首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is reported that salidroside, the main component of a traditional Chinese medicine, Rhodiola rosea, has the efficacy of protecting Coxsackie virus impairment. As part of a safety evaluation on salidroside for use in the treatment of viral myocarditis, the present study evaluated potential genotoxicity of salidroside by using the standard battery of tests (i.e., bacterial reverse mutation assay, chromosomal aberrations assay, and mouse micronucleus assay) recommended by the State Food and Drug Administration of China. The results showed that salidroside was not genotoxic under the conditions of the reverse mutation assay, chromosomal aberrations assay, and mouse micronucleus assay conditions. The anticipated clinical dose seems to be smaller than the doses administered in the genotoxicity assays. With confirmation from further toxicity studies, salidroside would hopefully prove to be a safe anti-Coxsackie virus agent.  相似文献   

2.
Salacia oblonga has been used for thousands of years in Ayurvedic medicine for the oral treatment of diabetes. The root extract has been shown to inhibit the activity of intestinal alpha-glucosidases, therefore S. oblonga holds potential as a natural method to mitigate the blood glucose response for people with diabetes. As part of a safety evaluation of novel ingredients for use in blood glucose control, the potential genotoxicity of a S. oblonga root extract (SOE) was evaluated using the standard battery of tests (reverse mutation assay; chromosomal aberrations assay; mouse micronucleus assay) recommended by US Food and Drug Administration (FDA) for food ingredients. SOE was determined not to be genotoxic under the conditions of the reverse mutation assay and mouse micronucleus assay, and weakly positive for the chromosomal aberrations assay. A reproducible, although weak, positive chromosomal aberrations response in human lymphocytes is of concern and further toxicity research is recommended. Use of SOE is presently expected to be safe, as anticipated intake is small compared to the doses administered in the genotoxicity assays and may, after further toxicity research, may prove be a useful ingredient in foodstuffs.  相似文献   

3.
It is reported that dehydrocavidine (DC), the main component of a traditional Chinese medicine, Yanhuanglian (YHL), can protect hepatic tissue against HBV and HAV impairment. As part of a safety evaluation on YHL-DC for use in the treatment of HBV, the present study evaluated the potential genotoxicity of YHL-DC by using the standard battery of tests (i.e., bacterial reverse mutation, chromosomal aberrations, and mouse micronucleus assays) recommended by the State Food and Drug Administration of China. The results showed that YHL-DC was not genotoxic under the conditions of the reverse mutation, chromosomal aberrations, and mouse micronucleus assay conditions. The anticipated clinical dose should be smaller than the doses used in the genotoxicity assays. With confirmation from further toxicity studies, YHL-DC would hopefully prove to be a useful anti-HBV agent.  相似文献   

4.
Fucoidan extracts from brown seaweed have anticoagulant, antithrombotic, and antiviral activities. Low molecular weight fucoidan (LMF) obtained by acid hydrolysis of high molecular weight fucoidan showed more favorable bioactivity. Despite extensive work on LMF bioactivities, detailed studies on the genotoxicity of LMF have not been conducted. As part of a safety evaluation, the potential genotoxicity of LMF was evaluated using a standard battery of tests (bacterial reverse mutation assay, chromosomal aberrations assay, and mouse micronucleus assay). The LMF was determined not to be genotoxic under the conditions of the reverse mutation assay, chromosomal aberrations assay, or mouse micronucleus assay. In a reverse mutation assay using four Salmonella typhimurium strains and Escherichia coli, LMF did not increase the number of revertant colonies in any tester strain regardless of metabolic activation by S9 mix, and did not cause chromosomal aberration in short tests with the S9 mix or in the continuous (24 h) test. A bone marrow micronucleus test in ICR mice dosed by oral gavage at doses up to 2000 mg/kg body weight/day showed no significant or dose-dependent increases in the frequency of micronucleated polychromatic erythrocytes. Use of LMF is presently expected to be safe, as anticipated intake is small compared to doses administered in the genotoxicity assays and may prove to be a useful bioactive agent after further toxicity research.  相似文献   

5.
The root of Polygala tenuifolia Willdenow has been used for the treatment against insomnia, amnesia, depression, palpitations with anxiety, and memory improvement. However, there is no sufficient background information on toxicological evaluation of the root to given an assurance of safety for developing dietary supplements and functional foods. As part of a safety evaluation, the potential genotoxicity of the root extract of P. tenuifolia was evaluated using a standard battery of tests (bacterial reverse mutation assay, chromosomal aberrations assay, and mouse micronucleus assay). In a reverse mutation assay using four Salmonella typhimurium strains and Escherichia coli, the extract did not increase the number of revertant colonies in any tester strain with or without metabolic activation by S9 mix, and did not cause chromosomal aberration in short-period test with the S9 mix or in the continuous (24 h) test. A bone marrow micronucleus test in ICR mice dosed by oral gavage at doses up to 2000 mg/kg/day showed no significant or dose dependent increase in the frequency of micronucleated polychromatic erythrocytes (PCE). These results indicate that ingesting the rot extract P. tenuifolia is not genotoxic at the proper dose.  相似文献   

6.
The genotoxic potential of a high purity sample of single-wall carbon nanotubes (SWCNTs) was evaluated using a battery of in vitro and in vivo genotoxicity assays. These comprised a bacterial reverse mutation test (Ames test), an in vitro chromosomal aberration test, and an in vivo mouse bone marrow micronucleus test. The SWCNTs exerted no genotoxicity in Salmonella typhimurium TA97, TA98, TA100, and TA1535, or in Escherichia coli WP2 uvrA/pKM101, whether in the absence or presence of metabolic activation and at concentrations of 12.5–500 μg/plate. In the chromosomal aberration test, at 300–1000 μg/mL, the SWCNTs did not increase the number of structural or numerical chromosomal aberrations, whether the test was conducted with or without metabolic activation. In the in vivo bone marrow micronucleus test, doses of 60 mg/kg and 200 mg/kg SWCNTs did not affect the proportions of immature and total erythrocytes, nor did it increase the number of micronuclei in the immature erythrocytes of mice. The results of these studies show that the high purity and well-dispersed sample of SWCNTs are not genotoxic under the conditions of the in vitro bacterial reverse mutation assay, chromosomal aberration assay, or in vivo bone marrow micronucleus test, and thus appear not to pose a genotoxic risk to human health in vivo.  相似文献   

7.
As part of a safety evaluation, we evaluated the potential genotoxicity of sodium formononetin-3′-sulphonate (Sul-F) using bacterial reverse mutation assay, chromosomal aberrations detection, and mouse micronucleus test. In bacterial reverse mutation assay using five strains of Salmonella typhimurium (TA97, TA98, TA100, TA102 and TA1535), Sul-F (250, 500, 1000, 2000, 4000 μg/plate) did not increase the number of revertant colonies in any tester strain with or without S9 mix. In a chromosomal assay using Chinese hamster lung fibroblast (CHL) cells, there were no increases in either kind of aberration at any dose of Sul-F (400, 800, and 1600 μg/mL) treatment groups with or without S9 metabolic activation. In an in vivo bone marrow micronucleus test in ICR mice, Sul-F at up to 2000 mg/kg (intravenous injection) showed no significant increases in the incidence of micronucleated polychromatic erythrocytes, and the proportion of immature erythrocytes to total erythrocytes. The results demonstrated that Sul-F does not show mutagenic or genotoxic potential under these test conditions.  相似文献   

8.
The potential genotoxicity of the rodent liver carcinogen 2,6-dinitrotoluene (2,6-DNT) was evaluated in compliance with the guidelines for genotoxicity studies of drugs (Notification No. 1604, Nov. 1, 1999, Ministry of Health and Welfare, Japan) and the OECD guidelines for the testing of chemicals by performing the bacterial reverse mutation (Ames) assay, the in vitro chromosomal aberration assay, and the in vivo comet assay (alkaline single cell gel electrophoresis) in rat liver. In the Ames assay, 2,6-DNT was moderately positive irrespective of metabolic activation. In the in vitro chromosomal aberration assay, under conditions where the test substance would precipitate out, weak structural aberrations were observed with or without S9 mix at each dose at which the cell growth rate was about 40 to 50%. The in vivo comet assay yielded positive results in rat liver; that is to say, the increases in % tail DNA in liver in the 25 and 50 mg/kg groups were observed statistically significantly and dose-dependent. Our findings are in accordance with previous findings in the in vivo/in vitro unscheduled DNA synthesis (UDS) assay in rat liver and in a young rat liver micronucleus assay, although the rat bone marrow micronucleus assay gave negative results. These results suggest that test systems using liver are a useful method for the in vivo genotoxicity assessment of chemicals that require metabolic activation.  相似文献   

9.
Natural dietary antioxidants are extensively studied for their ability to protect cells from miscellaneous damages. Origanum majorana L., Lamiaceae, is a potent antioxidant. The effect of administration of O. majorana (volatile oil, alcoholic and aqueous extracts) on oral administration of lead acetate in the diet of mice at concentration 0.5% (W/W) for one month were studied by measuring serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea and creatinine, histopathological changes of the liver and kidney and genotoxicity including, rate of micronucleus and chromosomal aberrations in bone marrow cells. Mice were treated with the 3 different forms of O. majorana, one month before and maintained with lead acetate administration. The 3 forms of O. majorana induced a significant decrease in serum activities of transaminases (AST & ALT), ALP, urea and creatinine and improved the liver and kidney histology in comparison with lead acetate treated group. Alcoholic extracts of O. majorana significantly reduced the rate of micronucleus, number of aberrant cells and different kinds of chromosomal aberrations. Volatile oil extract significantly reduced the rate of micronucleus and chromosomal fragments. Aqueous extract and volatile oil also of O. majorana significantly reduced number of gaps, ring chromosome and stickiness. It could be concluded that O. majorana plays an important role in ameliorating liver and kidney functions and genotoxicity induced by lead toxicity.  相似文献   

10.
Asbestos fibers are well known environmental carcinogen, however, the underlying mechanisms of their action have still not clearly been identified. Asbestos is capable of depleting glutathione and generating reactive oxygen species (ROS), which are important mediators of damage in biological system. Asbestos-induced mutagenecity, may be mediated by the generation. It is known that a number of scavengers and antioxidants attenuate asbestos-induced ROS release. Furthermore, it is known that garlic, contains numerous sulfur compounds and glutathione precursors which act as antioxidants and also demonstrate anticarcinogenic properties. The aim of this study was to investigate whether garlic extract has any influence on asbestos-mediated genotoxicity. As an assay system, we applied the micronucleus assay, sister chromatid exchanges, and chromosomal aberrations with human peripheral blood lymphocytes, which has already been used to analyze the genotoxicity of asbestos fibers. Our results indicate that garlic extract, when administered to the lymphocytes cell culture simultaneously with chrysotile reduced the rates of micronucleus formation, sister chromatid exchanges, and chromosomal aberrations significantly. We conclude that garlic extract may be an efficient, physiologically tolerable quencher of asbestos-mediated genotoxicity.  相似文献   

11.
In vitro genotoxicity tests are employed to screen chemicals for their capability to cause various DNA and chromosomal alterations, and the results are often used to predict their potential for carcinogenicity. However, there is controversy regarding the apparent low specificity of some in vitro genotoxicity assays, which result in a high false positive rate. Since we use and rely upon in vitro assays for risk assessment and prediction of carcinogenicity, this specificity issue is of serious concern to us. Hence, we selected ten compounds deemed non-carcinogens in the literature to test for the induction of gene mutation and chromosomal damage using the Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutation assay performed concurrently with a CHO micronucleus assay. The chemical exposures for the two end-points were done simultaneously. The protocol for the two end-points was developed using the carcinogens N-methyl-N'-nitro-N-nitrosoguanidine, 3-methylcholanthrene, cyclophosphamide and 7,12-dimethylbenzanthracene. The non-carcinogens chosen were 4-nitro-o-phenylenediamine, p-phenylenediamine dihydrochloride, 3-nitropropionic acid, dichlorvos, 2-(chloromethyl)pyridine, N-(1-naphthyl)ethylenediamine 2HCl, O-anthranilic acid, 4-nitroanthranilic acid, anilazine and triphenyltin hydroxide. Each of these chemicals had been reported positive in the Ames test and/or the mouse lymphoma TK+/- mutation assay. In addition, eight of them were also reported positive in in vitro assays for chromosome aberrations and/or sister chromatid exchange (SCE). We found four of the ten chemicals negative for gene mutation and micronucleus induction without and with activation in the CHO/HGPRT mutation and CHO micronucleus assays. However, one of these four chemicals may be a potential carcinogen according to other carcinogenicity reviewers. Four other chemicals that induced only micronuclei were negative for gene mutation. Dichlorvos was positive for gene mutation and micronucleus induction without and with activation. This chemical has been shown recently to cause various tumors in rodents. One of the non-carcinogens was positive in the micronucleus test and equivocally positive in the mutation test. These results indicate that the CHO/HGPRT mutation assay may provide more relevant results than the CHO micronucleus assay, the mouse lymphoma mutation assay, or in vitro SCE and chromosome aberration assays when screening chemicals for potential carcinogenicity.  相似文献   

12.
Hoodia gordonii extract consists of a mixture of steroid glycosides, fatty acids, plant sterols and alcohols. As part of the overall safety assessment H. gordonii extract was assessed for genotoxicity in two assays in vitro: a bacterial mutation assay; and a gene mutation assay using mouse lymphoma cells. H. gordonii extract showed no evidence of genotoxic activity in either of these assays. In addition, H. gordonii extract was assessed for mutagenic activity in a bone marrow micronucleus (MN) assay in the mouse, with 400 mg/kg selected as the high-dose group, based on observations in a dose-range-finding study. The group mean frequencies of micronucleated polychromatic erythrocytes of treated animals were similar to those of the vehicle control group, indicating H. gordonii extract to be non-genotoxic under the conditions of this test. All assays were performed in compliance with the Good Laboratory Practice Regulations and in accordance with standard guidelines for genotoxicity tests. H. gordonii extract was shown to be non-genotoxic in 3 independent assays (a bacterial mutation test, a gene mutation assay using mouse lymphoma cells and a bone marrow micronucleus assay in the mouse).  相似文献   

13.
The potential genotoxicity of the rodent liver carcinogen p-dimethylaminoazobenzene (DAB) was evaluated in compliance with the guidelines for genotoxicity studies of drugs (Notification No. 1604, Nov. 1, 1999, Ministry of Health and Welfare, Japan) and the OECD guidelines for testing chemicals. DAB was clearly positive in both the bacterial reverse mutation test (Ames test) and in vitro chromosomal aberration test in the presence of metabolic activation, whereas it was weakly positive at toxic doses in the rat bone marrow micronucleus test. It has been reported that DAB was clearly positive in in vivo genotoxicity tests, i.e., a mouse alkaline single cell gel electrophoresis (comet) assay and a young rat liver micronucleus test. These results suggest that the test system using the liver is effective for in vivo genotoxicity assessment of chemicals that show mutagenicity in in vitro genotoxicity tests in the presence of metabolic activation.  相似文献   

14.
The in vitro micronucleus test is commonly used in the early stages of pharmaceutical development as a predictive tool for the regulatory mouse lymphoma assay or in vitro chromosome aberration test. The accumulated data from this assay leads to the suggestion that it could be used as an alternative to the chromosome aberration test or the mouse lymphoma assay in the regulatory genotoxicity battery. In this paper, we present the results of the in vitro micronucleus test on L5178Y mouse lymphoma cells with 25 compounds from Servier research and have compared these results to those obtained in the genotoxicity regulatory battery. All the negative compounds were also negative in the in vitro micronucleus assay. Among the 14 positive compounds, two of them, positive in the mouse lymphoma assay, were found negative in the in vitro micronucleus test. However, this apparent discordance was likely to be due to cytotoxicity- or high concentration-related false positive responses in the mouse lymphoma assay. In addition, we confirmed that the in vitro micronucleus assay is useful for detecting aneugens, especially, when cells in metaphasis and multinucleated cells are also scored and when cells are allowed to recover after the long treatment. On this series of compounds, the in vitro micronucleus assay showed high sensitivity and possibly a better specificity than the mouse lymphoma assay. Thus, the in vitro micronucleus assay was shown to be at least as adequate as the mouse lymphoma assay or the in vitro chromosome aberration test to be used in the standard genotoxicity battery.  相似文献   

15.
The genotoxicity of single‐walled carbon nanotubes (SWCNTs) was determined using a battery of genotoxicity assays, comprising a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test and a mammalian erythrocytes micronucleus test. SWCNTs had no mutagenicity in S. typhimurium TA98, TA100, TA1535 or TA1537, or in E. coli WP2uvrA, in the absence or presence of metabolic activation. SWCNTs did not increase the number of structural or numerical chromosomal aberrations after short‐term or continuous exposure. In the micronucleus test using CD‐1 mice, SWCNTs did not affect the proportion of immature erythrocytes, the total proportion of erythrocytes or the number of micronuclei in immature erythrocytes. SWCNTs appear not to pose a genotoxic risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Genetic toxicology studies with glutaraldehyde.   总被引:6,自引:0,他引:6  
Glutaraldehyde (GA; CAS no. 111-30-8) has a wide spectrum of industrial, scientific and biomedical applications, with a potential for human exposure particularly in its biocidal applications. The likelihood for genotoxic effects was investigated in vitro and in vivo. A Salmonella typhimurium reverse mutation assay showed no evidence for mutagenic activity with strains TA98, TA1535, TA1537 and TA1538, with or without metabolic activation. However, there was a weak mutagenic response (1.9-2.3-fold at the highest non-toxic concentration) with TA100 in the presence of metabolic activation. In a Chinese hamster ovary (CHO) forward gene mutation assay (HGPRT locus) there were no consistent, statistically significant, reproducible or dosage-related increases in the frequency of 6-thioguanine resistant cells. There were no reproducible or dosage-related increases in sister chromatid exchanges in an in vitro test in CHO cells. An in vitro cytogenetics study in CHO cells showed no evidence for an increase in chromosomal aberrations on treatment with GA, either in the presence or absence of metabolic activation. In vivo, a mouse peripheral blood micronucleus test showed no increase in micronucleated polychromatophils at sampling times of 30, 48 and 72 h after acute gavage dosing with GA at 40, 80 and 125 mg kg(-1) (corresponding to 25, 50 and 85% of the LD(50)). The absence of an in vivo clastogenic potential was confirmed by no increase in chromosomal aberrations in a rat bone marrow cytogenetics study with sampling at 12, 24 and 48 h after acute gavage dosing with GA (12.5, 30 or 60 mg kg(-1) with males, and 7.5, 20 or 40 mg kg(-1) with females). Thus, in this series of tests, GA produced genotoxic effects in vitro only in a bacterial reverse mutation assay with no evidence for in vivo genotoxicity.  相似文献   

17.
The beneficial effects of tea catechins are well documented. We evaluated the genotoxic potential of a green tea catechin preparation using established genotoxicity assays, including a bacterial reverse mutation assay (Ames test), a chromosomal aberration assay in cultured Chinese hamster lung cells (CHL/IU), a mouse lymphoma L5178Y/tk assay, and a bone marrow micronucleus (MN) assay in ICR CD mice and SD rats. No significant increases in the number of revertant colonies were observed in the Ames test, but positive responses were observed in two in vitro assays: the chromosomal aberration assay and mouse lymphoma L5178/tk assay. However, the in vivo study demonstrated no significant increase in micronucleated polychromatic erythrocytes (MNPCE) in the bone marrow of both ICR CD mice and SD rats administered a high dose of the green tea catechin preparation up to 2000 mg/kg. Combined with favorable epidemiological information suggesting a chemopreventive effect of tea catechins on carcinogenesis, we conclude that green tea catechin presents no significant genotoxic concern under the anticipated conditions of use. These results are consistent with other genotoxicity studies of tea catechins, which show minimal, if any, genotoxic potential.  相似文献   

18.
Genotoxicity testing of a fenugreek extract.   总被引:2,自引:0,他引:2  
Fenugreek seeds have been used in traditional medicines as a remedy for diabetes. Rich in protein, fenugreek seeds contain the unique major free amino acid 4-hydroxyisoleucine (4-OH-Ile), which has been characterized as one of the active ingredients for blood glucose control. Current use of fenugreek in foodstuff has been limited to its role as a flavoring agent, and not as an ingredient to help mitigate the blood glucose response for people with diabetes. As part of a safety evaluation of novel ingredients for use in blood glucose control, the potential genotoxicity of a fenugreek seed extract (THL), containing a minimum of 40% 4-OH-ILE, was evaluated using the standard battery of tests (reverse mutation assay; mouse lymphoma forward mutation assay; mouse micronucleus assay) recommended by US Food and Drug Administration (FDA) for food ingredients. THL was determined not to be genotoxic under the conditions of the tested genetic toxicity battery. The negative assay results provide support that addition of THL to foodstuffs formulated for people with diabetes is expected to be safe. A wide safety margin is established, as anticipated doses are small compared to the doses administered in the assays.  相似文献   

19.
Naringin is a flavonoid found in grapefruit and other citrus fruits that shows antioxidant activity. The aim of the present study was to determine the anti-genotoxic and protective effects of naringin on the chemotherapeutic/radiomimetic agent bleomycin (BLM) in human blood lymphocyte cultures in vitro using micronucleus test and chromosomal aberrations (CA) assay. We tested the three doses of naringin (1, 2, 3?µg/mL) and a single dose of BLM (20?µg/mL). BLM significantly increased the total CAs and micronucleus frequency at a concentration of 20?µg/mL. Naringin did not show any toxicity in doses of 1, 2, and 3?µg/mL. Combined treatments of BLM and naringin (2 and 3?µg/mL) significantly reduced micronucleus formation. Naringin dose-dependently decreased the total chromosome aberrations frequency induced by BLM. These results indicate that naringin could prevent BLM (20?µg/mL)-induced genotoxicity.  相似文献   

20.
Agaricus blazei (Ab) has become popularly known for its medicinal properties. Scientifically, it has been tested with regard to its capacity to protect genetic material against damage. We examined different organic extracts (methanolic extract -- ME, hexanic extract -- HE and n-butanolic extract -- BE) and an aqueous extract (AE) of Ab, for their capacity to induce DNA damage as well as for their protective effect. Genetic damage was determined by the chromosomal aberration assay (CA) in CHO-k1 cells for all extracts and the cytokinesis block micronucleus assay (CBMN) in non drug-metabolizing (CHO-k1) and drug-metabolizing (HTC) cell lines for extract BE only. The extracts did not show clastogenicity but showed anticlastogenicity. The greatest percent reduction obtained were with BE (105%) and AE (126%) treatments in CA. BE treatment did not display genotoxicity in CHO-k1, but was genotoxic in HTC. However, BE was shown to be antigenotoxic causing decreased micronucleus frequency in HTC and CHO-k1 cells. These results suggest that all the extracts contained protective substances, but in some cases they could show a genotoxic effect with regard to metabolism. Therefore, these findings warrant caution in the use of this mushroom by the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号