatomy had been restored with cortical bone with no implanted PLGA remnants at 20 weeks. It can be concluded that the porous calcitriol-loaded PLGA scaffold combined with MSCs may be a novel method for repairing the large loaded bone defect.  相似文献   

20.
Bhardwaj N  Kundu SC 《Biomaterials》2012,33(10):2848-2857
Adult bone marrow derived mesenchymal stem cells are undifferentiated, multipotential cells and have the potential to differentiate into multiple lineages like bone, cartilage or fat. In this study, polyelectrolyte complex silk fibroin/chitosan blended porous scaffolds were fabricated and examined for its ability to support in vitro chondrogenesis of mesenchymal stem cells. Silk fibroin matrices provide suitable substrate for cell attachment and proliferation while chitosan are promising biomaterial for cartilage repair due to it’s structurally resemblance with glycosaminoglycans. We compared the formation of cartilaginous tissue in the silk fibroin/chitosan blended scaffolds with rat mesenchymal stem cells and cultured in vitro for 3 weeks. Additionally, pure silk fibroin scaffolds of non-mulberry silkworm, Antheraea mylitta and mulberry silkworm, Bombyx mori were also utilized for comparative studies. The constructs were analyzed for cell attachment, proliferation, differentiation, histological and immunohistochemical evaluations. Silk fibroin/chitosan blended scaffolds supported the cell attachment and proliferation as indicated by SEM observation, Confocal microscopy and metabolic activities. Alcian Blue and Safranin O histochemistry and expression of collagen II indicated the maintenance of chondrogenic phenotype in the constructs after 3 weeks of culture. Glycosaminoglycans and collagen accumulated in all the scaffolds and was highest in silk fibroin/chitosan blended scaffolds and pure silk fibroin scaffolds of A. mylitta. Chondrogenic differentiation of MSCs in the silk fibroin/chitosan and pure silk fibroin scaffolds was evident by real-time PCR analysis for cartilage-specific ECM gene markers. The results represent silk fibroin/chitosan blended 3D scaffolds as suitable scaffold for mesenchymal stem cells-based cartilage repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号